

UNITED NATIONS

GENERAL
ASSEMBLY

Distr. GENERAL

A/9125
24 August 1973
ENGLISH
ORIGINAL: ENGLISH/FRENCH/
RUSSIAN/SPANISH

Twenty-eighth session
Item 15 of the provisional agenda*

REPORT OF THE INTERNATIONAL ATOMIC ENERGY AGENCY

Note by the Secretary-General

1. The seventeenth report of the International Atomic Energy Agency, for the year ending 30 June 1973, is submitted herewith to the General Assembly. Major developments since this report was published will be covered by the annual statement of the Director General of the Agency to the General Assembly. This report has been transmitted in accordance with the provision of article III.I (a) of the Agreement governing the relationship between the United Nations and the International Atomic Energy Agency. I/
2. As only a limited number of copies of this report are available, it has not been possible to make a full distribution. Delegations are therefore requested to have the copies transmitted to them available during the discussion of this item.

* A/9100.

1/ General Assembly resolution 1145 (XII), annex.

ANNUAL REPORT
 I July 1972-30 June 1973

GC(XVII)/500
Printed by the
International Atomic Energy Agency
in Austria - July 1973

INTERNATIONAL ATOMIC ENERGY AGENCY

CONTENTS

	Paragraphs	Page
INTRODUCTION	$1-26$	5
THE AGENCY'S ACTIVITIES	$27-153$	10
Technical co-operation	$27-47$	10
Food and agriculture	$48-56$	21
Life sciences	$57-66$	25
Physical sciences	$67-92$	28
Nuclear technology	$93-112$	33
Nuclear safety and environmental protection	$113-125$	40
Information and technical services	$126-135$	44
Safeguarding peaceful nuclear activities	$136-153$	47
ADMINISTRATION	$154-173$	58
External relations and legal matters	$154-160$	58
Personnel	$161-164$	59
Finance	$165-173$	61

ANNEXES

ANNEX A FELLOWSHIPS OFFERED OR PROVIDED FREE OF CHARGE IN 1972
ANNEX B RESEARCH CONTRACTS
ANNEX C CONFERENCES, SYMPOSIA AND SEMINARS HELD DURING THE PERIOD 1 JULY 1972-30 JUNE 1973

ANNEX D STATUS OF FINANCIAL CONTRIBUTIONS TO THE AGENCY ON 30 JUNE 1973

ANNEX E NUCLEAR INSTALLATIONS UNDER AGENCY SAFEGUARDS OR CONTAINING SAFEGUARDED MATERIAL UNDER AGREEMENTS APPROVED BY THE BOARD OF GOVERNORS

GC(XVII)/500

List of abbreviations

Agency	International Atomic Energy Agency
AGRIS	Agricultural Information System
ECOSOC	Economic and Social Council of the United Nations
EURATOM	European Atomic Energy Community
FAO	Food and Agriculture Organization of the United Nations
IAEA	International Atomic Energy Agency
IBRD	International Bank for Reconstruction and Development
ILO	International Labour Organisation
IMCO	Inter-Governmental Maritime Consultative Organization
INIS	International Nuclear Information System
KEMA	Tot Keuring van Electrotechnische Materialen, Arnhem
MHD	Magnetohydrodynamic
NEA	Nuclear Energy Agency of the Organisation for Economic Co-operation and Development
NPT	Treaty on the Non-Proliferation of Nuclear Weapons
OPANAL	Organization for the Prohibition of Nuclear Weapons in Latin America
SAC	Scientific Advisory Committee
SIDA	Swedish International Development Authority
UNDP	United Nations Development Programme
UNDP(SF)	United Nations Development Programme (Special Fund component)
UNDP(TA)	United Nations Development Programme (Technical Assistance component)
UNEF	United Nations Environment Fund
UNEP	United Nations Environmental Programme
UNESCO	United Nations Educational, Scientific and Cultural Organization
UNIDO	United Nations Industrial Development Organization
UNSCEAR	United Nations Scientific Committee on the Effects of Atomic Radiatior
WHO	World Health Organization
WMO	World Meteorological Organization

NOTE
All sums of money are expressed in United States dollars.

INTRODUCTION

General

1. During the twelve months covered by this report, as in 1971/72, the Agency gave special attention to work relating to the negotiation of safeguards agreements in connection with NPT, assistance to developing countries and the impact of nuclear energy on the environment.

Safeguards and the Treaty on the Non-Proliferation of Nuclear Weapons
2. By 30 June 1973 , 95 non-nuclear-weapon States had signed NPT and 76 of them had ratified or acceded to it; of the latter, 37 had concluded the safeguards agreements with the Agency that are required by NPT, and 26 of these agreements had entered into force. The required agreements were thus in force in 34% of the non-nuclear-weapon States party to NPT. More detailed information is given in Table 15 below. Five new safeguards agreements outside the scope of NPT also entered into force during the last twelve months.
3. The Safeguards Agreement with EURATOM and the non-nuclear-weapon States members of EURATOM (Belgium, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands) approved by the Agency's Board of Governors in Mexico City in September 1972, was signed in Brussels on 5 April 1973 by all concerned, as well as Denmark and Ireland, which joined EURATOM on 1 January 1973.
4. In regard to the offer of the United Kingdom of Great Britain and Northern Ireland and the United States of America to place certain of their nuclear activities under the Agency's safeguards, there have been further consultations and a draft agreement between the Agency and the United States is being discussed. Consultations on the United Kingdom offer are expected to resume in the second half of 1973 with a view to an agreement between the Agency, EURATOM and the United Kingdom.
5. Of the 18 States for which the Treaty for the Prohibition of Nuclear Weapons in Latin America (Tlatelolco Treaty) was in force on 30 June 1973 , four had concluded the safeguards agreements required by it, consisting of comprehensive arrangements satisfying the requirements of both NPT and the Tlatelolco Treaty.[1] A co-operation agreement between the Agency and OPANAL was signed in Mexico City and entered into force on 3 October 1972.
6. The growth in safeguards work has made it necessary to adapt and standardize safeguards operations. The Agency is also developing further the safeguards procedures for all types of nuclear plant, including uranium enrichment plants, developing and installing improved equipment for measurement and surveillance and building up relations with a number of laboratories in various Member States for the analysis of nuclear material samples for safeguards purposes.
[1] In addition the Netherlands had concluded safeguards agreements for Surinam and the Netherlands Antilles to meet the requirements of NPT and Protocol I to the Tlatelolco Treaty.

Technical co-operation activities

7. The total resources available to the Agency for technical co-operation activities amount to an estimated 6.8 million dollars in 1973 , compared with 6.2 million in 1972 and 5.4 million in 1971 .
8. At the beginning of 1973 the Agency was executing nine large-scale projects for UNDP.

Nuclear energy and the environment

9. In accordance with the Board's decision of March 1972[2] the Agency has intensified its programme relating to the protection of the environment and, in particular, the safe management of nuclear waste. The additional activities outlined by the Director General at the sixteenth (1972) regular session of the General Conference in Mexico City, were subsequently commended by a group of experts and by SAC and formally endorsed by the Board in February 1973. To finance the launching of these activities in 1973 special contributions were given by Australia ($\$ 5000$), Finland ($\$ 5000$), France ($\$ 5000$), the Federal Republic of Germany ($\$ 10000$), Japan ($\$ 7941$), South Africa ($\$ 5000$), Sweden (\$5000), the United Kingdom (not less than \$5000) and the United States (\$100000).
10. Part of the impetus for the new work was given by the United Nations Conference on the Human Environment, which was held in Stockholm in June 1972. A conference in London in November 1972 adopted a Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. The Convention referred to the Agency as the competent body to define high-level radioactive matter which should not be dumped at sea, and also called upon the parties to take full account of the Agency's recommendations when issuing permits for dumping other radioactive matter.
11. In February 1973 the Board authorized the Director General to enter into arrangements with UNEP for the implementation of activities or projects relating to the impact of nuclear energy on the environment or the use of nuclear science techniques in environmental studies. The Agency has proposed seven projects to UNEP. Each of these relates to recommendations of the Stockholm Conference, chiefly regarding nuclear safety and environmental protection. It is expected that a joint IAEA/UNESCO project to extend the work of the International Laboratory of Marine Radioactivity, Monaco to include studies by nuclear techniques, of certain non-nuclear pollutants such as mercury, lead and insecticides, will be submitted to UNEP later this year. UNEP has indicated that it will be ready to discuss these projects in greater detail during the second part of this year. Until a detailed UNEP programme is drawn up and approved by its Governing Council in March 1974, it will not be possible to foresee what support UNEP can give to the Agency's environmental programmes.

Other technical work

12. By the end of $1972,37000 \mathrm{MW}$ of nuclear generating plant was in operation throughout the world. In its annual report to the General Conference for 1968/69 the Board estimated that the world's installed nuclear capacity in 1980 would be between $300-350000 \mathrm{MW}$. [3]
[2] See document $\mathrm{GC}(\mathrm{XVI}) / 480$, para. 99.
[3] See document GC(XIII)/404, para. 64.

This estimate has fluctuated only to a small extent in the intervening years. The current forecast for 1980 is 315000 MW . Of this a record 46350 MW were ordered in 1972 , bringing the total nuclear plant capacity built or on order to 226500 MW . Thus if the 1980 estimate is to be reached, orders will have to be placed and construction begin on further plants of a capacity of at least 88500 MW by the end of 1975.
13. An implication of the growth of nuclear power is that 1.5 million tons of new reserves of low-cost uranium should be found or confirmed in the next 15 years, i, e. about 1.5 times as much as the published existing reserves of low-cost uranium. Very large quantities will be needed annually in the late 1980 s; however, by 2005 or 2010 the requirements may decline again due to the extensive use of breeders.
14. A detailed survey of the market for nuclear power in developing countries, which was launched in $1971 / 72$ has now been completed in 14 of the countries concerned. [4]
15. The full scope of nuclear science literature is now covered by INIS. The number of items handled increased from about 8200 in $1970 / 71$ to 12007 in 1971/72, and 43920 in 1972/73. FAO has requested the Agency's assistance in establishing a similar system - the Agricultural Information System (AGRIS) - covering sciences related to agriculture.
16. A detailed review was made in February 1973 by a group of specialists from Argentina, Hungary, the Philippines and the United States of the work of the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture. The specialists endorsed the Division's approach of concentrating on the solution of developing countries' problems and recommended that the present general balance of programme activities be maintained. Concern about the environment has stimulated interest in those programmes designed to reduce the need for chemical pesticides and fertilizers, such as the sterile-male technique for controlling insects, and studies of the best use of fertilizers and the breeding of disease-resistant plants.

The Board of Governors and the General Conference

17. On 1 June 1973 the amended version of Article VI. A-D of the Statute, which the General Conference approved in 1970, came into force. [5] As a result the size of the Board will be increased by about one third and considerably more developing Member States will be elected to the Board by the Conference.
18. The Director General will put before the Conference when it meets in September proposals for the necessary amendment of its Rules of Procedure to provide for this. He will also take the opportunity to make various suggestions designed to simplify the Conference's procedures, expedite its work and reduce somewhat the costs of its meetings.

Questions of particular interest to the United Nations

19. This report of the Board to the General Conference will also serve as the Agency's report both to the General Assembly of the United Nations and to ECOSOC. The Board wishes to draw attention to matters in which the General Assembly and ECOSOC have shown special interest, particularly those set out in General Assembly Resolution 2931 (XXVII).
[4] See paras 96 and 97 below, and document $\mathrm{GC}(\mathrm{XVII}) / 506$.
[5] For details, see document INFCIRC/159/Rev. 3.
20. It is to be noted that the coming into force of the amended version of Article VI of the Statute meets a wish expressed in 1968 by the Conference of Non-Nuclear-Weapon States[6]. Other matters which that Conference dealt with are mentioned in paragraphs 126 to 130 below on INIS, and in paragraphs 93 to 112 on developments in nuclear technology.
21. A third international meeting of experts on nuclear explosions for peaceful purposes, which was the subject of General Assembly Resolution 2829 (XXVI), was held in November 1972 and a further meeting is planned for the end of 1973 to draw up detailed procedures for dealing with requests from Member States for assistance in nuclear explosions for peaceful purposes.
22. Reference has already been made to progress relating to NPT and in developing safeguards to cover nuclear material in enrichment plants on which subject the General Assembly adopted Resolutions 2825 (XXVI) and 2907 (XXVII).
23. As indicated in paragraph 11 above, the Agency has established close working links with UNEP and is seeking support from UNEF to finance certain activities. The only other significant inter-agency question which has arisen during the year was once again the division of responsibilities between the United Nations and the Agency in regard to prospecting for nuclear materials. The matter was discussed at the meeting of the Committee on Natural Resources of ECOSOC in New Delhi in February 1973. The Committee stressed the "extreme importance" of the Agency's work in this regard and agreed that ECOSOC
Resolution 1550 (XLIX) "continued to provide a satisfactory basis for the division of responsibility between the United Nations and the IAEA".

Financial and administrative questions

24. The financial problem with which the Agency, like the other organizations of the United Nations system, is faced has been seriously aggravated by continuing inflation and realignment of international currency rates of exchange. The sharp and abrupt movements in the relative value of some major currencies have compounded the difficulties of accurate budgeting and have confronted the Board and the Director General with acute financial problems. The Board in June agreed to recommend to the General Conference a supplemental appropriation for 1973 enabling the Director General to incur obligations at a level higher than originally approved and a supplemental 1973 assessment on Members in the amount of $\$ 1250000$ to cover the portion of increased costs which cannot be met by economies.
25. In the meantime the Director General has taken several measures to reduce expenditures. Recruitment will be virtually suspended during the third quarter of 1973 , expenditures on duty travel, temporary assistance, overtime, hire of consultants and purchase of equipment have been sharply curtailed. The practice of paying the cost of participation in many meetings of experts from developed Member States is being reviewed. The Agency will continue to carry out approved technical programmes as far as possible, but many of these will be affected by changes in the value of major currencies.
[6] See Official Records of the General Assembly, Twenty-third Session, document $\mathrm{A} / 7277$, Resolution H. V.

Note on the structure of the report
26. It should be noted that much of the work of the divisions responsible for other scientific and technical programmes consists of support for the technical assistance programme; in the case of work on the application of nuclear science to food and agriculture, for instance, it has been estimated that such support represents about one quarter of the work of the division concerned. To avoid repetition, however, all technical co-operation activities are covered in paragraphs 27 to 36 of this report. A comprehensive report on the Agency's technical co-operation work in 1972 is being submitted separately in document GC (XVIII) /INF / 142 .

TECHNICAL CO-OPERATION

General

27. In 1972 approximately 6.2 million dollars were available for technical assistance and training compared with about 5.4 million dollars in 1971 . The resources available for the Agency's technical assistance programmes during the period 1963-1972 shown in Figure 1 below while the distribution of technical assistance by field of activity and region in 1972 is illustrated in Figure 2.

FIGURE 1
RESOURCES AVAILABLE FOR
AGENCY TECHNICAL ASSISTANCE PROGRAMMES: 1963-1972
(in thousands of dollars)

FIGURE 2
DISTRIBUTION OF TECHNICAL ASSISTANCE BY FIELD OF ACTIVITY AND REGION: 1972ad

SUMMARY

Field	Africe	Asia and the Far East	Europe	Latin America	Middle East	Interregional
	\%	\%	\%	\%	$\%$	\%
0-General atomic energy development	9	2	-	2	-	-
1 - Nuclear physics	7	5	19	10	6	2
2 - Nuclear chemistry	6	8	5	12	12	-
3-Prospecting, mining and processing of nuclear materials	10	7	16	13	2	-
4 - Nuclear engineering and technology	13	17	17	10	20	20
5 - Application of isotopea and radiation in agriculture	30	31	17	14	25	46
6 - Application of isotopes and radiation in medicine	8	11	8	12	22	2
7 - Application of isotopes and radiation in biology	8	4	10	4	2	8
d - Other fields of application of isotopes and radiation	5	12	5	17	10	-
9 - Safety in nuclear energy	4	3	3	6	1	22
	100\%	100\%	100\%	100\%	100\%	100\%

[^0]28. The distribution of technical assistance by type of assistance during the last two years and during the decade 1963-1972 is illustrated in Figure 3.

FIGURE 3
DISTRIBUTION OF TECHNICAL ASSISTANCE BY TYPE OF ASSISTANCE (1971, 1972 and 1963-1972)

Type	1971		1972		1963-1972	
	$\%$	\$1000	$\%$	$\$ 1000$	$\%$	\$1000
Experts	36	1789.0	33	1840.2	35	12423.5
Equipment	31	1525.0	35	1922. 1	29	10041.3
Fellowships ${ }^{\text {a }}$	33	1631.1	32	1736.3	36	12634.8
Total	100	4945.1	100	5498.6	100	35099.6

29. The trends in the distribution of funds for the provision of the main types of technical assistance are illustrated in Figure 4.

