ECE/TRANS/180/Add.2

30 August 2005

# **GLOBAL REGISTRY**

Created on 18 November 2004, pursuant to Article 6 of the AGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES (ECE/TRANS/132 and Corr.1) Done at Geneva on 25 June 1998

Addendum

### **Global technical regulation No. 2**

MEASUREMENT PROCEDURE FOR TWO-WHEELED MOTORCYCLES EQUIPPED WITH A POSITIVE OR COMPRESSION IGNITION ENGINE WITH REGARD TO THE EMISSION OF GASEOUS POLLUTANTS, CO<sub>2</sub> EMISSIONS AND FUEL CONSUMPTION

(Established in the Global Registry on 22 June 2005)



**UNITED NATIONS** 

GE.05-22923

### TABLE OF CONTENTS

| A. | STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION | 5  |
|----|----------------------------------------------------|----|
| B. | TEXT OF THE REGULATION                             | 10 |
| 1. | Purpose                                            | 10 |
| 2. | Scope                                              | 10 |
| 3. | Definitions                                        | 10 |
| 4. | General requirements                               | 11 |
| 5. | Performance requirements                           | 11 |
| 6. | Test conditions                                    | 12 |
| 7. | Test procedures                                    | 25 |
| 8. | Analysis of results                                | 37 |
| 9. | Records required                                   | 44 |
|    |                                                    |    |

## ANNEXES

| Annex 1   | Symbols used                                                                                                                                 | 46 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Annex 2.1 | Technical data of the reference fuel to be used for testing vehicles equipped<br>with positive ignition engines (unleaded petrol properties) | 50 |
| Annex 2.2 | Technical data of the reference fuel to be used for testing vehicles equipped<br>with diesel engines (diesel fuel properties)                | 51 |
| Annex 3   | Classification of equivalent inertia mass and running resistance                                                                             | 52 |
| Annex 4   | Essential characteristics of the engine, the emission control systems and information concerning the conduct of tests                        | 54 |
| Annex 5   | Driving cycles for type I tests                                                                                                              | 60 |
| Annex 6   | Chassis dynamometer and instruments description                                                                                              | 77 |
| Annex 7   | Road tests for the determination of test bench settings                                                                                      | 78 |
| Annex 8   | Form for the record of coast down time                                                                                                       | 84 |

# TABLE OF CONTENTS (continued)

Page

| Annex 9  | Record of chassis dynamometer setting (by coast down method) | 85 |
|----------|--------------------------------------------------------------|----|
| Annex 10 | Record of chassis dynamometer setting (by table method)      |    |
| Annex 11 | Record of type I test results                                |    |
| Annex 12 | Record of type II test results                               |    |
| Annex 13 | Explanatory note on gearshift procedure                      |    |

#### A. STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION

#### 1. <u>Technical and economic feasibility</u>

The motorcycle industry is becoming more of a global industry, with companies selling their product in many different countries. The Contracting Parties to the 1998 Agreement have all determined that work should be undertaken to address emissions from motorcycles as a way to help improve air quality in their countries. The first step in this process will be establishing the certification procedure for motorcycle exhaust-emissions in a harmonized global technical regulation (gtr). The basis is the harmonized test procedure, developed by the GRPE informal working group on the Worldwide Harmonized Motorcycle Emissions Certification Procedure (the WMTC informal group).

A full report of the work of the Informal group, its deliberations and conclusions is provided in the group's Technical Report (TRANS/WP.29/2005/55). The general principles guiding this work are set out in this comprehensive technical report. The test procedure was developed so that it would be:

- representative of world-wide on-road vehicle operation,
- able to provide the highest possible level of efficiency in controlling on-road emissions,
- corresponding to state-of-the-art testing, sampling and measurement technology,
- applicable in practice to existing and foreseeable future exhaust emissions abatement technologies,
- capable of providing a reliable ranking of exhaust emission levels from different engine types,
- consistent with the development of appropriate emission factors, and
- inclusive of adequate cycle-bypass prevention provisions.

#### 2. <u>Procedural Background</u>

The work on the gtr started in May 2000 with the establishment of the WMTC Informal group. At the GRPE forty-fifth session in January 2003, a formal proposal by Germany for the establishment of a gtr was approved for presentation to the Executive Committee for the 1998 Agreement (AC.3). At its session on 13 November 2003, the proposal from Germany was also approved as a gtr project by AC.3.