FIGURE 4
TRENDS IN THE TECHNICAL CO-OPERATION ACTIVITIES OF THE AGENCY

[^1]
Training

30. A list of the fellowships made available to the Agency free of charge by Member States in 1972 is given in Annex A. Some of the "Type II" fellowship openings were carried over from a previous year's offer.
31. Table 1 below gives an analysis of the six training courses, four study tours (seminars) and the co-operative project that the Agency arranged in 13 countries from mid-1972 to mid1973.

Table 1
Regional and interregional short-term training projects

Project	Place and dates Tot	Total number of participants	Source of funds
Interregional training course on the use of isotopes and radiation in forestry	Helsinki 5 June to 21 July 1972	18	Regular programme and FAO
Study tour (seminar) on mass rearing of insects as related to the sterile-male technique	United States 12 June to 14 July 1972	22	Regular programme
Co-operative project in neutron scattering, in the Asia and Far East region	Bangkok, Manila and Seoul 1 July to 19 September 1972	5	Regular programme
Study tour on the use of isotopes and radiation in genetics and plant breeding	Soviet Union 4 July to 4 August 1972	29	Regular programme
Interregional training course on the basic principles of isotope and radiation equipment used in soil research	Hanover, Federal Republic of Germany 19 July to 6 September 1972	21	FAO and the Federal Republic of Germany
Interregional training course on the maintenance and repair of nuclear electronic equipment	Turin, Italy 28 August to 1 December 1972	er 14	UNDP and regular programme
Interregional training course on the use of isotope tracer techniques for studying pesticide problems	Vienna 18 September to 13 October 1972	12	SIDA
Regional training course on the use of isotopes and radiation for the development of	Manila 23 October to 1 December 1972	19	Regular programme

\(\left.$$
\begin{array}{llll}\hline \text { Project } & \text { Place and dates } & \begin{array}{c}\text { Total number of } \\
\text { participants }\end{array} & \begin{array}{c}\text { Source of } \\
\text { funds }\end{array} \\
\hline \begin{array}{l}\text { Regional seminar on the } \\
\text { application of nuclear } \\
\text { techniques in agriculture }\end{array} & \begin{array}{l}\text { Bombay and New } \\
\text { Delhi } \\
2 \text { to } 20 \text { April } 1973\end{array} & 22 & \text { UNDP } \\
\begin{array}{l}\text { Study tour on waste manage- } \\
\text { ment techniques and environ- } \\
\text { mental protection }\end{array}
$$ \& \begin{array}{l}Czechoslovakia,

Poland and the

Soviet Union

7 May to 15 June

1973\end{array} \& 25 \& Regular\end{array}\right]\)| programme |
| :--- |

UNDP projects

32. During the period covered by this report the large-scale nuclear survey in the Philippines, for which the Agency was the executing agency, was completed. This was a follow-up of an earlier (1964-66) UNDP study which indicated a long-term need for nuclear power in Luzon. The results of this feasibility study indicate that the introduction of the two unit nuclear station of around $600-\mathrm{MW}$ output each into the combined power supply system of Luzon would be technically feasible and economically viable during the early 1980 s. Two sites were examined and found suitable - Bagac and San Juan. The cost of two 600-MW units, including the land, was estimated at approximately $\$ 400 \mathrm{million}$.
33. The large-scale UNDP projects being carried out b'y the Agency on 30 June 1973 are summarized in Table 2 below. A brief outline of the projects follows.

Table 2
Large-scale projects for which the Agency is the executing agency

Recipient country and title of the project	Start of field operations	Project duration (years)	Government contribution (in dollars)	UNDP contribution (in dollars)
INDIA, Nuclear research in agriculture	14 October 1968	5.0	2661700	1737800
GREECE, Exploration for uranium in Central and Eastern Macedonia and Thrace a	18 May 1971	2.5	342900	369500

Recipient country and title of the project	Start of field operations	Project duration (years)	Government contribution (in dollars)	UNDP contribution (in dollars)
PAKISTAN, Detailed ex- ploration of uranium and other radioactive occur- rences in the Siwalik sandstones in the Dera Ghazi Khan Districta	27 September 1971	2.0	700500	464400
INDIA, Demonstration plant for irradiation sterilization of medical products	26 May 1972			

a/ Implemented in association with the United Nations.
b/ Implemented in association with UNIDO.

Nuclear research in agriculture in India
34. A nuclear research laboratory is being established at the Agricultural Research Institute in New Delhi, which will also extend research and training facilities to three other centres, with the aim of reaching a 40% increase in grain production in the next five years. Expert assistance has also been given to the Indian Veterinary Research Institute and the National Dairy Research Institute in nuclear applications in animal health and the development of vaccines against various parasitic diseases (lung-worm in sheep in particular), and to improve the nutrition of buffalo and cattle by increasing the utilization of ready-available feedstuffs and agro-industrial by-products. Some findings from this assistance have already resulted in field application, e, g. experiments of vaccination against lung-worm in Kashmir
have resulted in an increase of weight of $3-4 \mathrm{~kg}$ per lamb per season, and the new techniques of molasses-urea feeding have been used in respect of as many as 400000 animals to avert the effects of a long, severe drought in India.

Exploration for uranium in Central and Eastern Macedonia and Thrace in Greece
35. This project is to assist the Government in locating and defining areas of significant uranium potential. Basic data related to the number, extent and significance of uranium and other radioactive occurrence is being determined. The information will enable the Government to plan in detail its subsequent mineral development programme. The results obtained have been encouraging, and it is expected that a request will be submitted to UNDP at the conclusion of the current field season to authorize a continuation of activities under a second phase of the project.

Detailed exploration of uranium and other radioactive occurrences in the Siwalik sandstones in the Dera Ghazi Khan District in Pakistan
36. In this project the Government is being assisted in determining the extent and the economic potential of uranium occurrences in the Siwalik sandstones. Exploration findings have been sufficiently encouraging to justify an extension of the duration of field operations, and this has been requested by the Pakistan Government.

Demonstration plant for irradiation sterilization of medical products in India
37. This project is to establish a cobalt-60 irradiation facility near the Bhabha Atomic Research Centre in Bombay. The radiation sterilization plant will be commissioned by the end of 1974 and will provide an initial annual capacity for 100000 cubic feet of finished medical products. The most important items to be sterilized by the irradiation facility will be surgical sutures, disposable syringes, needles, cotton products and bandages. This plant is a pilot project for similar facilities to be set up elsewhere in India. Furthermore, the experience gained will prove useful to the Agency in implementing similar projects in Egypt, Hungary and the Republic of Korea.

The application of nuclear technology in agriculture in Brazil
38. This project is to assist the Government in expanding the application of nuclear technology in agriculture, particularly in plant breeding and nutrition, in achieving greater effectiveness in the use of fertilizers, and in the control of pests and diseases. Training and research activities are being carried out at the Centre of Nuclear Energy in Agriculture in Piracicaba. The aim of the project is to increase and improve the country's agricultural production.

Development of nuclear technology in Romania
39. The Institute of Nuclear Technology in Romania will be expanded and strengthened, and will work exclusively for the nuclear power industry in the country, where 1000 MW of electricity generated from nuclear power is scheduled to be available in 1980. Technological knowledge, specific to the reactor components of nuclear power plants is required to enable the national industry to play a significant role in the Romanian nuclear energy programme, and the Institute will provide this training. The long-range objective of this project is to assist the Government in developing the necessary technology for manufacturing some reactor components for the construction of nuclear power plants.

National centre for non-destructive testing and quality control in Argentina
40. This project will establish permanent facilities to provide a non-destructive testing and quality control service to Argentine industry. Originally designed to test fuels to be used in the country's nuclear reactors, the scope of the centre's work has been extended to include the testing of metals, plastics and alloys. It is hoped that the Buenos Aires project will be a pilot scheme for other Latin American countries, whose representatives are becoming acquainted with the centre's work through attendance at a training course.

National nuclear energy centre in Chile

41. This is to assist in the establishment of a national institution near Santiago for the application of nuclear research in agriculture, industry and medicine. A project manager has been appointed, and a project document is being drawn up.

Irradiation sterilization of medical products in Hungary
42. This project, which is similar to the one mentioned in paragraph 37 above, will provide for the sterilization of medical products by means of a cobalt-60 irradiation facility.

General trends

43. The increasing emphasis on nuclear technology reflected in the requests for assistance is in turn a reflection of the needs for increased energy in developing Member States. At present, eight Member States receiving technical assistance have nuclear power stations in operation or under construction. Many others, foreseeing the shortage of conventional power sources in the next two decades, have carried out or are carrying out feasibility studies. The whole process of the introduction of nuclear power requires the State concerned to start planning at least eight to ten years before a nuclear plant is to go into operation, and in preparation for this work the technical assistance programme is being increasingly utilized by Member States for the essential training of personnel.

The Agency's regular programme

44. The status of voluntary contributions to the General Fund from which the Agency's regular programme of technical assistance is financed, is shown in Table 3 below. Cash contributions pledged to the General Fund for 1973 exceeded 90% of the target, the highest percentage achieved so far.
45. However, the financial situation with which all multilateral aid programmes are confronted is giving cause for concern, and the Agency's regular programme of technical assistance is no exception. While there has been a most welcome increase in the percentage met of the $\$ 3$ million target for voluntary contributions to the General Fund for 1973; it is to be noted that most of the increase is offset by inflation.

Table 3

Voluntary contributions to the Genera]. Fund

Year	Established target (in millions of dollars)	Cash contributions pledged to the General Fund					
			$\begin{gathered} \text { Amount } \\ \$ \end{gathered}$	Percentage of target	$\begin{gathered} \text { Shortfall } \\ \$ \end{gathered}$	Number of Members pledging	Percentage of Members pledging
1962	2.0		380470	69.0	619530	44 of 80	55.0
1963	2.0		437394	71.9	562606	40 of 85	47.1
1964	2.0		374447	68.7	625553	42 of 89	47. 2
1965	2.0		330590	66.5	669410	55 of 94	58. 5
1966	2.0		277416	63.9	722584	61 of 96	63.5
1967	2.0		431823	71.6	568177	62 of 98	63.3
1968	2.0		423557	71.2	576443	63 of 99	63.6
1969	2.0		488426	74.4	511574	68 of 102	66.7
1970	2.0		672933	83.6	327067	74 of 103	70.9
1971	2.5		142675	85.7	357325	71 of 102	69.6
1972	3.0		492105	83.1	507895	70 of 103	68.0
1973 ${ }^{\text {/ }}$	3.0		742604	91.4	257396	58 of 102	56.9

a/ As at 30 June 1973.
46. As shown in Table 4 below, the value of approved requests for experts and equipment under the Agency's regular programme increased from $\$ 2123600$ in 1972 to $\$ 2279000$ in 1973. This slight increase may partly reflect price increases, estimated by UNDP at 6-7\% per annum in recent years. The value of the assistance approved for 1973 is 7.3% higher than for 1972. The cost to the Agency of providing expert services has increased by 55% since 1962, the cost of equipment is now rising at an estimated rate of 12% per year, and the cost of fellowship training has increased by over 80% in the last twelve years.

Table 4
Experts and equipment: 1969-1973

Year	Value of requests received (in thousands of dollars)	Value of assistance approved (in thousands of dollars)	Percentage of requests met
1969	3700	977.0	26.4
1970	3400	1250.0	36.8
1971	3600	1891.0	52.5
1972	5268	2123.6	40.3
1973	5657	2279.0	40.3

47. Other developments in the regular programme were:
(a) The share of resources allocated to equipment rose from 24% in 1969 to 29% in 1971, and to 31% in 1973 . This trend is largely due to contributions of equipment from France, the Federal Republic of Germany and the United States;
(b) Projects covering the provision of expert services or equipment, or both, were approved for 46 Member States in 1969, for 52 in 1971 and 53 in 1973; and
(c) In 1973,34 requests were found to be technically sound but could not be met because of lack of funds (compared with 47 in 1969 and 27 in 1971). These requests were brought to the attention of technically advanced Member States; the Agency is not aware of the extent (if any) to which the requests were met.

FOOD AND AGRICULTURE

Summary
48. The main purpose of the joint FAO/Agency programme in food and agriculture is to make those nuclear techniques available to developing countries that can effectively contribute to increasing productivity in agriculture. A large proportion of the work is carried out within co-ordinated research programmes on selected, well-defined problems. Table 5 below summarizes the research programmes at present supported.

Table 5
Research contracts and agreements on food and agriculture

Subject	Countries in which research is carried out with Agency support	$\begin{gathered} \text { Cost to the Agency } \\ \text { in } 1972 \\ \text { (in dollars) } \end{gathered}$
Improved use of fertilizer in rice growing	Bangladesh, Burma, India, Indonesia, Republic of Korea, Philippines, Sri Lanka, Thailand, Viet-Nam	14100
Fertilizer use for grain legumes	Brazila/, Egypt, Ghana, Greece, Hungary, Peru, Romania, Senegal, Sri Lanka, United Kingdom (2a/), United Statesa/	20000
Water use efficiency studies	Belgiuma/, Brazila/, Bulgaria, Chile, Cyprus, France (2a/), Israel, Japana/, Madagascar, Nigeria, Thailand	23885
Seed protein improvement	Argentina, Australiaa/, Austriaa/, Bangladesh, Brazila/, Chile, Cyprus, Denmark (2a/), Egypt, Ethiopia, India (2), Jamaica, Japana/, Republic of Korea, Swedena/, Tanzania, Thailand, Uganda, United Kingdom, Yugoslavia	48430 ic siland,
Induced mutations for disease resistance in crops	Argentina, Canada (2a/), Czechoslovakia, Denmarka/, Egypt, Federal Republic of Germanya/, Hungary, India, Italya/, Republic of Korea, Switzerlanda/, United States (2a/), Yugoslavia	vakia, 27850 c of
Induced rice mutants	Egypt, India, Indonesia, Republic of Korea, Pakistan, Sri Lanka, Thailand, Viet-Nam	nd, 27500
Improvement of mutation breeding techniques	```Australiag/, Belgiuma/, Czechoslovakiaa/, Francea/, Indiaa/, Israela/, Japana/, Soviet Uniona/, Swedena/, United States (2\underline{a}/)```	/,
Improvement of vegetatively propagated and tree crops	Israel, Japan (2), Philippines, Poland	nd 15300

Subject	Countries in which research is carried out with Agency support	$\begin{gathered} \text { Cost to the Agency } \\ \text { in } 1972 \\ \text { (in dollars) } \end{gathered}$
Studies on non-protein nitrogen in ruminants	Australia, Belgiuma/, Czechoslovakiaa/, Egypt, Francea/, Federal Republic of Germany (2a/), Hungary, Indiaa/, United Kingdoma/, United Statesa/	$\begin{array}{ll} \text { xiag } /, & 8000 \\ \text { of } \\ \text { Inited } & \end{array}$
Fruit-fly control by the sterilemale technique	Egypt, Federal Republic of Germanya/, Greece (2), Israel, Mexico, Netherlands, Portugal, Peru, Philippines, Spain, Switzerlanda/, Yugoslavia	28000
Control of animal insect pests by the sterile-male technique	Belgiuma/, Federal Republic of Germany ${ }^{\text {a/, Israela/, Kenya, }}$ Republic of Korea, United Kingdoma/	3000
Ecology and behaviour of the Heliothis complex	Argentina, Colombia, Mexico, United States (4a/), Venezuela	10000
Control of lepidopterous insects by the sterile-male technique	Austria (2), Czechoslovakia, Hungary, Poland, Romania, United Statesa/, Yugoslavia	20000
Fate and significance of foreign substances in food	Canadaa/, Federal Republic of Germany (2a/), Ghana, India, Israela/, Japana/, Pakistan, Swedena/, United Kingdom (4a/), Venezuelaa/	9000
Fate and significance of foreign substances in the agricultural environment	Brazil, Canadaa/, Finland, Federal Republic of Germany ($2 \underline{a} /$), Hungarya/, India, Mexico, Netherlandsa/, Philippines, Turkey, Uganda, United Kingdom (3a/), United States (4a/), Yugoslaviaa/	18000
Preservation of fruits, vegetables and fish	Argentina, Belgium, Hungary, India, Iraq, Italya/, Republic of Korea, Mexico, Nigeria, Philippines, Thailand	, 39500
Control of harmful organisms in food	Bangladesh, Indonesia, Pakistan, Thailand	17350

a/ Cost-free research agreement.
49. During the period covered by the report, meetings of scientists working in the various co-ordinated programmes were held on the following subjects:
(a) The use of nuclear techniques in wheat fertilization studies (Vienna, July 1972);
(b) Improvement of mutation breeding techniques (Bari, Italy, October 1972), in co-operation with the Conference on Mutation and Polyploidy of the European Association for Research on Plant Breeding;
(c) The use of isotopes and radiation in relation to control of rice insects (Bangkok, October 1972);
(d) Isotope tracer-aided studies of the fate and significance of foreign substances in food and the agricultural environment (Ispra, Italy, October/November 1972);
(e) The use of isotopes in fertilizer efficiency studies in grain legumes (Vienna, February 1973);
(f) The use of isotopes in rice production studies (Bangkok, March 1973);
(g) The use of radiation-induced mutations in rice breeding and production (New Delhi, March 1973); and
(h) Induced mutations for disease resistance in crop plants (Novi Sad, Yugoslavia, May 1973).
50. Panels were convened in Vienna to consider the following topics:
(a) Mutation breeding of vegetatively propagated and perennial crops;
(b) The practical use of the sterile-male technique for insect control;
(c) The use of isotopes in studies of nitrogen transport and assimilation in leguminous and cereal crop plants;
(d) Disease prevention in mass rearing of insects for the sterile-male technique;
(e) Isotopic tracer-aided studies of the fate and significance of agrochemical residues in soil, with particular reference to nitrates; and
(f) Improving food quality by irradiation.
51. A panel held in Jakarta in October 1972 discussed the application of tracer techniques in tropical animal production studies. Another panel meeting in Bombay in November 1972 considered the application of food irradiation in developing countries. Analytical screening methods for seed protein content and quality were discussed at a panel in Svalöy, Sweden, in January 1973, under the auspices of the project on plant protein improvement, jointly carried out by the Agency, FAO and the Federal German Society for Radiation and Environmental Research.
52. A symposium held in Greece dealt with the use of isotopes in studies of the physiology of domestic animals with special reference to hot climates, and another symposium in India considered the various aspects of radiation preservation of food.

New trends

53. Concern about the environment has stimulated interest in many joint $F A O / A g e n c y ~ p r o-$ grammes. Isotopic tracers are valuable tools for following and studying the effects of residues of pesticides, such as DDT and other foreign chemicals in the food chain. Radiation sterilization of insects can provide the means to control individual species without harm to other insects or other forms of life. The relevant programmes have therefore been expanded and there has been an increasing number of calls for advice on the use of the sterile-male technique, sometimes as part of a broader programme of control and sometimes where total eradication may be feasible. Similar reasons have led FAO and the Agency to begin a coordinated research programme for inducing greater disease resistance in crop plants by mutation breeding. Earlier programmes on the best use of nitrogen and phosphorus fertilizers have also been expanded in order to study means of reducing the pollution that results from excessive run-off of fertilizers into lakes and streams.
54. The work on the improvement of seed proteins has been expanded to include studies on soil fertility with grain legumes. Work on animal nutrition and health consisted mainly of using nitrogen-15 in studies of more efficient use of non-protein nitrogen, such as urea in ruminant feeding.
55. The success reported last year in using radiation-attenuated vaccines against lungworm in sheep [7] has stimulated a large field programme and the development of radiation vaccines against other important animal parasites, such as those causing poultry disease. Under a technical assistance field programme in Fanar, Lebanon, significant progress has been made in the use of radiation-attenuated vaccines in attempts to control coccidiosis, one of the most serious diseases of poultry.
56. The large-scale project on nuclear research in agriculture in India [8], designed to improve the nutrition of cattle, water buffalo and sheep by using locally available protein sources, has shown that a simplified molasses urea liquid diet can be used as a complete diet.
[7] See document GC(XVI)/480, para. 39.
[8] See also para. 34 above.

LIFE SCIENCES

Dosimetry

57. As part of the current programme of support for research in dosimetry, research is being carried out under 14 contracts in Austria, Belgium, Bulgaria, Denmark, the Federal Republic of Germany, Iran, Israel, Poland, Romania, Switzerland, the United Kingdom, the United States and Yugoslavia. This includes cost-free research agreements on biophysical aspects of radiation quality and on computer applications in clinical dosimetry, the latter as part of a co-ordinated programme. The cost to the Agency for these contracts was $\$ 27245$ in 1972 .
58. Since 1966 the Agency has been distributing calibrated dosimeters to hospitals, clinics and research institutes in Member States for checking the radiation dose given by their cobalt sources in cancer treatment. The dosimeters are prepared and evaluated in the Agency's Laboratory and distributed by WHO. [9] WHO is subsidizing this service which is now being provided to about 120 institutes per year.
59. Services relating to the intercomparison of absorbed dose measurements have been provided on request to institutions in Czechoslovakia and Hungary.
60. Other activities undertaken during the period under review included:
(a) A panel meeting to discuss fast neutron dosimetry held in Vienna in November 1972; and
(b) A symposium on neutron monitoring for radiation protection in Vienna in December 1972.

Medical applications
61. The current programme of support for research on applications of radioisotopes in medicine is summarized in Table 6 below. All programmes were started in 1969 and are being continued.

Table 6

Research contracts on radioisotope applications
in medicine

Subject	Countries in which research is carried out with Agency support	Cost to the Agency in 1972 (in dollars)

Whole-body counting techniques Argentinaa/, Romaniaa/,
and their applications
Swedena/
[9] See document $\mathrm{GC}(\mathrm{XVI}) / 480$, para. 49.

Subject	Countries in which research is carried out with Agency support	$\begin{gathered} \text { Cost to the Agency } \\ \text { in } 1972 \\ \text { (in dollars) } \end{gathered}$
Studies of iron metabolism	Bangladesh, India, Jamaica, Lebanon, Mexico, South Africa, Sri Lanka, Sudan, Swedena/, Turkey, United States	24150
Radioactivation techniques in studies of trace elements and mineral metabolism in man	Argentina, Bulgaria, Federal Republic of Germanya/, Greecea/, United Kingdom ($1+1$ a/), United Statesa/	11625
In vitro assay techniques and their applications	Argentina (2), Bulgaria, Chile, Czechoslovakia, Ecuador (2), Greece (2), Iran, Iraq, Republic of Korea, Nigeria (3), Peru, Romania, Turkey, Uganda, Zambia	40400
Immunological studies of communicable diseases	Bulgaria, India, Jamaica, Nigeria, Peru, Switzerland, United States, Yugoslavia	17650
Scintigraphy	Argentina, Belgiuma/, Colombia, Czechoslovakia, Ecuador, France/, Federal Republic of Germany (3 a $/$), India (2), Japana/, Mexico, Polanda/, Romania, Sweden (2a/), United Kingdom (4ㄹ//), United States (5a/), Uruguay ($1+1$ a/)	28500
Cardiovascular studies	Argentina, Hungary, Israel, Sudan	5500

a/ Cost-free research agreement.
62. The following activities were also undertaken during the period under review:
(a) A panel meeting to discuss the standardization of radioimmunoassay procedures, held in Vienna in July 1972; and
(b) A symposium on medical radioisotope scintigraphy, in Monte Carlo in October 1972.

Radiation biology
63. The current programme of support for research in radiation biology is summarized in the following table:

Table 7

Research contracts on radiation biology

Subject	Countries in which research is carried out with Agency support	$\begin{gathered} \text { Cost to the Agency } \\ \text { in } 1972 \\ \text { (in dollars) } \end{gathered}$
Sterilization of biomedical products and biological tissues	Czechoslovakia, Denmark ($1+1$ a/), Greece, Hungary, Poland, United Kingdom	9000
Radiation microbiology	Austria ($1+1 \frac{a}{a} /$), Czechoslovakia, France ($1+1$ /), Greece, India, Malaysia, Nigeria, Philippines, Singapore, United Kingdom	31500
Attenuation of toxins and infective agents for preparation of vaccines	Argentina, Belgium, Ethiopia, Czechosloyakia, Iraq, United States (2a/), Yugoslavia a/	10400
Radiation biology of neutrons and heavy particles	Argentina, Austria, Netherlands	10500
Environmental radiation biology	Austria ($2+1$ a/ $/$), India ${ }^{\text {a/ }}$, Nigeria	2000
Basic problems in radiation biology	Chile, Israel- ${ }^{\text {a/ , Republic of }}$ Korea, Poland, Romania, Turkey	10500

a/ Cost-free research agreement.
64. In connection with the first contract listed in the table above, a working group was jointly convened with WHO to revise part of the recommended code of practice for radiosterilization of medical products.
65. The emphasis of work under the third programme listed above has been shifted from the radiation attenuation of snake venoms to the use of nuclear techniques in the preparation of vaccines against human parasitic diseases, giving priority to African trypanosomiasis and malaria but not excluding other protozoan and helminthic infections important to public health. A co-ordinated research programme on this subject is being developed in co-operation with WHO.
66. The following activities were also undertaken during the period under review:
(a) A panel meeting to discuss radiation effects on population dynamics in ecosystems, held in Reykjavik in October 1972; and
(b) A panel meeting to discuss the modification of radiosensitivity in biological systems in Stockholm in June 1973.

PHYSICAL SCIENCES

Physics

67. The main objectives of the Agency's programme on physics remain the same as last year. Within the current programme of support for research in physics, research is being carried out under nine contracts in Brazil, Bulgaria, Greece, Israel, Netherlands, Poland, Romania, the Soviet Union and Yugoslavia. The cost to the Agency for the se contracts amounted to \$26500 in 1972.
68. The Agency provides assistance to many smaller nuclear centres through the research contract and technical assistance programmes, with emphasis on the utilization of lowenergy accelerators and the development of various new nuclear techniques.
69. Other activities undertaken included:
(a) Discussions with a number of experts on the Agency's role in fusion reactor development at the International Fusion Research Council Meeting, at Grenoble in August 1972; consultants meetings in Grenoble in October 1972 and in Vienna in December 1972;
(b) A panel meeting on charged-particle-induced radiative capture, held at Vienna in October 1972, which discussed the many possibilities for the study of nuclear structure and reaction mechanisms with low-energy accelerators, as well as some recent important applications in charged-particle prompt activation analysis and in the study of crystals; and
(c) A joint Agency/NEA International Liaison Group on thermionic electrical power generation, which met in Vienna in March 1973.

Nuclear data

70. The Agency and the other three international neutron data centres (Brookhaven, Obninsk and Saclay/NEA) continued their exchange of experimental data, which is compiled on magnetic tape. This exchange, known as EXFOR (exchange format) has increased from 304 data sets in 1970, to 1453 in 1971 and 2451 in 1972 . In the last year 42 Member States participated in this exchange.
71. The scope of the compilation has been expanded to cover fission product yields and fission spectrum data. For the first time the Agency distributed evaluated standard reference data which are important for nuclear engineering.
72. The Agency published reports which contain lists of requests from 15 Member States for measurements of nuclear data of importance to reactor technology, fusion technology and safeguards. Targets and samples for nuclear data experiments have been procured for six Member States.
73. A panel on neutron standard reference data was held in Vienna in November 1972 and a symposium on applications of nuclear data in science and technology in Paris in March 1973.

Chemistry
74. The main activities under the Agency's programme on chemistry included:
(a) A panel on the behaviour and chemical state of fission products in irradiated fuels, which was held in Vienna in August 1972. It was recommended that the Agency consider arranging an international comparison of analytical techniques used to predict radiation effects in fuel materials in reactors; and
(b) A symposium on new developments in radiopharmaceuticals and labelled compounds, which was held at Copenhagen in March 1973.
75. Work in the co-ordinated research programme on rapid methods for the quality control of radiopharmaceuticals has continued and several consultants' group meetings relating to chemistry were held during the year. A research co-ordination meeting on nuclear methods for detection and analysis of trace materials was also held, and research contracts on this subject were concluded with India, Indonesia, the Republic of Korea, the Philippines and Thailand, and research agreements with the United Kingdom and the United States.

Industrial applications
76. In co-operation with UNDP, the Agency has given advice in planning two large-scale projects on the industrial applications of ionizing radiation in Egypt and the Republic of Korea. The sterilization of medical products and electron-beam processing will be the main activities of these projects. [10]
77. Other activities concerned with industry include the following:
(a) The Agency supported research work on radiation processing to produce wood-plastics in Ecuador and Mexico;
(b) A symposium on the use of nuclear techniques in the basic metal industries was held at Helsinki in August 1972 to review the most recent developments in this field;
(c) A consultants' group on the use of high-level radiation in the treatment of sewage and industrial waste was held at Vienna in February /March 1973 to examine the potential use of ionizing radiation for processing water and wastes; and
(d) A co-ordinated research programme on nuclear techniques in geochemicalgeobotanical prospecting for minerals, begun in 1970 , was continued. The programme involves research contracts with Czechoslovakia, Indonesia, the Philippines and Romania, and research agreements with the United Kingdom and the United States.
[10] See also para. 37 above.

Isotope hydrology

78. The main objectives of the Agency's programme in isotope hydrology are to encourage the use of isotope techniques as an additional tool for hydrological investigations, and to promote the refinement of existing methods and the development of new techniques.
79. The principal effort in research has been through the research contract programme. The Agency has also supported studies of certain aspects of carbon-14 analyses of ground water and has made an evaluation of the results of a co-ordinated programme to study the isotopic content of ground water and has developed models for the interpretation of isotope data.
80. The current programme of support for research in isotope hydrology provides for research under twelve contracts in the following countries: Chile, Cyprus, Denmark, Egypt, France, Hungary, Iceland, Indonesia, Netherlands, Poland, South Africa and Turkey. The cost to the Agency for these contracts amounted to \$51450 in 1972.
81. The Working Group of the International Hydrological Decade on Nuclear Techniques, which met in Vienna in July 1972, discussed the application of tracer techniques to water pollution problems. A panel on interpretation of isotope data in hydrology met in Vienna in March 1973 and considered the potential application to hydrological problems of the distribution of ${ }^{234} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ isotopes occurring naturally in ground water.
82. Table 8 below summarizes the field projects in isotope hydrology.

Table 8

Isotope hydrology: field projects

Type of project	Number
Regular programme of the Agency	9
UNDP	4
Sub-contractual services in isotope hydrology for UNDP large-scale projects	7
Fellowships	8

83. During the period covered by this report isotope hydrological studies have been completed in UNDP large-scale projects in Chad, Lebanon, Senegal and Surinam.

Laboratories
Seibersdorf Laboratory
84. The Agency's Laboratory at Seibersdorf has helped to adapt, design and construct safeguards surveillance equipment. There has also been an increase in the number of routine analyses of uranium isotopic and plutonium content of samples taken for safeguards purposes.
85. In regard to the sterile-insect release technique, there has been progress in the rearing of tsetse flies on membranes without the use of live animals. Other species under study are the olive and stable flies and Lepidoptera. With the Agency's advice and help technicians in Cyprus, Israel and Peru have started relatively large-scale field release of sterilized Mediterranean fruit flies.
86. The Laboratory has provided "in service" training for fellows from Ethiopia, Indonesia, Iran, Israel, the Republic of Korea, Mexico, Turkey and Uganda.

International Laboratory of Marine Radioactivity in Monaco
87. The main continuing programme of the Monaco Laboratory is to compare and calibrate the methodology used by various national and other laboratories to measure radionuclides in marine samples. Work has been completed on measuring fission product radionuclides in moderately contaminated seaweed samples. Several of the cooperating laboratories have also made determinations of the plutonium content of the distributed seaweed samples as well as of sea-water samples collected from the same area as the seaweed specimen, The laboratory will now distribute sediments, clams, open ocean Atlantic sea-water of low radioactivity and a sample of moderately contaminated coastal sea-water to co-operating laboratories. Tests to assure homogeneity of these samples are at various stages of completion, and several have already been distributed.
88. During the period covered by this report the Government of France made gifts of new equipment at a value of $\$ 25800$ and the Government of the United States made a contribution for equipment at a value of $\$ 21500$. In order to facilitate the execution of the programme of the Monaco Laboratory the United States has made an additional gift of equipment worth $\$ 50000$.

International Centre for Theoretical Physics at Trieste

89. The highlights of the past year's activities of the Trieste Centre were two extended courses which were followed by "research workshops" in solid-state physics and in global analysis and its applications. The workshops and a summer college on global analysis were UNDP projects carried out by UNESCO through the Centre. SIDA has also provided funds for the solid-state physics programme.
90. The Centre also continued to carry out research in elementary particle physics throughout the year.
91. In September 1972 the Centre served as host to a symposium on the development of the physicist's conception of nature, organized by the universities of Trieste and Texas and
attended by 174 scientists, and in October 1972 to the foundation meeting of the International Federation of Institutes of Advanced Studies of which the Centre is a member. Altogether 930 scientists from 72 Member States took part in activities at the Centre in 1972.
92. SIDA and the Ford Foundation continued to provide funds in support of the associate membership scheme.