The draft text of the gtr without limit values, was approved by GRPE in January 2005, subject to final decisions concerning the format of the text by AC.3. The final text of the gtr without limit values is presented below, in Part B of this document.

#### 3. Existing Regulations, Directives, and International Voluntary Standards

Though there are no regulations currently contained in the Compendium of Candidates, the following regulations contain relevant applications of exhaust-emissions requirements for motorcycles which are available for technical reference in developing a new gtr:

ECE/TRANS/180/Add.2 page 6

UNECE Regulation No. 40, 01 series of amendments:

Uniform provisions concerning the approval of motorcycles equipped with a positive-ignition engine with regard to the emission of gaseous pollutants by the engine

EU:

Directive 2002/51/EC amending directive 97/24/EC: The reduction of the level of pollutant emissions from two-and three-wheeled motor vehicles

<u>Japanese Regulation Trias:</u> Road vehicle Act, Article 41 "Systems and Devices of Motor Vehicles" Safety Regulations for Road Vehicles, Article 31 "Emission Control Devices"

<u>United States of America regulation:</u> US-FTP Subpart F, Emission Regulations for 1978 and Later New Motorcycles

<u>ISO standards:</u> ISO 11486 (Motorcycles - Chassis dynamometer setting method) ISO 6460 (gas sampling) ISO 7860 (fuel consumption)

Most of these regulations have been in existence for many years and the methods of measurement vary significantly. The technical experts were familiar with these requirements and discussed them in their working sessions. The Informal group therefore considered that to be able to determine a vehicle's real impact on the environment, in terms of its exhaust emissions and fuel consumption, the test procedure and consequently the gtr needed to represent modern, real-world vehicle operation.

Consequently, the proposed regulation is based on new research into the worldwide pattern of real motorcycle use.

4. <u>Discussion of Issues Addressed by the gtr</u>

The issues addressed by the test procedure development group are discussed in detail in the referenced technical report. The process used to develop this gtr can be broken down into four basic steps. First, the basis of the cycle development was the collection and analysis of driving behaviour data and statistical information about motorcycle use for the different regions of the world. These data had to include all relevant real life vehicle operations and built the basis for the cycle development. In a second step the in-use driving behaviour data were combined with the statistics on vehicle use in order to create a reference database that is representative for worldwide motorcycle driving behaviour. This was achieved using a classification matrix for the most important influencing parameters. In the final classification matrix three different regions (Europe, Japan, United States of America), three different vehicle classes and three different road categories were included.

The next step was to compact this reference cycle into a test cycle of the desired length. A computer search programme then selected a number of modules (speed/time sequences between two stops) to represent by approximation this length. The statistical characteristics of this

number of modules are then compared to those of the database. The comparison is done on the basis of the chi-squared method, an accepted statistical criterion.

Finally, a first draft of the World-wide Motorcycle Test Cycle (WMTC) was produced. It was foreseen that this first draft needed to be modified on the basis of an evaluation concerning driveability and practical points concerning the measurement procedure. Since this process is iterative by nature, several adaptation rounds including the driveability tests were carried out.

In each of these steps, specific technical issues were raised, discussed, and resolved. The technical report describes this information. Additionally, other issues addressed in this gtr are identified below.

#### (a) <u>Applicability</u>

The Informal group followed the agreed terms of reference and has prepared a gtr for motorcycles.

#### (b) <u>Definitions</u>

The definitions used in this gtr are taken from the draft Common definitions of vehicle categories, masses and dimensions (S.R.1).

#### (c) <u>General Requirements</u>

The proposed regulation is based on new research into the worldwide pattern of real motorcycle use on a variety of road types. The weighting factors, both for creating the test cycles and for calculating the overall emission results from the several cycle parts, were calculated from the widest possible worldwide statistical basis. The classification of vehicles reflects the general categories of use and real world driving behaviour.

The gtr contains:

- 1. a main cycle in three parts, which is applied to three different categories of motorcycle according to their typical use
- 2. an alternative cycle, which is to be used by low-powered motorcycles
- 3. a specific gear shift procedure
- 4. the general laboratory conditions, which have been brought up to date by an expert ISO committee, so that they are compatible with the latest technologies

The question of harmonized off-cycle emissions requirements will be considered and appropriate measures introduced in due course.

#### (d) <u>Performance Requirements</u>

As a first step, the gtr is being presented without limit values. In this way the test procedure can be given a legal status which also requires the Contracting Parties to start the process of implementing it in their national law.