NUCLEAR TECHNOLOGY

General
93. Orders for nuclear power plants continued at a high level during the year with a marked acceleration in the last quarter, bringing the total for the year to 46350 MW . As shown in the table below, the world's nuclear installed capacity in operation by the end of 1972 approached 35200 MW . On the basis of existing orders, nuclear capacity is expected to exceed 120000 MW by the end of 1975 and 300000 MW in 1980.[11] World nuclear capacity is more tentatively estimated at 1300000 MW (30% of total electric capacity) in 1990 and 3500000 MW (50% of total electric capacity) in the year 2000.

Table 9

Forecast of installed total electric and nuclear capacity
(in thousands of MW)

	1970	1972	1975	1980	1985	1990	2000
Electrical	1100	1250	1600	2300	3200	4300	7000
Nuclear	21	37	120	315	700	1300	3500
Percentage share of nuclear $(\%)$	2	3	7.5	14	22	30	50

94. The capital costs of nuclear plants are nearly three times higher than in $1968 / 69$, but appear to have stabilized. There have been almost the same proportionate increases in the capital costs of conventional stations which have been particularly affected by requirements to install special equipment to prevent pollution.
95. The costs of a nuclear fuel cycle have remained steady. Fossil fuel prices have not only continued to rise in 1972 , but are expected to go on doing so at a minimum rate of 4% a year for the foreseeable future. It may be inferred therefore that regard for the stability of future fuel costs may be one of the main reasons for the rapid growth in orders for nuclear plants.

Power reactors

96. The market survey for nuclear power in developing countries, launched in 1971/72, has been completed for 14 countries, which were visited by missions between July 1972 and January 1973. Several additional countries have since requested similar missions. Financial support and specialist services were provided for the survey by IBRD, the InterAmerican Development Bank, and several advanced countries. The detailed result of the market survey will be presented separately [12] but in summary it has shown that for
[11] The figure for 1975 may be reduced if there are further substantial delays in licensing and commissioning while the figure for 1980 will be affected by the rate of ordering and construction starts in the next 18 months.
[12] Document GC(XVII)/506.

GC(XVII) $/ 500$
nuclear power plants to be commissioned in developing countries in the years 1980-89, there is no economically justifiable market in unit sizes below 200 MW ; and that the total market under the economic conditions believed most likely to prevail would be:

Market (MW)
$800-3000$
$24600-27600$
$24400-31000$
97. The market survey has helped to put at the Agency's disposal advanced computer-based analytical methods for making estimates of the costs of alternative long-term patterns of expansion of national or regional electric power systems. This capability is being used in technical assistance projects and in advising Member States on the planning of nuclear power programmes.
98. A manual on the steps involved in planning a nuclear power programme and procuring in particular the first nuclear power station will be published in August 1973.
99. The work of the international working group on reactor pressure vessels is being terminated. A more general programme to assist reactor operators to obtain assurance of the continued reliability of their plant is being drawn up. A panel on this subject was held at the end of May 1973.

Supply of nuclear materials

100. Requests for the supply of nuclear materials approved by the Board, and materials supplied under the authority delegated to the Director General by the Board in September 1968, are listed in Table 10 below.

Table 10
Supply of nuclear materials

Receiving State / organization	Purpose	Quantity and type of fissile material	Approximate enrichment (when applicable)
Chile	Medical therapy	$150 \mathrm{mg}{ }^{238} \mathrm{Pu}$ in a heart pacemakera/	
IAEA	Safeguards analytical methods	0.75 g Pu in 2 plutonium sulphate standardsa	
IAEA	Safeguards analytical methods	$\begin{aligned} & 80 \mathrm{mg}{ }_{2}^{233} \mathrm{U} \text { and } \\ & 15 \mathrm{mg}{ }^{242} \mathrm{Pua} / \end{aligned}$	
IAEA	Safeguards analytical methods	$1.16 \mathrm{~g}{ }^{238} \mathrm{Pu}$ in assay machine	
IAEA	Calibration of reference standards	1 kg slightly enriched UO_{2} in 200 samples of $5 \mathrm{~g}^{\text {eacha/ }}$	
IAEA	Safeguards analytical methods	$36 \mathrm{U}_{3} \mathrm{O}_{8}$ standards of 200 g each with various enrichmentsa/	0. 6-10\%
IAEA	Safeguards analytical methods	25 neutron flux monitors with $1 \mathrm{~g}{ }^{235} \mathrm{U}$, $1 \mathrm{~g}{ }^{237} \mathrm{~Np}$ and $10 \mu \mathrm{~g}{ }^{252} \mathrm{Cf}$ in each monitora/	
IAEA	Safeguards analytical methods	6 plutonium metal, 8 plutonium sulphate and $6 \mathrm{U}_{3} \mathrm{O}_{8}$ standards /	
IAEA	For use in Agency meeting on nuclear accident dosimetry	$\begin{aligned} & 6 \text { fission foils with } \\ & 2 \mathrm{mg} 238 \mathrm{U}, 76 \mu \mathrm{~g} \\ & \text { and } 800 \mu \mathrm{~g}, 237 \mathrm{~Np} \text { a } / \end{aligned}$	
India	Research	$10 \mathrm{mg}{ }^{240} \mathrm{Pua} /$	
India	Research	$200 \mathrm{mg}{ }^{232} \mathrm{U}$ (a/	
India	Research	0.5 g Pu in standard and $0.08 \mathrm{~g} \mathrm{235U}$ in 5 standardsa/	1-2\%

Receiving State/ organization	Purpose	Quantity and type of fissile material	Approximate enrichment (when applicable)
India	Research	$5 \mathrm{~g}{ }^{235} \mathrm{U}$ in 10 samples with various enrichmentsa/	5-90\%
India	Research	2 depleted uranium samples and $1 \mathrm{~g}{ }^{235} \mathrm{U}$ in 4 samples with various enrichmentsa/	0. $2-50 \%$
India	Research	$10 \mathrm{~g}{ }^{235} \mathrm{U}$ a/ $/$	93\%
India	Research	$1 \mathrm{U}_{3} \mathrm{O}_{8}$ standarda/	93\%
Korea, Republic of	Research contract No. 1105	$3.88 \mathrm{mg}{ }^{235} \mathrm{U}$ in neutron beam monitora/	
Mexico	Fuel for a research reactor	$760 \mathrm{~g}{ }^{235} \mathrm{U}$	20\%
Mexico	Fuel for a research reactor	$7560 \mathrm{~g}{ }^{235} \mathrm{U}$	70\%
Romania	Fuel for a research reactor	$9294 \mathrm{~g}{ }^{235} \mathrm{U}$	20\%
Romania	Fuel for a research reactor	$31945.50 \mathrm{~g}^{235} \mathrm{U}$	93\%
Turkey	Research contract No. 587	3^{235} U standards-a/	10, 40, 80\%
Turkey	Fuel for a sub-critical assembly	104 kg uranium	1. 143%
Yugoslavia	Research	$\begin{aligned} & 239 \mathrm{Pu},{ }^{230} \mathrm{Th},{ }^{241} \mathrm{Am} \\ & \text { in four standards } \end{aligned}$	

a/ Supplied under the authority referred to above.
101. The allocation of special fissionable material to the value of $\$ 50000 \mathrm{granted}$ by the United States for 1972 is shown in the table below.

Table 11

Allocation of special fissionable material granted by the United States for 1972

Receiving State	Value in dollars
Chile	9270
Greece	20000
Iraq	690
Mexico	9160
Romania	2360
Yugoslavia	8520
	50000

Reactor physics and research reactors
102. In response to interest shown by developing countries in the design and capabilities of irradiation rigs currently in use, a symposium on irradiation facilities for research reactors was held in Teheran in November 1972. In March 1973 the Agency convened a regional study group in Bombay to discuss the practical problems that face research reactor centres in developing countries and, in particular, the problems of managing such centres.
103. In January 1973 the Agency held a symposium in Prague to review new developments in the control and instrumentation of nuclear power plants and the experience gained from the increasing number of plants in operation. The relevant working group of the Agency continued to advise Member States and sponsored two specialist meetings, one in Kjeller, Norway, on the reliability of control and protection systems in November 1972 and one in Paris on process instrumentation in June 1973.
104. In October 1972 the Agency together with NEA and the French Atomic Energy Commission organized an international conference in Paris on reactor shielding. The conference discussed problems encountered in power reactor shielding, from the design up to the operational stage. It considered cost reductions that could result from improvements in methods of computation and more accurate nuclear data, the need for which was strongly stressed.
105. The joint Agency/NEA liaison group on MHD held its ninth meeting in Paris in 1973. A comprehensive status report on MHD was published in the Agency's Atomic Energy Review in 1972 .
106. In view of significant developments in controlled thermonuclear fusion reactor research, the Agency has obtained the advice of consultants on how to extend its programme so as to include fusion reactor engineering.
107. In July 1972 the Agency held a meeting in Athens to discuss the results of an international comparison of chemical dosimeters used in reactor radiation measurements, a matter of basic importance in reactor technology. A comparison of methods for evaluating neutron spectra by the use of activation detectors has also been organized.

Fast breeder reactors

108. The sixth annual meeting of the Agency's International Working Group on Fast Reactors met in Vienna in May 1973 to review national programmes on liquid metal fast breeder reactor development and to co-ordinate international meetings on this subject. The Working Group also sponsored meetings on:
> (a) Measurement and control of sodium impurities, at Cadarache, France, in Novermber 1972;
> (b) Decontamination of plant components from sodium and radioactivity, at Dounreay, United Kingdom, in April 1973; and
> (c) Development and application of absorber materials in June 1973.
109. The Working Group co-operated in an international conference on engineering of fast reactors for safe and reliable operation, held in Karlsruhe by the authorities of the Federal Republic of Germany in October 1972. The Agency also sponsored a study group meeting in Minsk in July 1972 to review the status and future of gas-cooled fast reactors which are receiving increasing attention.

Nuclear materials

110. The joint Agency/NEA working party on world uranium resources and production met in Paris in October 1972, and in Vienna in March 1973, to prepare a new report which will show considerable changes in world reserves outside China, the Soviet Union and the Fastern European countries with the exception of Yugoslavia, since the last report in 1970. A meeting was held in Vienna in November 1972 on the specifications for the performance of instruments used in prospecting for and developing uranium resources. Technical. assistance in uranium prospecting and development was given to Brazil, Cameroon, Colombia, Egypt, Greece, Mexico, Morocco, Pakistan, Peru and Turkey during 1972.

Nuclear fuel technology

111. The Agency has launched a co-ordinated programme for research on the bacterial leaching of uranium ores. A study group on nuclear fuel manufacture was held in Grenoble, France, in September 1972 to inform senior technical staff from interested countries about the technical and economic requirements which would have to be met if national plants for uranium and processing fuel were to be set up. A panel in Vienna in May 1973 reviewed the present status of the sol-gel processes for fuel fabrication.

Nuclear explosions for peaceful purposes
112. The third international panel on nuclear explosions for peaceful purposes met in Vienna in November 1972 io review recently released information about the applications, characteristics and effects of such explosions. The panel recommended that a meeting be held towards the end of 1973 to help the Agency draw up detailed procedures for dealing with requests for assistance in regard to the peaceful uses of nuclear explosions.

NUCLEAR SAFETY AND ENVIRONMENTAL PROTECTION

General

113. During the period covered by the report, the Agency's programme of activity on nuclear safety and environmental protection included five symposia and twelve panels (about twice as many as in previous years) as well as eight consultants' meetings and eight publications. The Agency has continued to carry out the programme in close co-operation with WHO and with NEA, FAO and ILO. It has also taken an active part in the work of UNSCEAR, IMCO and the Joint Group of Experts on the Scientific Aspects of Marine Pollution.

Research support

114. Table 12 below shows the distribution of research contracts and agreements relating to radiological and environmental protection including radioactive waste management.

Table 12
Research contracts on radiological and environmental protection

Subject	Countries in which research is carried out with Agency support	$\begin{gathered} \text { Cost to the Agency } \\ \text { in } 1972 \\ \text { (in dollars) } \end{gathered}$
General matters of radiation protection	Austria, Belgium, Bulgaria, Czechoslovakia, Greece, Israel, Netherlands, Soviet Union and Yugoslavia	14500
Measurement techniques	Czechoslovakia, Egypt, India and Romania	11500
Accident dosimetry	Bulgaria, Canada, Czechoslovakia, France, Federal Republic of Germany, Hungary, India, Japan, Poland, Soviet Union, United Kingdom, United States and Yugoslavia	, 11300
Environmental studies	Argentina, Bangladesh, Czechoslovakia, Egypt, Finland, Federal Republic of Germany, Greece, India, Indonesia, Republic of Korea, Mexico, Netherlands, Philippines, Poland and Thailand	102700

Radiological safety

115. The Agency has undertaken the following activities relating to radiological safety during the period covered by this report:
(a) A symposium on neutron monitoring for radiation protection purposes was convened in Vienna in December 1972;
(b) Two panels were held in collaboration with WHO, to compile manuals of guidance on the safe use of radioactive tracers in industrial processes and on environmental monitoring programmes and assessment of the significance of environmental contamination;
(c) A series of panels was held to review and prepare guidelines on methods for assessing the capacity of various sectors of the environment to accept safely radioactive materials; to consider the assessment of radiological hazards in uranium and thorium mines; and to review the methods of particle size analysis which can be used in the estimation of airborne radioactive contamination;
(d) A regional study group met in Istanbul in November 1972 to discuss radiological and environmental protection for Europe, the Middle East and the Mediterranean area;
(e) A co-ordinated research programme was carried out for the comparison and calibration of whole-body monitors and another on environmental monitoring for radiation protection for countries in South East Asia; and
(f) A meeting was held in Vinća, Yugoslavia, in May 1973 on nuclear accident dosimetry to perform the third and final intercomparison experiment in this series.
116. Work on the preparation or completion of the following has continued:
(a) A manual on the application of the transport regulations;
(b) A guide-book on the establishment and keeping of monitoring records;
(c) A manual on the radiological health aspects of the operation of neutron generators;
(d) A manual of guidance on neutron monitoring;
(e) A manual containing selected criteria and data for the evaluation of radiation emergencies and accidents;
(f) A survey of releases of radioactive material to the environment by the nuclear industry at the present time and as predicted to the year 2000; and
(g) A study of cost-benefit concepts as related to radiological protection and safety.

In September 1972 the Board of Governors approved the revised Regulations for Safe Transport of Radioactive Materials.

Waste management

117. An important object of the programme on waste management is to develop standards of safety for the dispersion of radioactive waste into the environment. For this purpose, two co-ordinated research programmes have been started and the following meetings were held during the period under review:
(a) A symposium on the interaction of radionuclides with constituents of marine environment (Seattle, United States, July 1972);
(b) A symposium on the environmental behaviour of radionuclides released in the nuclear industry (Aix-en-Provence, France, May 1973); and
(c) A panel to develop methods for establishing the capacity of the environment to accept radioactive materials (Vienna, May 1973).
118. The Agency also convened panels to study the choice of burial conditions for concentrates of radioactive waste and to review the possibilities of establishing international sites for storage of high-level and alpha-bearing wastes. These and other new activities are pursuant to the recommendations of the United Nations Conference on the Human Environment for closer international co-operation on radioactive waste problems. The Agency is also preparing guidelines to help those countries which do not have nuclear fuel reprocessing facilities to select appropriate waste management systems.
119. A summary of the projected production of radioactive wastes and some specific radionuclides of concern is given in Table 13 below.

Table 13
Projected world production of radioactive wastes arising from fuel reprocessing

	1980	1990	2000
Installed nuclear capacity (1000 MW)	345	1610	4260
Fuel reprocessed (1000 tons/year)	7	35	80
Volume of liquid waste Generated annually ($1000 \mathrm{~m}^{3}$) Accumulated ($1000 \mathrm{~m}^{3}$)	8 38	45 370	100 1290
Volume of solid waste Generated annually ($1000 \mathrm{~m}^{3}$) Accumulated ($1000 \mathrm{~m}^{3}$)	0.6 3	3 27	7 96
Accumulated radionuclides 90 Sr (microcurie) 239 Pu (microcurie) ${ }^{\text {a }} /$ 241 Am (microcurie) $/$	2200 0.05 5	20000 1.0 100	54000 7 700

a/ 0.5% of Pu and 100% of Am assumed to be in waste.
120. A symposium on the management of radioactive wastes from nuclear fuel reprocessing was held in Paris in November 1972.
121. The Agency also gave more attention to the effects on the environment of various types of non-radioactive releases from nuclear power plants. The work of a panel on the effects of thermal discharges from nuclear power plants will be used to prepare and publish a technical report this year. The Agency is also arranging a co-ordinated research programme on the environmental effects of cooling systems and of thermal discharges.
122. A consultants' meeting was held in April 1973 and a panel was convened in Vienna in June 1973 to formulate recommendations for the discharge by the Agency of its responsibilities under the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter [13]. The panel's recommendations included a definition of highlevel radioactive wastes or other high-level radioactive matter unsuitable for dumping at sea and provisions for the control of the dumping of other radioactive material in accordance with the objectives and requirements of the Convention. The recommendations will be discussed by the Board in September 1973.