When implementing the test procedure contained in this gtr as part of their national legislation or regulation, Contracting Parties are invited to use limit values which represent at least the same level of severity as their existing regulations, pending the development of harmonized limit values by AC.3 under the 1998 Agreement of the World Forum for Harmonization of Vehicle Regulations (WP.29).

The performance levels to be achieved in the gtr will therefore be discussed on the basis of the most recently agreed legislation in the Contracting Parties, as required by the 1998 Agreement.

The Informal group will continue its work on:

- 1. the development of the alternative cycle for low-powered motorcycles, to take account of motorcycles used outside Europe, Japan and the USA, the sources of the original database
- 2. the comparative database of results from the different test procedures, which will act as a major input for the discussion of limit values that are compatible to existing limit values in different regions/countries.
- (e) <u>Reference Fuel</u>

The use of one standardized Reference Fuel has always been considered up to now as an ideal condition for ensuring the reproducibility of regulatory emission testing, and Contracting Parties are encouraged to use such fuel in their compliance testing. However, until performance requirements (i.e. limit values) have been introduced into this gtr, Contracting Parties are allowed to define a different reference fuel to that specified in Annex 2 for its national legislation, to address the actual situation of market fuel for vehicles in use. The reason for the use of such a different reference fuel and the specification of the parameters shall be reported to the Secretary-General of UN.

- 5. <u>Regulatory Impact and Economic Effectiveness</u>
- (a) <u>Anticipated benefits</u>

Increasingly, motorcycles are vehicles which are prepared for the world market. To the extent that manufacturers are preparing substantially different models in order to meet different emission regulations and methods of measuring  $CO_2$  / fuel consumption, testing costs and other production values are increased. It would be more economically efficient to have manufacturers using a similar test procedure worldwide wherever possible. It is anticipated that the test procedure in this gtr will provide a common test programme for manufacturers to use in countries worldwide and thus reduce the amount of resources utilized to test motorcycles. These savings will accrue not only to the manufacturer, but more importantly, to the consumer as well. However, developing a test procedure just to address the economic question does not completely address the mandate given when work on this gtr was first started. The test procedure must also improve the state of testing motorcycles, and better reflect how motorcycles are used today.

Compared to the measurement methods defined in existing legislation of the Contracting Parties, the method defined in this gtr is much more representative of global motorcycle in-use driving behaviour and more dynamic. Some of the present testing requirements are over twenty years

old and do not reflect current road traffic conditions or the way users operate motorcycles in these conditions. Thus, the gtr includes improved testing requirements with respect to the following parameters:

- Maximum test cycle speed,
- Vehicle acceleration, in transient modes of operation
- Gearshift prescriptions,
- Cold start consideration.

As a consequence, it can be expected that the application of this gtr for emissions limitation within the certification procedure will result in a higher severity and higher correlation with inuse emissions.

#### (b) <u>Potential cost effectiveness</u>

Specific cost effectiveness values for this gtr have not been calculated. The decision by the Executive Committee of the 1998 Agreement to move forward with this gtr without limit values is the key reason why this analysis has not been completed. This agreement has been made knowing that specific cost effectiveness values are not immediately available. However, it is fully expected that this information will be developed, generally in response to the adoption of this regulation in national requirements and also in support of developing harmonized limit values for the next step in this gtr's development. For example, each Contracting Party adopting this gtr into its national regulations will be expected to determine the appropriate level of stringency associated with using these new test procedures, with these new values being at least as stringent as comparable existing requirements. Also, experience will be gained by the motorcycle industry as to any costs and costs savings associated with using this test procedure. This cost and emissions performance data can then be analyzed as part of the next step in this gtr development to determine the cost effectiveness values of the test procedures being adopted today along with new harmonized limit values. While there are no calculated cost per ton values here, the belief of the technical group is that there are clear benefits associated with this regulation.

#### B. TEXT OF THE REGULATION

#### 1. <u>Purpose</u>

This global technical regulation provides a worldwide-harmonized method for the determination of the levels of gaseous pollutant emissions, the emissions of carbon dioxide and the fuel consumption of two-wheel motor vehicles that are representative for real world vehicle operation.

The results can build the basis for the limitation of gaseous pollutants and carbon dioxide and for the fuel consumption indicated by the manufacturer within regional type approval procedures.