Nuclear safety
123. The Agency sent safety missions to the Democritos Centre in Greece, the Teheran Nuclear Centre, the Reactor Centre in the Philippines, the Bandung Reactor Centre in Indonesia in September 1972 and to the research reactors in Argentina, Brazil, Chile and Uruguay in May 1973. The missions reviewed the nuclear and radiological safety levels achieved at the various reactor centres, and the results were communicated to the national authorities concerned.
124. At the request of the Netherlands Government a second safety review was made of the KEMA suspension test reactor in Arnhem in December 1972. In April 1973 a mission reviewed the safety requirements of the Angra dos Reis nuclear power plant in Brazil and in June those of the Laguna Verde nuclear plant in Mexico.
125. The following meetings on nuclear safety have been organized during the period covered by this report:
(a) A panel on reactor safety analysis (Vienna, December 1972); and
(b) A symposium on principles and standards of reactor safety (Jülich, Federal Republic of Germany, February 1973).
[13] See also para. 10 above of the Introduction.

INFORMATION AND TECHNICAL SERVICES

The International Nuclear Information System (INIS)
126. By June 1973, 44 Member States and 12 international organizations were participating in INIS. During the third year of INIS operation (July 1972 to June 1973), data on 43920 items of nuclear science information were distributed to participants, as shown in the graphs below, representing an increase of almost 300% over the previous year.

A
Volume of INIS items distributed annually

B

Number of Member States and international organizations participating in INIS

127. The INIS Clearinghouse received a total of 57 annual subscriptions for abstracts on microfiche and 3011 ad hoc requests. At present, there are 15 standing orders for non-conventional literature on microfiche.
128. The first consultative meeting of all INIS Liaison Officers was held in Vienna in November 1972. Participants expressed general satisfaction with INIS operations and the meeting's main recommendations were:
(a) That INIS should operate with full scope (complete instead of selective coverage of nuclear science information); this recommendation was put into effect in January 1973;
(b) That Atomindex (the printed version of the INIS output computer tape) should be published twice a month; and
(c) That prices for INIS output products should remain the same in 1973 as in 1972.
129. An INIS seminar on indexing and retrieval was held from 25 to 29 June 1973 in Vienna, and on-the-job training in INIS work was given during the year to four trainees from four participating Member States.
130. Close co-operation is continuing with UNESCO, and a special arrangement has been concluded with FAO whereby the Agency will help to establish and will process input for AGRIS according to INIS standards and formats.

Computer services

131. The IBM 370/145 computer was installed in July 1972. From July 1972 to June 1973 UNIDO's share of use of the computer decreased slightly from 25% to 24%. As a result of the expansion of INIS to full scope and twice-monthly issue of Atomindex, use of the computer by INIS increased from 23% to 30%. The use by the Agency's administrative service in June 1973 was 21% as compared with 25% in June 1972 . There was continued close co-operation with UNIDO in the sharing of common computer programmes and the use of the common computer facility.
132. After a detailed study which showed that substantial savings could be obtained through purchase rather than leasing, the central processing unit of the computer with 256 K of storage was purchased in December 1972.
133. Since March 1968, by arrangements with NEA, the Agency has provided programmes from the computer programme library at Ispra, Italy, to Member States that are not members of NEA. During the last year 31 programmes and reports were sent to non-NEA countries, and 46 programmes were donated by such countries to the library.

Scientific meetings

134. Comparative information for the last two years in respect of conferences, symposia and seminars is given in the following table:

Table 14
Conferences, symposia and seminars

Item	$1971-72$	$1972-73$
Meetings	8	14
Participants	941	2460
Countries taking part	53	65
Papers presented	397	659

135. Revenues from the sale of publications and related material amounted to $\$ 406894$ in 1972, compared with $\$ 277500$ in 1971. The commercial value of publications distributed free to Member States was $\$ 420000$.

SAFEGUARDING PEACEFUL NUCLEAR ACTIVITIES

Implementation of Agency safeguards

136. Table 15 at the end of this section shows the status, as at 30 June 1973 , of signatures, ratifications and accessions with respect to NPT, and the progress made in the negotiation of safeguards agreements in connection therewith.
137. Table 16 shows the total number of safeguards agreements other than those connected with NPT, which were approved by the Board and the parties concerned by 30 June.
138. On 30 June, 26 safeguards agreements with non-nuclear-weapon States party to NPT were in force; 14 of these agreements were with States that at present have significant nuclear activities. It should be noted that there are also 16 project agreements, 27 transfer agreements and 4 unilateral submission agreements which provide for the application of Agency safeguards. Many of these agreements are with States that have no agreement in connection with NPT.
139. In particular, during the period covered by this report, the Board approved:
(a) In connection with NPT, safeguards agreements jointly with EURATOM and its non-nuclear-weapon member States, and with Fiji, Ghana, Iran, Lebanon Madagascar, Mauritius, Morocco, the Philippines and Viet-Nam;
(b) In connection with NPT and the Tlatelolco Treaty, safeguards agreements with Costa Rica, the Dominican Republic and Mexico;
(c) In connection with NPT and the additional Protocol I to the Tlatelolco Treaty, a safeguards agreement with the Netherlands in respect of the Netherlands Antilles and Surinam;
(d) A unilateral submission agreement with the United Kingdom for the application of safeguards to certain nuclear materials; and
(e) Unilateral submission agreements with Argentina for the application of safeguards to the Atucha Power Reactor Facility, and to certain nuclear materials.
140. To implement these agreements, Subsidiary Arrangements have been or are being prepared. The Agency is seeking standardization in the application of safeguards, through a series of model "Facility Attachments", for the main types of nuclear facilities containing safeguarded nuclear material. The Agency is also drawing up specific directives for implementing safeguards in each individual facility containing such material. Much work is being done to bring about effective and harmonious co-operation between Agency safeguards and the systems of accounting for, and control of, nuclear material of the States concerned.
141. A list of nuclear installations under Agency safeguards or containing safeguarded material under agreements approved by the Board is given in Annex E. The breakdown on 30 June 1973 as compared to 30 June 1972 is as follows:

Facilities	30 June 1972		30 June 1973	
	NPT	Non-NPT	NPT	Non-NPT
Nuclear power stations	6	15	7	20
Other reactors	41	67	45	62
Conversion plants, fabrication plants and fuel reprocessing plants	8	12	8	12
Other separate accountability	10	84	35	90

142. The following quantities of nuclear material were under Agency safeguards:
$\frac{1971}{\frac{\text { Total element }}{\mathrm{kg}}}$
$\frac{1971}{\text { Fissionable isotope }} \frac{1972}{}$

-

(a) Special fissionable material

Plutonium	1726	2901		
Enriched uranium	522862	1178024	11182 kg	25912 kg
ree material				
Natural uranium	394276	1840019		
Depleted uranium	200312	298799		
Thorium	227	6676		

143. During the period covered by this report the Agency carried out 451 inspections in 33 States (165 in connection with NPT), compared with 234 inspections in 19 States during the preceding twelve months.
144. More safeguards instruments have been introduced for routine operational use in the field; in some cases, it has been possible to use automatic camera equipment to replace part of the surveillance work so far carried out by inspectors. Non-destructive portable measuring equipment, such as multichannel analysers, was increasingly used during inspections.
145. Standardized procedures were introduced for the handling, shipment and analysis of samples of nuclear material taken during inspections.
146. A computer-based central nuclear material accounting and information system is being developed. The first stage of the programme - to process the information received from States - is now under testing. The existing accounting system is being adapted accordingly.

Research and development programme

147. During the period covered by this report:
(a) Further work was done on defining the safeguards requirements for isotope enrichment facilities. The working group which met in June 1972 [14] gave
[14] See document GC(XVI)/480, para. 132.
the general direction to be followed. The first practical application of this work has been in developing guidelines for experimental safeguards at an enrichment facility;
(b) A technical working group in August 1972 advised the Secretariat on procedures for evaluating the accuracy of accounting and the effectiveness of safeguards, on the design of sampling plans to optimize the allocation of inspection effort, and on a quantification of results to be achieved in applying safeguards; and
(c) Progress has been made in preparing the Safeguards Technical Manual which will lay down the general procedures to be used by the Agency's staff in carrying out inspections.
148. In relation to methods and techniques:
(a) Successful tests were made of non-destructive measurement techniques involving the use of portable instruments. The various instruments and techniques have been used to determine the enrichment of low-enriched material such as uranium oxide powders, scrap and waste, and uranium oxide in fuel rods; and
(b) Progress has been made in developing methods to measure volume by a tamper-indicating system and to determine fissile and fertile isotopes of plutonium in solid waste. Instruments for unattended surveillance of safeguarded facilities have been tested; these included a selfcontained camera system in a secure container, triggered by various types of sensors. Progress has also been made in developing instruments for in-line determination of uranium and plutonium, flowsurveillance and monitoring of neutron flux.
149. For safeguarding reprocessing plants, the Agency has developed methods to:
(a) Record automatically the chronological processing events in the head-end;
(b) Determine rapidly and on the spot the heavy element concentration in concentrated decontaminated product solutions; and
(c) Determine the content of plutonium and uranium in waste solutions.
150. An instrument has also been developed to detect and monitor the flow of nuclear materials to and from the input accountability vessel of the reprocessing plant.
151. The Agency has concluded an agreement with the Austrian Government under which the latter will build and lease a Safeguards Analytical Laboratory to the Agency. The Agency has begun to procure the necessary equipment for the laboratory.
152. Field operations have resulted in:
(a) An evaluation of the results of two field tests of safeguards procedures for fuel fabrication plants;
(b) Publication of recommendations for the physical protection of nuclear material. Some 500 copies have been distributed to 47 Member States at their request; and
(c) Arrangements to enable the Agency to gain experience in using a network of national laboratories which, it is expected, will carry out most of the analyses of samples of nuclear material taken during inspections. Work has also been done on standardizing methods for analyses, selecting reference material, drawing up guidelines for the network and preparing a programme for the control of the quality of analyses carried out by the laboratories.
153. Research and technical contracts being carried out with the Agency's support are summarized in Table 17.

RATIHICATIONS/ACCESSIONS AND SIGNATURES
TO NPT
as of 30 June 1973

States which have ratified or acceded to NPT

States which have signed NPT

Table 15
Situation on 30 June 1973 with respect to the signature of, ratification of, or accession to, NPT by non-nuclearweapon States, and the conclusion of safeguards agreements between the Agency and these States in connection with NPT

Non-nuclear-weapon States which haye signed, ratified or acceded to NPT (1)	Date of ratification or accession (2)	Safeguards agreement with the Agency (3)
Afghanistan	4 February 1970	Under negotiation
Australia	23 January 1973	Under negotiation
Austria	28 June 1969	In force: 23 July 1972
Barbados		
Belgium		Signed: 5 April 1973
Bolivia	26 May 1970	Under negotiation
Botswana	28 April 1969	Under negotiation
Bulgaria	5 September 1969	In force: 29 February 1972
Burundi	19 March 1971	
Cameroon	8 January 1969	
Canada	8 January 1969	In force: 21 February 1972
Central African Republic	25 October 1970	
Chad	10 March 1971	
China, Republic of	27 January 1970	
Colombia		
Costa Rica	3 March 1970	Approved by the Board
Cyprus	16 February 1970	In force: 26 January 1973
Czechoslovak Socialist Republic	22 July 1969	In force: 3 March 1972
Dahomey	31 October 1972	
Denmark	3 January 1969	In force; 1 March 1972
Dominican Republic	24 July 1971	Signed: 22 May 1973
Ecuador	7 March 1969	Under negotiation
Egypt, Arab Republic of		
El Salvador	11 July 1972	
Ethiopia	5 February 1970	
Fiji	14 July 1972	In force: 22 March 1973
Finland	5 February 1969	In force: 9 February 1972
Gambia		
German Democratic Republic	31 October 1969	In force: 7 March 1972
Germany, Federal Republic of		Signed: 5 April 1973
Ghana	5 May 1970	Approved by the Board
Greece	11 March 1970	Provisionally in force: 1 March 1972
Guatemala	22 September 1970	Under negotiation
Haiti	2 June 1970	Under negotiation
Holy See	25 February 1971	In force: 1 August 1972
Honduras	16 May 1973	
Hungary	27 May 1969	In force: 30 March 1972
Iceland	18 July 1969	Signed: 12 July 1972
Indonesia		
Iran	2 February 1970	Signed: 19 June 1973
Iraq	29 October 1969	In force: 29 February 1972
Ireland	1 July 1968	In force: 29 February 1972
Italy		Signed: 5 April 1973
Ivory Coast		
Jamaica	5 March 1970	Under negotiation
Japan		
Jordan	11 February 1970	Under negotiation
Kenya	11 July 1970	Under negotiation
Khmer Republic	2 June 1972	
Korea, Republic of		

Kuwait

Laos

Lebanon
 Lesotho

Liberia
Libyan Arab Republic
Luxembourg
Madagascar
Malaysia
Maldives
Mali
Malta
Mauritius
Mexico
Mongolia
Moroceo
Nepal
Netherlands
Netherlands Antilles and Surinam
New Zealand
Nicaragua
Nigeria
Norway
Panama
Paraguay
Peru
Philippines
Poland
Romania
San Marino
Senegal
Sierra Leone
Singapore
Somalia $\quad 5$ March 1970
Southern Yemen

Sudan

Sri Lanka
Sweden
Switzerland
Syrian Arab Republic
Thailand
Togo
Tonga
Trinidad and Tobago
Tunisia
Turkey
Upper Volta
Uruguay
Venezuela
Viet-Nam
Yemen, Arab Republic of
Yugoslavia
Zaire, Republic of
20 February 1970
15 July 1970
20 May 1970
5 March 1970

8 October 1970
5 March 1970
7 April 1970
5 March 1970
6 February 1970
28 April 1969
21 January 1969
14 May 1969
30 November 1970
5 January 1970

10 September 1969

27 September 1968
5 February 1969
4 February 1970
3 March 1570
5 October 1972
12 June 1969
4 February 1970
10 August 1970
17 December 1970

11 December 1969
9 January 1970

24 September 1969
7 December 1972
26 February 1970
7 July 1971

26 February 1970
3 March 1970
31 August 1970

10 September 1971
3 March 1970
4 August 1970

Under negotiation
In force: 5 March 1973
In force: 12 June 1973

Signed: 5 April 1973
In force: 14 June 1973
In force: 29 February 1972
Under negotiation
Under negotiation
Under negotiation
In force: 31 January 1973
Signed: 27 September 1972
In force: 5 September 1972
Signed: 30 January 1973
In force: 22 June 1972
Signed: 5 April 1973
Signed: 5 April 1973
In force: 29 February 1972

Under negotiation
In force: 1 March 1972

Signed: 21 February 1973
In force: 11 October 1972
In force: 27 October 1972
Under negotiation
Under negotiation
Under negotiation
Under negotiation

Under negotiation
Under negotiation

Under negotiation
Under negotiation

Under negotiation

Signed: 24 September 1971

Signed: 3 October 1972
Signed: 26 May 1972
In force: 9 November 1972
a/ The information reproduced in columns (1) and (2), with the exception of that relating to Sierra Leone, was provided to the Agency by the depositary Governments of NPT, and an entry in column (1) does not imply the expression of any opinion on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers.
b/ Has not yet acceded to NPT.