2. <u>Scope</u>

This regulation applies to the emission of gaseous pollutants and carbon dioxide emissions and fuel consumption of two-wheeled motorcycles with an engine cylinder capacity exceeding 50 cm<sup>3</sup> or a maximum design speed exceeding 50 km/h.

3. <u>Definitions</u>

For the purposes of this regulation,

- 3.1. "<u>Vehicle type</u>" means a category of two-wheeled motor vehicles that do not differ in the following essential respects as:
- 3.1.1. "<u>Equivalent inertia</u>" determined in relation to the mass in running order as prescribed in paragraph 3.3, to this regulation, and
- 3.1.2. "<u>Engine and vehicle characteristics</u>": Subject to the provisions of paragraph 6.2.1, the engine and vehicle characteristics as defined in Annex 4 to this regulation.
- 3.2. "<u>Unladen mass</u>" (m<sub>k</sub>) means the nominal mass of a complete vehicle as determined by the following criteria:

Mass of the vehicle with bodywork and all factory fitted equipment, electrical and auxiliary equipment for normal operation of vehicle, including liquids, tools, fire extinguisher, standard spare parts, chocks and spare wheel, if fitted.

The fuel tank shall be filled to at least 90 per cent of rated capacity and the other liquid containing systems (except those for used water) to 100 per cent of the capacity specified by the manufacturer

3.3. "<u>Mass in running order</u>" (m<sub>ref</sub>) means the nominal mass of a vehicle as determined by the following criteria:

Sum of unladen vehicle mass and driver's mass. The driver's mass is applied in accordance with paragraph 3.4. below.

- 3.4. "<u>Driver mass</u>" means the nominal mass of a driver that shall be 75 kg (subdivided into 68 kg occupant mass at the seat and 7 kg luggage mass in accordance with ISO standard 2416-1992)
- 3.5. "<u>Gaseous pollutants</u>" means carbon monoxide (CO), oxides of nitrogen expressed in terms of nitrogen dioxide (NO<sub>2</sub>) equivalence, and hydrocarbons (HC), assuming a ratio of:

 $C_1H_{1.85}$  for petrol,  $C_1H_{1.86}$  for diesel fuel.

- 3.6. "<u>CO<sub>2</sub> emissions</u>" means carbon dioxide.
- 3.7. "<u>Fuel consumption</u>" means the amount of fuel consumed, calculated by the carbon balance method.
- 3.8. "<u>Maximum vehicle speed</u>" (v<sub>max</sub>) is the maximum speed of the vehicle as declared by the manufacturer, measured in accordance with European Union (EU) Directive 95/1/EC (on the maximum design speed, maximum torque and maximum net engine power of two- or three-wheel motor vehicles).
- <u>Note 1</u> The symbols used in this regulation are summarized in Annex 1.
- 4. <u>General requirements</u>

The components liable to affect the emission of gaseous pollutants, carbon dioxide emissions and fuel consumption shall be so designed, constructed and assembled as to enable the vehicle in normal use, despite the vibration to which it may be subjected, to comply with the provisions of this regulation.

5. <u>Performance requirements</u>

When implementing the test procedure contained in this gtr as part of their national legislation, Contracting Parties are invited to use limit values which represent at least the same level of severity as their existing regulations; pending the development of harmonized limit values, by the Administrative Committee (AC.3) of the 1998 Agreement, for inclusion in the gtr at a later date.

#### 6. <u>Test conditions</u>

- 6.1. Test room and soak area
- 6.1.1. Test room

The test room with the chassis dynamometer and the gas sample collection device, shall have a temperature of 298 K  $\pm$  5 K (25 °C  $\pm$  5 °C). The room temperature shall be measured twice in the vicinity of vehicle cooling blower (fan), both before and after the Type I test.

6.1.2. Soak area

The soak area shall have a temperature of 298 K  $\pm$  5 K (25 °C  $\pm$  5 °C) and be able to park the test vehicle (motorcycle) to be preconditioned in accordance with paragraph 7.2.4.

- 6.2. Test vehicle (motorcycle)
- 6.2.1. General

The test vehicle shall conform in all its components with the production series, or, if the motorcycle is different from the production series, a full description shall be given in the test report. In selecting the test vehicle, the manufacturer and test authority shall agree which motorcycle test model is representative for a related family of vehicles.

6.2.2. Run-in

The motorcycle must be presented in good mechanical condition. It must have been run in and driven at least 1,000 km before the test. The engine, transmission and motorcycle shall be properly run-in, in accordance with the manufacturer's requirements.