Table 16
Safeguards Agreements other than those in connection with NP'T, approved by the Board as of 30 June 1973

Party(ies) ${ }^{\text {/ }}$	Subject	Entry into force	INFCIRC
Project Agreements			
Argentina	Siemens SUR-100	13 Mar 1970	143
	RAEP Reactor	1 Dec 1964	62
Chile	Herald Reactor	19 Dec 1969	137
Finland ${ }^{\text {b/ }}$	FiR-1 Reactor	30 Dec 1960	24
	FINN sub-critical assembly	30 Jul 1963	53
Greece ${ }^{\text {b/ }}$	GRR-1 Reactor	1 Mar 1972	163
Indonesia	Additional core-load for Triga Reactor	19 Dec 1969	136
Iran	UTRR Reactor	10 May 1967	97
Japan	JRR-3	24 Mar 1959	3
Mexico	TRIGA-III Reactor	18 Dec 1963	52
	Siemens SUR-100	$21 \text { Dec } 1971$	162
Pakistan	PRR Reactor	5 Mar 1962	34
	Booster rods for KANUPP	17 Jun 1968	116
Philippines	PRR-1 Reactor	28 Sep 1966	88
Romaniab/	TRIGA Reactor	30 Mar 1973	-
Spain	Coral I Reactor	$23 \text { Jan } 1967$	99
Uruguay	URR Reactor	24.5 P 1965	67
Viet-Nam	VNR-1 Reactor	16 Oct 1967	106
Yugoslavia	TRIGA-II Reactor	4 Oct 1961	32
Zaire, Republic ofb/	TRICO Reactor	27 Jun 1962	37
Transfer Agreements			
(Agreements for transfer of safeguards under bilateral co-operation agreements between the indicated Parties)			
Argentina/USA		$25 . J u l 1969$	130
Australia/USA		26 Sep 1966	91
Australia/Japan		$20 \mathrm{Jul} \quad 1972$	170
Austriab//USA		24 Jan 1970	152
Brazil/USA		20 Sep 1972	110/Mod. 1
Canada/Japan		12 Nov 1969	85
Canada/India		30 Sep 1971	
China, Republic of/USA		6 Dec 1971	158
Colombia/USA		9 Dec 1970	144
Denmark ${ }^{\text {b }} / \mathrm{UK}$		23 Jun 1965	63
Denmark $\overline{\mathrm{b}} / / \mathrm{USA}$		29 Feb 1968	112
France/Japan		22 Sep 1972	171
Greeceb/ /USA		13 Jan 1966	78
India/USA		27 Jan 1971	154
Indonesia/USA		6 Dec 1967	100
Iran/USA		20 Aug 1969	127
Israel/USA		15 Jun 1966	84
Japan/USA		10 Jul 1968	119
Japan/UK		15 Oct 1968	125
Korea/USA		19 Mar 1973	111/Mod. 1
Pakistan/Canada		17 Oct 1969	135
Philippines/USA		19 Jul 1968	120
Portugal/USA		19 Jul 1969	131
South Africa/USA		26 Jul 1967	98
Spain/USA		9 Dec 1966	92
Sweden/USA		1 Mar 1972	165
Switzerland/USA		28 Feb 1.972	161
Thailand/USA		10 Sep 1965	68
Turkey/USA		5 Jun 1969	123
Venezuela/USA		27 Mar 1968	122
Viet-Nam/USA		25 Oct 1965	71
Unilateral submissions			
Argentina	Atucha Power Reactor Facility	3 Oct 1972	168
	Nuclear material	-	-
China, Republic of	Taiwan Research Reactor Facility	13 Oct 1969	133
Mexico	All nuclear activities	6 Sep 1968	118
United Kingdom	Certain nuclear material	16 Dec 1972	175

a/ An entry in this column does not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers.
b/ Application of Agency safeguards under this agreement has been suspended as the State has concluded an agreement in connection with NPT (see Table 15).

Table 17

Contracts for safeguards research and development

Title	Institute	Agency contribution in dollars
Study of a non-destructive measurement method for highly enriched U -Al alloy plate fuel	Sumitomo Electric Industries Ltd., Osaka, Japan	nil
Collection of gamma spectra data of irradiated light water moderated reactor spent fuel and study of the applicability of the method for fuel identification	Japan Atomic Energy Research Institute, Tokyo	10000
Feasibility study for the safeguards use of NMR method for the isotopic assay of uranium-235 in UF_{6} streams with different enrichments	Institute of Atomic Physics, Bucharest	4920
Development and fabrication of mini gamma spectrometric probe for measurements of uranium enrichment in fuel clusters	Aktiebolaget Atomenergi, Nykoeping, Sweden	18800
Measurement of neutron decay constant in a highly subcritical reactor as a safeguard method	Institute of Nuclear Energetics, Academy of Sciences, MinskSosni, Soviet Union	nil
Integral safeguards experiment at the NovoVoronezh LWR Power Reactor Plant	I. V. Kurchatov Institute of Atomic Energy/Novo-Voronezh Nuclear Power Station, Soviet Union	40000
Nuclear material transfer monitor	United Kingdom Atomic Energy Authority, Risley, Warrington, United Kingdom	9300
Portable gamma absorptiometer for safeguards use in nuclear fuel processing plants	United Kingdom Atomic Energy Authority, Aldermaston, United Kingdom	13000
Assay of total plutonium content in fuel plates in storage containers	General Reactor Physics Division, AEE Winfrith, United Kingdom	2800
Tamper-resistant instrumentation for a chemical reprocessing plant	Braddock, Dunn and McDonald Ind., McLean, United States	19900
Application of gamma spectrometry techniques in combination with weighing for material balance taking in the production of highly enriched U-Al fuel	Atomic Energy Control Board of Canada and Eldorado Nuclear Limited	3400
Fingerprinting and containment of fuel elements for safeguards of an Atucha-type reactor	Comisión Nacional de Energía Atómic̣a, Buenos Aires	7500
Integral experiments restricted at key points of control for highly enriched fuel element cycle from fabrication plant to dissolver of reprocessing plant	Centre d'Etudes de l'Energie Nuclêaire, Mol, Belgium	13000
Development, demonstration and application of non-destructive instrumental techniques for	Centre d'Etudes de 1'Energie Nucléaire, Mol, Belgium	5000

Title	Institute	Agency contribution in dollars
Development, demonstration and application of non-destructive instrumental techniques for assay of PuO_{2}	Centre d'Etudes de l'Energie Nucléaire, Mol, Belgium	1000
Testing of prototype plutonium separation and detection equipment of waste streams from a reprocessing plant	Eurochemic, Mol, Belgium	2700
Development and evaluation of NDA techniques for measurement of U and Pu at mixed oxide fuel fabrication plant	Centre d'Etudes de l'Energie Nuclểaire, Mol, Belgium	10000
Development of fabrication of probes and auxiliary equipment for measurement of plutonium using neutron coincidence counting technique	Institute of Physics, Bulgarian Academy of Sciences, Sofia	8200
Development of special gamma spectrometric detectors	Nuclear Research Institute, Prague	17900
Optimization of safeguards effort	Institut für Angewandte Systemtechnik und Reaktorphysik, Gesellschaft für Kernforschung, Karlsruhe, Federal Republic of Germany	4000
Consultancy agreement on safeguards instrumentation at Bradwell	Bradwell Nuclear Power Station and Central Electricity Generating Board, United United Kingdom	2000
Service contract with GE on installation of time domain reflectometry probe	General Electric Co., San José, California, United States	9000
Testing of safeguards equipment	Oesterreichische Studiengesellschaft für Atomenergie, Vienna	500

GROWTH OF AGENCY SAFEGUARDS

LEGEND
Number of States with safeguards agreements a/

Number of nuclear power stations under safeguards or containing safeguarded nuclear material $\mathrm{a} / \mathrm{b} /$

MW(e) of nuclear power stations under safeguards or containing safeguarded nuclear material (in hundreds)

- Number of reactors other than power reactors under safeguards or containing safeguarded nuclear material a/b/
a/ All data relate to safeguards agreements approved by the Board up to 30 June of the indicated year. b/Data relate to reactors under construction or operational.

ADMINISTRATION

EXTERNAL RELATIONS AND LEGAL MATTERS

154. The main activities in external relations and legal matters are referred to in the Introduction and in the chapters on technical activities.
155. The Agency, UNIDO and the Austrian authorities have continued consultations concerning plans for the United Nations International Centre at Donaupark in Vienna, which will house the permanent headquarters of the two organizations. Construction is beginning in 1973. Both Secretariats are examining the extent to which common services should be expanded.
156. The Director General exchanged letters with the Director of the Joint Institute for Nuclear Research (Dubna, Soviet Union) to effect closer working co-operation. These provide for the sharing of operational experiences, increased reciprocal participation in scientific meetings and other specified measures for future collaboration.
157. Steps have been taken to resolve the difficulties which would arise from the simultaneous application of the Vienna Convention on Civil Liability for Nuclear Damage and the Paris Convention on Third Party Liability in the Field of Nuclear'Energy, with respect to the designation of the liable operator, the jurisdiction and the territorial scope of the Conventions. Various solutions are now being considered, in particular the possibility of all States party to the Paris Convention becoming party to the Vienna Convention as well, or perhaps the elaboration of a Protocol establishing a reciprocal relationship among the parties to both Conventions.
158. Advice has been given to the Mexican authorities on licensing regulations for nuclear power plants. The Agency also provided advice to the authorities in Iraq, Lebanon, Kuwait, Malaysia, Saudi Arabia and Sri Lanka in the framing of basic legislation on atomic energy and radiation safety regulations. Three lawyers from Bulgaria, the Federal Republic of Germany and Hungary were trained in the legal aspects of atomic energy at the Agency's Headquarters.
159. A regional seminar in nuclear law, held in Rio de Janeiro in June 1973, discussed the current status of nuclear legislation in Latin American countries, the licensing and liability aspects of a nuclear power programme, and the Agency's safeguards in connection with NPr and the Tlatelolco Treaty.
160. By 30 June 1973, 41 Member States had accepted the Agreement on Privileges and Immunities of the Agency. [15]
[15] INFCIRC/9/Rev. 2.

PERSONNEL

161. On 30 June 1973 the Secretariat had 339 staff members in the Professional and higher categories, 556 General Service staff and 234 staff members in the Maintenance and Operatives Service. The number of nationalities represented among that portion of staff which is subject to geographical distribution was 56 as compared to 54 on 30 June 1972 .
162. Negotiations with the Austrian Government on a new social security agreement were concluded in early 1973.
163. A study is being made for the purpose of developing a set of rules which will ensure adequate radiation protection of individuals for whose safety the Agency is responsible.
164. The following organizational chart shows the structure of the Secretariat as at 30 June 1973.

ORGANIZATIONAL CHART

[^2]
FINANCE

Regular Budget

The financial year 1972
165. The original assessment of contributions on Member States included in the scale of assessment for 1972 amounted to $\$ 15392000$. The additional assessment for Bangladesh, which became a Member after the scale for 1972 had been established, increased the total by $\$ 5934$ to $\$ 15397934$.
166. By 31 December 1972 the Agency received contributions towards the Regular Budget for 1972 amounting to $\$ 14272632$, which represents 92.69% of the total amount assessed. By 30 June $1973 \$ 14482751$ or 94.06% of the 1972 Regular Budget assessment had been received.
167. The Agency's obligations for 1972 amounted to $\$ 16531709$, which resulted in budgetary savings of $\$ 272487$ from the appropriations for 1972. A further amount of $\$ 136019$ from miscellaneous income brought the total budgetary surplus at 31 December 1972 to $\$ 408506$. [16] Since contributions in the amount of $\$ 1125302$ were outstanding for 1972, there was a provisional cash deficit of $\$ 716796$.
168. Savings under three appropriation Sections totalling $\$ 525879$ were transferred to four other appropriation Sections; these transfers were necessary due to price and salary increases and to the distribution of interpretation service costs to those sections which actually used the services, based on a standard charge per man-day of interpretation.

The financial year 1973
169. The General Conference approved the scale of assessment and Regular Budget appropriations for 1973 which involve assessment on Member States of an amount of \$16 $750000 ;[17]$ with the additional assessment of Bangladesh, which became a Member after the scale for 1973 had been prepared, the amount of the assessment was increased to $\$ 16756307$.
170. By 30 June 1973 the following advances to the Working Capital Fund and contributions to the Regular Budget for 1973 had been received:

Advances to the Working Capital Fund
Contributions to the Regular Budget for 1973
$\$ 1887020$
$\$ 8563750$

By that date Member States had thus paid 94.31% of the total required advances to the Working Capital Fund and 51.11% of the total contributions due to the 1973 Regular Budget.

Operational Budget

171. At its fifteenth (1971) regular session the Conference increased the target for voluntary contributions from $\$ 2.5$ million to $\$ 3$ million. There was a shortfall of approximately $\$ 508000$ in the actual pledges made by Member States. Of a total amount of $\$ 2492105$ pledged to the General Fund for 1972 , $\$ 2204205$ had been paid by 31 December 1972. By 30 June 1973 receipts amounted to $\$ 2447455$ leaving a balance of $\$ 44650$ still to be paid.
[16] See Statement I. C of the Agency's Accounts for 1972, document GC(XVII)/504.
[17] Resolutions GC(XVI)/RES/295 and 292 respectively.
172. The total operational obligations incurred during 1972 amounted to $\$ 5026576$. Unliquidated obligations as at 31 December 1972 including obligations brought forward from the previous years amounted to $\$ 1600707$.

The Agency's resources in 1972
173. Resources equivalent to more than $\$ 25$ million were at the Agency's disposal during 1972 under its own programme, UNDP accounts and other special projects, including contributions in cash, services and kind. Details concerning these resources are included in the Agency's Accounts for 1972[18].
[18] Document GC(XVII)/504.

FELLOWSHIPS OFFERFD OR PROVIDED FREE OF CHARGE IN 1972

Donor \quad| Number of fellowships |
| :--- |
| Available Awarded ${ }^{\text {a }} /$ |

Member States

Argentina	5	6
Austria	2	2
Belgium	6	5
Brazil	10	3
Bulgaria	2	-
Czechoslovak Socialist	9	4
\quad Republic		
Denmark	5	5
Finland	1	1
France	$10 \mathrm{~b} /$	$10 \mathrm{c} /$
Germany, Federal	$-\underline{c} /$	

Republic of

Hungary	4	4
India	$10-\mathrm{d} /$	8
Israel	$5-\frac{5}{e} /$	5
Italy	$20 \mathrm{e} /$	17
Japan	$18-$	8

Mexico	2	1
Netherlands	9	9
Philippines	2	1
Poland	10	5
Romania	10	2
Spain	5	
Sweden	$-\frac{g}{l}$	8
Switzerland	2	7
Thailand	$2 \frac{h}{g} /$	-
Union of Soviet Socialist	$-\underline{g} /$	-
		17

Republics

United States of America		40 i $/$	50
Yugoslavia	$5-$	2	
	Sub-total	194	188

Regional organizations

Joint Institute for Nuclear Research at Dubna, Soviet Union	3	1	
	Total	$\overline{197}$	189

a/ Number of awards less rejections and withdrawals. In most cases where the number of awards exceeded available fellowships, the additional awards were financed out of current and/or prior years' savings.
b/ The offer was for 300 man-months of training in 1972 , of which 294 were used.
c/ Two of the eight award holders took up their studies in 1972. The continuation of their training in 1973 and the studies of other Type If award holders under the 1972 and prior years' programmes will constitute the first charge against the Government's 1973 offer.
d/ On the basis of nine man-months per fellowship, or a total of 45 man-months of training.
e/ On the basis of eight mantmonths per fellowship, or a total of 160 man-months of training.
f/ Eight of these were carried over from 1971; the balance will be used in 1973.
g/ Awards are made on the basis of available funds rather than a given number of openings or man-months of training.
h/ Available to candidates from the region.
i/ On the basis of six man-months per fellowship, or a total of 30 man-months of training.