6.2.3. Adjustments

The motorcycle shall be adjusted in accordance with the manufacturer's requirements, e.g. the viscosity of the oils, or, if the motorcycle is different from the production series, a full description shall be given in the test report.

6.2.4. Test mass and load distribution

The total test mass including the masses of the rider and the instruments shall be measured before the beginning of the tests. The distribution of the load between the wheels shall be in conformity with the manufacturer's instructions.

subclass 2-2.

#### 6.2.5. Tyres

The tyres shall be of a type specified as original equipment by the vehicle manufacturer. The tyre pressures shall be adjusted to the specifications of the manufacturer or to those where the speed of the motorcycle during the road test and the motorcycle speed obtained on the chassis dynamometer are equalized. The tyre pressure shall be indicated in the test report.

6.3. Vehicle classification

Figure 6-1 gives an overview of the vehicle classification in terms of engine capacity and maximum vehicle speed. The numerical values of the engine capacity and maximum vehicle speed shall not be rounded up or down.

6.3.1. Class 1

Vehicles that fulfil the following specifications belong to class 1:

| Engine capacity $\leq 50~cm^3$ and $50~km/h < v_{max} \leq 60~km/h$                               | subclass 1-1, |
|---------------------------------------------------------------------------------------------------|---------------|
| 50 cm³ < engine capacity < 150 cm³ and $v_{max}$ < 50 km/h                                        | subclass 1-2, |
| Engine capacity $<150~cm^3$ and 50 km/h $\leq v_{max} < 100$ km/h, but not including subclass 1-1 | subclass 1-3. |

6.3.2. Class 2

Vehicles that fulfil the following specifications belong to class 2:

| Engine capacity $< 150 \text{ cm}^3$ and $100 \text{ km/h} \le v_{max} < 115 \text{ km/h}$ or |               |
|-----------------------------------------------------------------------------------------------|---------------|
| Engine capacity $\geq 150 \text{ cm}^3$ and $v_{max} < 115 \text{ km/h}$                      | subclass 2-1, |

115 km/h  $\leq$  v<sub>max</sub> < 130 km/h

6.3.3. Class 3

Vehicles that fulfil the following specifications belong to class 3:

| $130 \le v_{max} < 140 \text{ km/h}$ | subclass 3-1, |
|--------------------------------------|---------------|
|                                      |               |

 $v_{max} \ge 140 \text{ km/h}$  subclass 3-2.



Figure 6-1: vehicle classification

6.4. Specification of the reference fuel

The appropriate reference fuels as defined in Annex 10 to Regulation No. 83 must be used for testing. For the purpose of calculation mentioned in paragraph 8.1.1.5., for petrol and diesel fuel the density measured at 15 °C will be used. The technical data of the reference fuel to be used for testing vehicles are specified in Annex 2.

- 6.5. Type I tests
- 6.5.1. Rider

The rider shall have a mass of 75 kg  $\pm$  5 kg.

- 6.5.2. Test bench specifications and settings
- 6.5.2.1. The dynamometer shall have a single roller with a diameter of at least 0.400 m.
- 6.5.2.2. The dynamometer shall be equipped with a roller revolution counter for measuring actual distance travelled.
- 6.5.2.3. Flywheels of dynamometer or other means shall be used to simulate the inertia specified in paragraph 7.2.2.
- 6.5.2.4. The dynamometer rollers shall be clean, dry and free from anything, which might cause the tyre to slip.

- 6.5.2.5. Cooling fan specifications as follows:
- 6.5.2.5.1. Throughout the test, a variable speed cooling blower (fan) shall be positioned in front of the motorcycle, so as to direct the cooling air to the motorcycle in a manner, which simulates actual operating conditions. The blower speed shall be such that, within the operating range of 10 to 50 km/h, the linear velocity of the air at the blower outlet is within ±5 km/h of the corresponding roller speed. At the range of over 50 km/h, the linear velocity of the air shall be within ±10 per cent. At roller speeds of less than 10 km/h, air velocity may be zero.
- 6.5.2.5.2. The above mentioned air velocity shall be determined as an averaged value of 9 measuring points which are located at the centre of each rectangle dividing the whole of the blower outlet into 9 areas (dividing both of horizontal and vertical sides of the blower outlet into 3 equal parts). Each value at those 9 points shall be within 10 per cent of the averaged value of themselves.
- 6.5.2.5.3. The blower outlet shall have a cross section area of at least 0.4 m<sup>2</sup> and the bottom of the blower outlet shall be between 5 and 20 cm above floor level. The blower outlet shall be perpendicular to the longitudinal axis of the motorcycle between 30 and 45 cm in front of its front wheel. The device used to measure the linear velocity of the air shall be located at between 0 and 20 cm from the air outlet.
- 6.5.3. Exhaust gas measurement system
- 6.5.3.1. The gas-collection device shall be a closed type device that can collect all exhaust gases at the motorcycle exhaust outlet(s) on condition that it satisfies the backpressure condition of  $\pm$  125 mm H<sub>2</sub>O. An open system may be used as well if it is confirmed that all the exhaust gases are collected. The gas collection shall be such that there is no condensation, which could appreciably modify that nature of exhaust gases at the test temperature. The system of gas-collection device is shown in Figure 6-2, for example.



Figure 6-2: Equipment for sampling the gases and measuring their volume

- 6.5.3.2. A connecting tube between the device and the exhaust gas sampling system. This tube, and the device shall be made of stainless steel, or of some other material, which does not affect the composition of the gases collected, and which withstands the temperature of these gases.
- 6.5.3.3. A heat exchanger capable of limiting the temperature variation of the diluted gases in the pump intake to  $\pm 5$  °C throughout the test. This exchanger shall be equipped with a preheating system able to bring the exchanger to its operating temperature (with the tolerance of  $\pm 5$  °C) before the test begins.
- 6.5.3.4. A positive displacement pump to draw in the diluted exhaust mixture. This pump is equipped with a motor having several strictly controlled uniform speeds. The pump capacity shall be large enough to ensure the intake of the exhaust gases. A device using a critical flow venture (CFV) may also be used.
- 6.5.3.5. A device (T) to allow continuous recording of the temperature of the diluted exhaust mixture entering the pump.

- 6.5.3.6. Two gauges; the first to ensure the pressure depression of the dilute exhaust mixture entering the pump, relative to atmospheric pressure, the other to measure the dynamic pressure variation of the positive displacement pump.
- 6.5.3.7. A probe located near to, but outside the gas-collecting device, to collect, through a pump, a filter and a flow meter, samples of the dilution air stream, at constant flow rates throughout the test.
- 6.5.3.8. A sample probe pointed upstream into the dilute exhaust mixture flow, upstream of the positive displacement pump to collect, through a pump, a filter and a flow meter, samples of the dilute exhaust mixture, at constant flow rates, throughout the test. The minimum sample flow rate in the two sampling devices described above and in paragraph 6.5.3.7. shall be at least 150 litre/hour.
- 6.5.3.9. Three way valves on the sampling system described in paragraph 6.5.3.7. and paragraph 6.5.3.8. to direct the samples either to their respective bags or to the outside throughout the test.
- 6.5.3.10. Gas-tight collection bags
- 6.5.3.10.1. For dilution air and dilute exhaust mixture of sufficient capacity so as not to impede normal sample flow and which will not change the nature of the pollutants concerned.
- 6.5.3.10.2. The bags shall have an automatic self-locking device and shall be easily and tightly fastened either to the sampling system or the analysing system at the end of the test.
- 6.5.3.11. A revolution counter to count the revolutions of the positive displacement pump throughout the test.
- Note 2 Good care shall be taken on the connecting method and the material or configuration of the connecting parts because there is a possibility that each section (e.g. the adapter and the coupler) of the sampling system becomes very hot. If the measurement cannot be performed normally due to heat-damages of the sampling system, an auxiliary cooling device may be used as long as the exhaust gases are not affected.
- <u>Note 3</u> Open type devices have risks of incomplete gas collection and gas leakage into the test cell. It is necessary to make sure there is no leakage throughout the sampling period.
- <u>Note 4</u> If a constant CVS flow rate is used throughout the test cycle that includes low and high speeds all in one (i.e. part 1, 2 and 3 cycles) special attention should be paid because of higher risk of water condensation in high speed range.