ANNEX B

RESEARCH CONTRACTS

I. Total value of contracts in 1972

Year	New contracts	Renewals	Total	Value
1971	76	118	194	698205
1972	115	82	197	750520

II. Analysis by subject matter of contracts awarded or renewed in 1972

Subject matter of research	Number of contracts placed	Number of contracts renewed	Agency payment in dollars

Nuclear technology

Nuclear power and reactors	15	7	85350
Waste management	15	-	85400
Physics and chemistry	4	6	33550

Radioisotopes and radiation applications in

Agriculture	38	16	169100
Food irradiation	7	5	50500
Hydrology	1	5	27450
Industry	2	2	11000
Medicine	15	15	132125

Protection of man and his environment

Radiological safety	6	11	73400
Radiation biology	7	12	57900
Environmental research	-	2	4000
Dosimetry	5	1	20745
	Total	115	82

ANNEX C

CONFERENCES, SYMPOSIA AND SEMINARS HELD DURING THE PERIOD 1 JULY 1972-30 JUNE 1973

Date and place	Title	Cosponsoring orgamizations	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { participants } \end{gathered}$	Number of countries represented	Number of organizations represented	Number of papers presented
$\underline{1972}$						
10-14 July Seattle, United States of America	Symposium on the Interaction of Radioactive Contaminants with Constituents of the Marine Environment		133	15	5	48
31 July-4 August Helsinki	Symposium on the Use of Nuclear Techniques in the Basic Metal Industries		70	22	4	36
23-28 October Monte Carlo	Symposium on Medical Radioisotope Scintigraphy		488	40	5	97
6-10 November Teheran	Symposium on Irradiation Facilities for Research Reactors		81	20	2	34
13-17 November Bombay, India	Symposium on Radiation Preservation of Food	FAO	106	29	4	50
27 November- 6 December Paris	Symposium on the Management of Radioactive Wastes from Fuel Reprocessing	NEA	239	26	7	46
11-15 December Vienna	Symposium on Neutron Monitoring for Radiation Purposes		132	30	9	64
1973						
22-26 January Prague	Symposium on Nuclear Power Plants Control and Instrumentation		251	29	6	59
5-9 February Julich, Federal Republic of Germany	Symposium on Principles and Standards of Reactor Safety		254	29	4	40
$\begin{aligned} & \text { 12-16 March } \\ & \text { Paris } \end{aligned}$	Symposium on Applications of Nuclear Data in Science and Technology		207	30	5	72
26-30 March Copenhagen	Symposium on New Developments in Radiopharmaceuticals and Labelled Compounds	WHO	288	36	4	64
14-18 May Aix-en-Provence, France	Symposium on Environmental Behaviour of Radionuclides Released in the Nuclear Industry	NEA WHO	211	30	8	49

STATUS OF FINANCIAL CONTRIBUTIONS TO THE AGENCY ON 30 JUNE 1973

1. Advances to the Working Capital Fund and contributions to the Regular Budget for 1973

Member State	Working Capital Fund			Regular Budget for 1973			
	Assessed	Paid	Outstanding	Assessed	Credits	Paid	Outstanding
Afghanistan	800	680	120	6307	-	-	6307
Albania	800	800	-	6307	-	-	6307
Algeria	1800	1360	440	14191	-	-	14191
Argentina	16400	13090	3310	129666	-	-	129666
Australia	28200	28200	-	238313	-	116447	121866
Austria	10600	10600	-	89579	-	89579	-
Belgium	20200	20200	-	170707	-	170707	-
Bolivia	800	680	120	6307	-	-	6307
Brazil	15400	15400	-	122159	-	-	122159
Bulgaria	3400	3400	-	26615	-	-	26615
Burma	1000	850	150	7884	-	-	7884
Byelorussian Soviet Socialist Republic	9600	9600	-	81128	-	39589	41539
Cameroon	800	800	-	6307	-	6307	-
Canada	59200	59200	-	500289	-	500289	-
Chile	3800	3060	740	30335	-	-	30335
Colombia	3600	2890	710	28380	-	-	28380
Costa Rica	800	800	-	6307	-	-	6307
Cuba	3000	2550	450	24027	-	-	24027
Cyprus	800	800	-	6307	-	6307	-
Czechoslovak Socialist Republic	17200	17200	-	145354	170	145184	-
Denmark	12000	12000	-	101410	-	101410	-
Dominican Republic	800	680	120	6307	-	-	6307
Ecuador	800	800	-	6307	-	-	6307
Egypt, Arab Republic of	3400	2720	680	26992	-	-	26992
El Salvador	B00	680	120	6307	-	-	6307
Ethiopia	800	800	-	6307	-	6307	-
Finland	8600	8600	-	72677	-	72677	-
France	115400	115400	-	975227	-	944113	31114
Gabon	800	800	-	6307	-	-	6307
Germany, Federal Republic of	130800	130800	-	1105370	-	1105370	-
Ghana	14.00	1400	-	11037	-	11037	-
Greece	5600	5600	-	43770	-	43770	-
Guatemala	1000	850	150	7884	-	-	7884
Haiti	800	680	120	6307	-	-	6307
Holy See	800	680	120	6761	-	-	6761
Hungary	9200	9200	-	77748	-	8280	69468
Iceland	800	680	120	6761	-	-	6761
India	29800	29800	-	236436	-	236436	-
Indonesia	5400	5400	-	43324	-	6048	37276
Iran	4200	3400	800	32922	-	-	32922
Iraq	1400	1400	-	10848	-	10848	-
Ireland	2800	2800	-	23662	-	23662	-
Israel	3800	3800	-	32113	-	32113	-
Italy	68000	68000	-	574657	-	574657	-
Ivory Coast	800	800	-	6307	-	6307	-
Jamaica	800	800	-	6496	-	5640	856
Japan	103800	103800	-	877197	-	877197	-
Jordan	800	800	-	6307	-	6187	120
Kenya	800	680	120	6307	-	-	6307
Khmer Republic	800	680	120	6307	-	-	6307
Korea, Republic of	2000	1700	300	15955	170	-	15785
Kuwait	1600	1190	410	13521	-	-	13521
Lebanon	1000	850	150	7884	-	-	7884
Liberia	800	680	120	6307	-	-	6307
Libyan Arab Republic	1400	1020	380	11831	-	-	11831

Member State	Working Capital Fund			Regular Budget for 1973			
	Assessed	Paid	Outstanding	Assessed	Credits	Paid	Outstanding
Liechtenstein	800	800	-	6761	-	6761	-
Luxembourg	1000	1000	-	8451	-	8451	-
Madagascar	800	680	120	6307	-	-	6307
Malaysia	2000	1530	470	15767	-	-	15767
Mali	800	680	120	6307	-	-	6307
Mexico	17000	17000	-	132888	-	132888	-
Monaco	800	800	-	6761	-	6761	-
Moroceo	1800	1360	440	14191	-	-	14191
Netherlands	22600	22600	-	190989	-	190989	-
New Zealand	6200	4930	1270	52395	-	-	52395
Niger	800	800	-	6307	-	6307	-
Nigeria	2200	2200	-	17720	-	1869	15851
Norway	B 200	8200	-	69297	-	69297	-
Pakistan	6600	5270	1330	52031	-	-	52031
Panama	800	800	-	6307	-	-	6307
Paraguay	800	-	800	6307	-	-	6307
Peru	2000	2000	-	15579	-	-	15579
Philippines	6000	4760	1240	47489	-	-	47489
Poland	27000	27000	-	212477	-	102759	109718
Portugal	3000	2550	450	23462	-	-	23462
Romania	7000	7000	-	54808	-	26539	28269
Saudi Arabia	1400	1400	-	10720	-	10720	-
Senegal	800	680	120	6307	-	-	6307
Sierra Leone	800	680	120	6307	-	-	6307
Singapore	1000	1000	-	7884	-	7884	-
South Africa	10400	10400	-	81046	-	81046	-
Spain	20000	20000	-	154465	-	154465	-
Sri Lanka	1000	850	150	7884	-	-	7884
Sudan	800	680	120	6496	-	-	6496
Sweden	24000	24000	-	202820	-	202820	-
Switzerland	16200	16200	-	136903	-	136903	-
Syrian Arab Republic	800	800	-	6307	-	-	6307
Thailand	2400	2400	-	18920	-	18920	-
Tunisia	800	800	-	6307	-	6307	-
Turkey	6800	5440	1360	53231	-	-	53231
Uganda	800	680	120	6307	-	-	6307
Ukrainian Soviet Socialist Republic	36000	36000	-	304230	-	148565	155665
Union of Soviet Socialist Republics	272600	272600	-	2303698	- -	1125114	1178584
United Kingdom of Great Britain and Northern Ireland	113400	113400	-	958325	-	958325	-
United States of America	630400	535840	94560	5327407	-	-	5327407
Uruguay	1400	1020	380	11225	-	-	11225
Venezuela	7800	7800	-	61869	-	-	61869
Viet-Nam	1400	1020	380	10848	-	-	10848
Yugoslavia	7200	7200	-	56761	-	13252	43509
Zaire, Republic of	800	680	120	6496	\sim	-	6496
Zambia	800	680	120	6307	-	-	6307
Sub-total	2000000	1886340	113660	16750000	340	8563410	8186250
Bangladesh ${ }^{\text {a / }}$	800	680	120	6307	-	-	6307
TOTAL	2000800	1887020	113780	16756307	340	8563410	8192557

a/ Bangladesh became a Member on 27 September 1972.
2. Outstanding contributions to the Regular Budget for the years 1958-1972

State	1958-1963 ${ }^{\text {a/ }}$	1964	1965	1966 ${ }^{\text {b/ }}$	1967	1968	1969	1970	1971	1972	Total
Afghanistan	-	3343	3857	4333	4587	5082	4155	4741	5221	5934	41253
Albania	-	-	-	-	-	-	-	-	-	120	120
Bolivia	-	-	-	-	1802	4040	4355	4741	5221	5934	26093
Brazil	-	-	-	-	-	- .	-	-	55955	109796	165751
Bulgaria	-	-	-	-	'-	-	-	-		680	680
Chile	-	-	-	-	-	-	-	-	18601	27267	45868
China ${ }^{\text {c/ }}$	-	-	-	-	-	-	-	353332	472482	539580	1365394
Colombia	-	-	-	-	-	-	-	-	-	25236	25236
Costa Rica	-	-	-	-	-	-	-	-	-	1526	1526
Cuba	-	-	-	-	-	-	-	-	-	19058	19058
Dominican Republic	6576	3610	3857	3467	3670	4065	4355	4741	5221	5934	45496
Ecuador	-					-	1181	4741	5221	5934	17077
Egypt	-	-	-	-	-	-		-	-	22542	22542
El Salvador	-	-	-	-	-	-	4124	4741	5221	5934	20020
Gabon	-	-	-	-	-	-	-	-	-	82	82
Guatemala	-	-	-	-	-	-	-	4400	6526	7417	18343
	12326	2888	3085	3467	3670	4065	4355	4741	5221	5934	49752
Honduras-		2020	3085	3467	3670		4	,	,	5	12242
Khmer Republic	$*$	-	-	-	-	-	-	-	-	132	132
Liberia	-	-	-	-	-	-	-	871	5221	5934	12026
Nicaragua-/	-	-	-	-	2322	4065	4355	4741 3707	5221	5934	
Panama	-	-	-	-	-	-	-	-	-	833	833
Paraguay	14031	2888	3085	3467	3670	4065	4355	4741	5341	5934	51577
Peru	-	-	-	-	-	-	-	-	5857	13351	19208
Senegal	-	-	$=$	-	-	-	-	-	-	5420	5420
Sierra Leone	-	-	-	-	-	-	-	-	-	4734	4734
Syrian Arab Republic	-	-	-	-	-	-	-	-	-	1095	1095
Uganda	- -	- -	-	-	-	-	-	4507	5221	5934	15662
Uruguay	-	-	-	-	-	-	-	-	10102	9277	19379
Venezuela	-	-	-	-	-	-		12950			
Zaire, Republic of	-	-	-	-	-	-	-	12	5897	6123	12020
Zambia	-	-	-	-	-	-	3717	4741	5221	5934	19613
Total outstanding	32933	14749	16969	18201	23391	25382	34952	422436	686484	915183	2190680
Total paid	35183839	7215525	7715313	8659358	9161619	10146248	10876501	11448344	12660175	14482751	127549673
Total assessed	35216772	7230274	7732282	8677559	9185010	10171630	10911453	11870780	13346659	15397934	129740353
\% of assessment	99.91	99.80	99. 78	99.79	99.75	99.75	99.67	96. 44	94. 86	94.06	98. 31

[^3]b/ Includes supplementary assessment.
c/ The entries in respect to China refer to actions taken prior to 9 December 1971 by the authorities representing China in the Agency at the time of these actions.

[^4]3. Summary of outstanding contributions for the years 1958-1963

	$\underline{1958}$	1959	1960	1961	1962	1963	Total
Dominican Republic	-	-	-	-	3015	3561	6576
Haiti	-	2021	2337	2467	2652	2849	12326
Paraguay	1636	2090	2337	2467	2652	2849	14031
Total outstanding	1636	4111	4674	4934	8319	9259	32.933
Total paid	4113124	5220889	5876306	6195756	6631760	7146004	35183839
Total assessed	4114760	5225000	5880980	6200690	6640079	7155263	35216772
\% of assessment	99.96	99.92	99.92	99.92	99.87	99.80	99.91

4. Voluntary contributions to the General Fund for 1972 and 1973
(Expressed in United States dollars at the rate of exchange used for the United Nations Development Programme)

Member State	1972			1973		
	Pledged	Paid	Outstanding	Pledged	Paid	Outstanding
Aghanistan	- 1	-	-	-	-	-
Albania	$800{ }^{\text {a/ }}$	-	800	-	-	-
Algeria	2400	2400	-	2700	2700	-
Argentina	23100	-	23100	24600	-	24600
Australia	$30000-\frac{}{-}$	30000	-	42300	30000	12300
Austria	15000	15000	-	15900	15900	-
Bangladesh		-	-		-	-
Belgium	$20000^{\text {a/ }}$	20000	-	25000 - /	25000	-
Bolivia	-	-	-	-	-	-
Brazil	21900	21900	-	30000	-	30000
Bulgaria	$4000 \frac{\mathrm{a}}{} /$	4000	-	$4324-\frac{\mathrm{b}}{} /$	-	4324
Burma	$1000-$	1000	-	-	-	-
Byelorussian Soviet Socialist Republic	-	-	-	-	-	-
Cameroon	1200	1200	-	1200	200	1000
Canada	$70000^{\text {a/ }}$	70000	-	88800	-	88800
Chile	5400	-	5400	$1000{ }^{\text {b/ }}$	-	1000
Colombia		-	-	-	-	-
Costa Rica	$800^{-\frac{2}{}}$	-	800	-	-	-
Cuba	4500	4500	-	4500	4500	-
Cyprus	1200	1200	-	1200	1200	-
Czechoslovak Socialist Republic	$208333^{\text {a/ }}$	20833	-	27778	27778	-
Denmark	16800	16800	-	18000	18000	-
Dominican Republic	-	-	-	-	-	-
Ecuador	-	-	-	-	-	-
Egypt, Arab Republic of	11500	11500	-	12778	12778	-
El Salvador	-	-	-	-	-	-
Ethiopia	-	-	-	-	-	-
Finland	12300	12300	-		12900	-
France	$30213{ }^{\text {a/ }}$	30213	-	$70740{ }^{\text {b/ }}$	70740	-
Gabon	-	-	-	-	-	-

Member State	1972			1973		
	Pledged	Paid	Outstanding	Pledged	Paid	Outstanding
Germany, Federal Republic of	185400	185400	-	196200	196200	-
Ghana	2000	2000	-	2200	2200	-
Greece	7800	7800	-	8400	-	8400
Guatemala	-	-	-	-	-	-
Haiti	-	-	-	-	-	-
Holy See	3000 /	3000	-	3000	-	3000
Hungary	12667 -	12667	-	14115	14115	-
Iceland	-	-	-	-	-	-
India	42500	42500	-	45000	43099	1901
Indonesia	7500	7500	-	8100	600	7500
Iran	$5000{ }^{\text {a/ }}$	5000	-	6300	-	6300
Iraq	1800	1800	-	-	-	-
Ireland	4200	4200	-	4200	4200	-
Israel	5400	5400	-	$5700{ }_{\text {b }}$	5700	-
Italy	$80500^{\text {a }}$	80500	-	$96600{ }^{-1}$	96600	-
Ivory Coast	$929{ }^{\text {a/ }}$	929	-	$680 \mathrm{~m} /$	680	-
Jamaica	-	-	-	-	-	-
Japan	147300	147300	-	155700	155700	-
Jordan	$800-3$	-	800	-	-	-
Kenya	-	-	-	-	-	-
Khmer Republic	-	-	-	-	-	-
Korea, Republic of	3000	3000	-	$3000{ }_{6}$	-	3000
Kuwait	2100	2100	-	$1500-$	-	1500
Lebanon	1500	1500	-	-	-	-
Liberia	-	-	-	-	-	-
Libyan Arab Republic	- ${ }^{\text {- }}$	-	-	-	-	-
Liechtenstein	$1000{ }^{\text {a/ }}$	1000	-	1200	1200	-
Luxembourg	- ${ }^{\text {- }}$	-	-	-	-	-
Madagascar	$1000^{\text {a/ }}$	1000	-	1200	-	1200
Malaysia	-	-	-	-	-	-
Mali	-	-	-	-	-	-
Mexico	24000	24000	-	25500	25500	-
Monaco	2000 a	2000	-	2000	2000	-
Morocco	$1813^{\text {a/ }}$	1813	-	-	-	-
Netherlands	40000	40000	-	40000	40000	-
New Zealand	6600 a/	6600	-	-	-	-
Niger	1200	1200	-	-	-	-
Nigeria	-	-	-	-	-	-
Norway	11700	11700	-	12300 b	12300	-
Pakistan	$8250{ }^{\text {a/ }}$	8250	-	$8250{ }^{-1}$	B 250	-
Panama	1000	1000	-	-	-	-
Paraguay		-	-	-	-	-
Peru	$2250 \frac{\mathrm{a}}{} /$	1500	750	- b/	-	-
Philippines	$8000{ }^{\text {a } /}$	8000	-	$8000 \mathrm{~b} /$	8 000	-
Poland	$11322^{\text {a }}$	11322	-	15060^{-}	15060	-
Portugal	4500	4500	-	4500	-	4500
Romania	9900	9900	-	10500	5250	5250
Saudi Arabia	2000	2000	-	2100	2000	100
Senegal	-	-	-	-	-	-
Sierra Leone	-	-	-	-	-	-
Singapare	1500	1500	-	1500	1500	-
South Africa	14700	14700	-	15600	15600	-
Spain	28500	28500	-	$30000{ }^{\text {b }}$	30000	-
Sri Lanka	$1250{ }^{\text {a/ }}$	1250	-	$1250{ }^{-}$	-	1250
Sudan	-	-	-	1200	-	1200

Member State	1972			1973		
	Pledged	Paid	Outstanding	Pledged	Paid	Outstanding
Sweden	34200	34200	-	36000	36000	-
Switzerland	22800	22800	-	24300	24300	-
Syrian Arab Republic	-	-	-	-	-	-
Thailand	4000	4000	-	4000	4000	-
Tunisia	-	-	-	-	-	-
Turkey	$8000^{\text {a/ }}$	8000	-	10200	10200	-
Uganda	-	-	-	-	-	-
Ukrainian Soviet Socialist Republic		-	-	-	-	-
Union of Soviet Socialist Republics	304078 a/	304078	-	426829	303398	123431
United Kingdom of Great Britain and Northern Ireland	160800	160800	-	170100	-	170100
United States of America	$945600 \mathrm{~cd} /$	945600	-	$945600-$	-	945600
Uruguay	1800	-	1800	-	-	-
Venezuela	-	-	-	-	-	-
Viet-Nam	1800	1800	-		-	-
Yugoslavia	$9000{ }^{-1}$	9000	-	$9000-1$	-	9000
Zaire, Republic of	1200	-	1200	2000	-	2000
Zambia	-	-	-	-	-	-
TOTAL	2482105	2447455	34650	2742604	1285348	1457256

a/ Pledge is less than the Mernber's Regular Budget assessment ratio (GC(XV)/RES/284) applied to the target of $\$ 3$ million for voluntary contributions set by Resolution GC(XV)/RES/281, para. 1.
b/ Pledge is less than the Member's Regular Budget assessment ratio (GC(XVI)/RES/295) applied to the target of $\$ 3$ million for voluntary contributions set by Resolution GC(XVI)/RES/293, para. 1.
c/ When making this pledge, the United States also pledged itself to make contributions in kind in the form of cost-free experts, equipment for technical assistance, laboratory equipment, special nuclear materials and Type II fellowships, to a total value of $\$ 664000$ in 1972 and approximately $\$ 804000$ for the year 1973. It is to be noted that other Members as well contribute to the Agency's resources in this way, and information relating to all such contributions is provided in the Agency's accounts for last year (GC(XVII)/504, Schedule G).
d/ The United States pledged a sum equal to its share of the target at its base rate of assessment, provided that its contribution would not exceed 40% of the total unrestricted cash contributions of all Member States made during the year.

NUCLEAR INSTALLATIONS UNDER AGENCY SAFEGUARDS OR CONTAINING SAFEGUARDED MATERIAL UNDER AGREEMENTS APPROVED BY THE BOARD OF GOVERNORSG/

A. Reactors ${ }^{\mathrm{b}}$ / other than power reactors

State	Abbreviated name of reactor	Location	Type	Capacity MW(th)	In operatior
Argentina	RA-O	Cordoba	Tank	. 00	x
	RA-1	Constituyentes	Argonaut	. 12	x
	RA-2	Constituyentes	Argonaut	. 03	x
	RA-3	Ezeiza	Pool-tank	5.00	x
	RA-4	Rosàrio	Solid-homogeneous	. 00	x
Australia	HIF AR	Lucas Heights, N. S. W.	Tank	11.00	x
	MOATA	Lucas Heights, N. S. W.	Argonaut	. 01	x
Austria-	SAR	Graz	Argonaut	. 00	x
	TRIGA-VIENNA	Vienna	Triga II	. 25	x
	ASTRA	Scibersdorf	Pool	12.00	x
Brazil	IEA-R1	Säo Paulo	Pool	5.00	x
	IPR-R1	Belo Horizonte	Triga I	. 10	x
	RIEN, 1	Rio de Janeiro	Argonaut	. 01	x
Bulgaria ${ }^{\text {c/ }}$	IRT-2000	Sofia	Pool	2,00	x
Canada-/	NRX	Chalk River, Ont.	NRX	30.00	x
	NRU	Chalk River, Ont.	NRU	125.00	x
	WNRE	Pinawa, Manitoba	Organic-cooled	60.00	x
	McMaster	Hamilton, Ont,	Pool-type	2.5	x
	Slowpoke Toronto	Univ. of Toronto	Pool-type	. 00	x
	Slowpoke Ottawa	Ottawa, Ont.	Pool-type	. 02	x
	PTR		Pool-type	. 00	x
	ZED-2	Chalk River, Ont.	Pool-type	. 00	x
Chile	Herald	Santiago	Herald	5.00	-
China	THOR	Hsin-chu	Pool	1.00	x
	TRR	Huaitzupu	NRX	40.00	x
		Lung-Tan	Pool	. 01	x
Colombia	IAN-R1	Bogota	Pool-type	. 02	x
Czechoslovak Socialist Republic. $/$	SR-O	Vochov	CA	. 00	x
	VVR-S	Rez	Tank	4.00	x
	TR-O	Rez	CA	. 00	-
Denmark-	DR-1	Ris ϕ	Homogeneous	. 00	x
	DR-2	Ris ϕ	Pool	5.00	x
	DR-3	Ris ϕ	Tank	10.00	x
Finland ${ }^{\text {c/ }}$	FiR-1	Otaniemi	Triga II	. 25	x
German Democratic Republice/	WWR-S(M)	Rossendorif	Tank	6.00	x
	Rake II	Rossendorf	Critical Ass.	. 00	x
	RRR	Rossendori	Critical Ass.	. 00	x
Greece-	GRR-1	Athens	Pool	5.00	x
Hungary ${ }^{\text {c/ }}$	WWR-SM	Budapest	Tank	5.00	x
	ZR-4	Budapest	CA	. 00	x
	ZR-6	Budapest	CA	. 00	x
	Training reactor	Budapest	Tank	. 01	\mathbf{x}
Indonesia	PRAP (TRIGA II)	Bandung	Triga II	1.00	x
Iran ${ }^{\text {c/ }}$	UTRR	Teheran	Pool	5.00	x
Iraq ${ }^{\text {/ }}$	IRT-2000	Baghdad	Pool	2.00	x

State	Abbreviated name of reactor	Location	Type	Capacity MW(th)	In operation
Israel	IRR-1	Soreq	Pool	5.00	x
Japan	AHCF	Tokai-Mura	Crit. Fac.	. 00	\mathbf{x}
	DCA	Oarai-Machi	Crit. Fac.	. 00	x
	FCA	Tokai-Mura	Crit. Fac.	. 01	\mathbf{x}
	HCA	Kawasaki-shi	Crit. Fac,	. 00	x
	HTR	Kawasaki-shi	Pool	. 10	x
	JMTR	Oarai-Machi	Tank	50.00	x
	JMTR-CA	Oarai-Machi	Crit. Fac.	. 00	x
	JPDR	Tokai-Mura	Boiling-water	90.00	\mathbf{x}
	JRR-2	Tokai-Mura	Tank	10.00	x
	JRR-3	Tokai-Mura	Tank	10.00	x
	JRR-4	Tokai-Mura	Pool	1.00	x
	Kinki University	Kowakai	UTR-B	. 00	\mathbf{x}
	KUR	Kumatori-cho	Pool	5.00	x
	MCF	Ohmiya	Crit. Fac.	. 00	x
	Musashi College of Technology	Kawasaki-shi	Triga II	. 10	\mathbf{x}
	NAIG-CA	Kawasaki-shi	Crit. Fac.	. 00	x
	Rikkyo University	Nagasaka	Triga II	. 10	x
	SHCA	Tokai-Mura	Crit. Fac.	. 00	\mathbf{x}
	TCA	Tokai-Mura	Crit. Fac.	. 00	x
	TODAI	Tokai-Mura	Fast Neutron Source Reactor	. 002	\mathbf{x}
	TRR	Kawasaki-shi	Pool	. 10	x
Korea, Republic of	KRR - TRIGA II	Seoul	Triga II	. 10	\mathbf{x}
	KRR - TRIGA III	Seoul	Triga III	2. 00	x
Mexico- $/$	RCN	Salazar	Triga III	1.00	x
	SUR-100	Mexico City	Solid homogenous	. 00	\mathbf{x}
Norway- ${ }^{\text {c/ }}$	JEEP-II	Kjeller	Tank	2.00	x
	HBWR	Halden	HBWR	25.00	\mathbf{x}
Pakistan	PARR	Rawalpindi	Pool	5.00	\mathbf{x}
Philippines $/$	PRR-1	Diliman, Quezon City	Pool	1.00	x
Poland ${ }^{\text {c/ }}$	EWA	Şwierk	Tank	8.00	x
	Maryla	Swierk	CA	. 00	x
	Anna	Swierk	CA	. 00	x
	Agata	Swierk	CA	. 00	\mathbf{x}
Portugal	RPI	Sacavem	Tank	1.00	x
Romania ${ }^{\text {c/ }}$	VVR-S	Margurele	Tank	10.00	\mathbf{x}
South Africa	SAFARI-1	Pelindaba	Tank	20.00	x
Spain	JEN-1	Madrid	Pool	3.00	x
	JEN-2	Madrid	Pool	. 00	x
	CORAL-1	Madrid	Fast Crit. Fac.	. 00	X
	ARBI	Bilbao	Argonaut	. 01	x
	ARGOS	Barcelona	Argonaut	. 01	\mathbf{x}
Sweden	R2	Studsvik	MTR Tank	50.00	x
	R2-0	Studsvik	Pool	1.00	x
	KRITZ	Studsvik	Tank	. 00	\mathbf{x}
	R-0	Studsvik	Pool	. 00	\mathbf{x}
Switzerland	Proteus	Würenlingen	Fast thermal CA	. 00	x
	Saphir	Würenlingen	Pool	5.00	x
	Diorit	Würenlingen	HW	30.00	x
	Crocus	Lausanne	CA	. 00	x
	AGN201P	Geneva	Solid homogeneous	. 00	x
	AGN211P	Basel	Pool	. 00	x
Thailand	TR-1	Bangkok	Pool	1.00	x
Turkey	TR-1	Istanbul	Pool	1. 00	x
United Kingdom	Zebra	Winfrith	Crit. Fac.	. 00	\mathbf{x}

GC(XVII)/500

State	Abbreviated name of reactor	Location	Type	Capacity MW(th)	In operation
Uruguay ${ }^{\text {c/ }}$	RUDI	Montevideo	Lockheed	. 10	-
Venezuela	RV-1	Caracas	Pool	3.00	\mathbf{x}
Viet-Nam ${ }^{\text {c/ }}$	VNR-1	Dalat	Triga II	0.25	x
Yugoslavia ${ }^{\text {c/ }}$	Triga II RA RB	Ljubljana Vinča Vinca	Triga II Heavy-water Crit. Fac.	$\begin{gathered} 0.25 \\ 6.5 \\ .00 \end{gathered}$	\mathbf{x} \mathbf{x} \mathbf{x}
Zaire, Republic of ${ }^{\text {// }}$	Triga	Kinshasa	Triga II	1.00	x

B. Nuclear power stations

State	Name of power station	Location	Type	Capacity MW(e)	In operation
Argentina	Atucha Nuclear Power Station	Atucha	PHWR	319	-
Canada	Pickering	Pickering, Ontario	Candu	2032	x
	NPD	Ralphton, Ontario	Candu	22	x
	Gentilly	Gentilly, Quebec	Candu	250	x
	DPGS	Kincardine, Ontario	Candu	208	x
Czechoslovak Socialist Republice/	A 1	Bohunice	HWGC	110	x
German Democratic Republice/	Rheinsberg PWR	Rheinsberg	PWR	80	x
	Greifswald PWR	Greifswald	PWR	440	-
India	Tarapur - TAPS	Tarapur	BWR	380	x
	Rajasthan - RAPS	Rajasthan	Candu	400	x (for 200)
Japan	Tokai	Tokai-Mura	Magnox	154	x
	Tsuruga	Tsuruga	BWR	357	\mathbf{x}
	Mihama-1	Mihama-Fukui	PWR	340	x
	Mihama-2	Mihama-Fukui	PWR	500	x
	Fukushima-1	Okuma-Fukushima	BWR	460	x
	Fukushima-2	Okuma-Fukushima	BWR	784	-
	"Mutsu" Nuclear Ship	Minato-Machi Mutsu	PWR	36	x
	Shimane	Kashima-cho	BWR	460	-
Pakistan	KANUPP	Karachi	Candu	125	\mathbf{x}
Spain	"José Cabrera"	Almonacid de Zorita	PWR	153	x
	Santa Maria de Garona	Province of Burgos	BWR	440	x
Sweden	Agesta	Stockholm	PHWR	12	x
	Oskarshamn I	Oskarshamn	BWR	440	x
	Ringhals I	near Göteborg	BWR	760	-
Switzerland	Mühleberg	Mühleberg	BWR	3.06	x
	Beznau I	Beznau	PWR	350	x
	Beznau II	Beznau	PWR	350	x

```
C. Conversion plants, fabrication plants and chemical reprocessing plants
```

Argentina	Pilot Fuel Reprocessing Plant, Ezeiza Pilot Fuel Fabrication Plant, Constituyentes
Brazil	Fabrication Facility, Metallurgy Department, Instituto de Energia Atomica, São Paulo
Canada ${ }^{\text {/ }}$	Eldorado Nuclear Limited Port Hope Refinery Westinghouse Fuel Fabrication Plant Canadian General Electric Pelletizing Facility Canadian General Electric Fuel Fabrication Plant
Czechoslovak Socialist Republic $/$	Uranium Industry Chemical Plant - Metallurgical Pilot Plant, Mydlovary Nuclear Fuel Institute, Zbraslav
Denmark ${ }^{\text {c/ }}$	Metallurgy Department, Ris ϕ
India	Nuclear Fuel Complex - NFC (Enriched Uranium Conversion and Fabrication Plant), Hyderabad
Japan	Nuclear Fuel Industries Ltd. (Kumatori-1) Sumitomo Metal Mining Co. Ltd. (Tokai-1) Mitsubishi Atomic Power Industries (Ohmiya-1) Japan Nuclear Fuel Co. Ltd. Mitsubishi Nuclear Fuel Co. Ltd.
Norway ${ }^{\text {c/ }}$	Fuel Element Pilot Production Plant, Kjeller
Spain	Pilot Reprocessing Plant, Juan Vigon Research Centre, Madrid Metallurgical Plant, Juan Vigon Research Centre, Madrid
Sweden	ASEA-ATOM, Väster@s

a/ The nuclear installations that will be covered by the Safeguards Agreement in connetion with NPT, signed with EURATOM and the non-nuclear-weapon States members of EURATOM on 5 April 1973, are not listed here.
b/ As defined in documents INFCIRC/26, Part II, para. 14 and INFCIRC/66/Rev. 2, Part IV, para. 80.
c/ NPT Safeguards Agreement.
d/ Denmark joined EURATOM on I January 1973 and has signed the Agreement with EURATOM and its non-nuclearweapon member States; however, Agency safeguards are presently applied in this State under the NPT Safeguards Agreement which Denmark had concluded with the Agency prior to joining EURATOM.

[^0]: For each region, the relative monetary value of the technical assistance provided by the Agency is denoted by the size of the circle superimposed over the region on the map. The size of the segments in each circle indicates the share of total assistance given in the various fields of activity.

[^1]: Fellowships include participants in short-term training projects.

[^2]: ${ }^{1}$) Jointly operated by the Agency and UNESCO.
 ${ }^{2}$) With the increasing participation of UNESCO and FAO.

[^3]: a) See part 3 below.

[^4]: d) Withdrew from membershio on 19 .Iume 1967