ECE/TRANS/180/Add.2 page 18

#### 6.5.4. Driving schedules

#### 6.5.4.1. Test cycles

Test cycles (vehicle speed patterns), for the Type I test consists of up to three parts that are shown in annex 5. Depending on the vehicle class (see paragraph 6.3.) the following test cycle parts have to be run:

| Class 1:                |                                                                                                                   |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| Subclasses 1-1 and 1-2: | part 1, reduced speed in cold condition, followed by part 1 reduced speed in hot condition                        |
| Subclass 1-3:           | part 1 in cold condition, followed by part 1 in hot condition.                                                    |
| Class 2:                |                                                                                                                   |
| Subclass 2-1:           | part 1 in cold condition, followed by part 2 reduced speed in hot condition.                                      |
| Subclass 2-2:           | part 1 in cold condition, followed by part 2 in hot condition.                                                    |
| Class 3:                |                                                                                                                   |
| Subclass 3-1:           | part 1 in cold condition, followed by part 2 in hot condition, followed by part 3 reduced speed in hot condition. |
| Subclass 3-2:           | part 1 in cold condition, followed by part 2 in hot condition, followed by part 3 in hot condition.               |

#### 6.5.4.2. Speed tolerances

- 6.5.4.2.1. The speed tolerance at any given time on the test cycle prescribed in paragraph 6.5.4.1. is defined by upper and lower limits. The upper limit is 3.2 km/h higher than the highest point on the trace within 1 second of the given time. The lower limit is 3.2 km/h lower than the lowest point on the trace within 1 second of the given time. Speed variations greater than the tolerances (such as may occur during gear changes) are acceptable provided they occur for less than 2 seconds on any occasion. Speeds lower than those prescribed are acceptable provided the vehicle is operated at maximum available power during such occurrences. Figure 6-3 shows the range of acceptable speed tolerances for typical points.
- 6.5.4.2.2. Apart from these exceptions the deviations of the roller speed from the set speed of the cycles must meet the requirements described above. If not, the test results shall not be used for the further analysis and the run has to be repeated.



Figure 6-3: Drivers trace, allowable range

- 6.5.5. Gearshift prescriptions
- 6.5.5.1. Test vehicles (motorcycles) with automatic transmission
- 6.5.5.1.1. Vehicles equipped with transfer cases, multiple sprockets, etc., shall be tested in the manufacturer's recommended configuration for street or highway use.
- 6.5.5.1.2. All tests shall be conducted with automatic transmissions in "Drive" (highest gear). Automatic clutch-torque converter transmissions may be shifted as manual transmissions at the option of the manufacturer.

- 6.5.5.1.3. Idle modes shall be run with automatic transmissions in "Drive" and the wheels braked.
- 6.5.5.1.4. Automatic transmissions shall shift automatically through the normal sequence of gears.
- 6.5.5.1.5. The deceleration modes shall be run in gear using brakes or throttle as necessary to maintain the desired speed.
- 6.5.5.2. Test vehicles (motorcycles) with manual transmission
- 6.5.5.2.1. Step 1 Calculation of shift speeds
- 6.5.5.2.1.1. Upshift speeds  $(v_{1\rightarrow 2} \text{ and } v_{i\rightarrow i+1})$  in km/h during acceleration phases shall be calculated using the following formulas:

Equation 6-1:

$$\mathbf{v}_{1 \to 2} = \left[ (0.5753 \times e^{(-1.9 \times \frac{\mathbf{P}_n}{\mathbf{m}_k + 75})} - 0.1) \times (\mathbf{s} - \mathbf{n}_{idle}) + \mathbf{n}_{idle} \right] \times \frac{1}{\mathbf{ndv}_1}$$

Equation 6-2:

$$\mathbf{v}_{i \to i+1} = \left[ (0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_1}, i = 2 \text{ to ng-1}$$

where:

 $\begin{array}{ll} i & \text{is the gear number } (\geq 2), \\ ng & \text{is the total number of forward gears,} \\ P_n & \text{is the rated power in kW}, \\ m_k & \text{is the unladen mass in kg}, \\ n_{idle} & \text{is the idling speed in min}^{-1}, \\ s & \text{is the rated engine speed in min}^{-1}, \\ ndv_i & \text{is the ratio between engine speed in min}^{-1} \text{ and vehicle speed in km/h in gear i.} \end{array}$ 

6.5.5.2.1.2. Downshift speeds  $(v_{i \rightarrow i-1})$  in km/h during cruise or deceleration phases in gears 3 (3<sup>rd</sup> gear) to ng shall be calculated using the following formula:

Equation 6-3:

$$\mathbf{v}_{i \to i-1} = \left[ (0.5753 \times e^{(-1.9 \times \frac{\mathbf{P}_n}{\mathbf{m}_k + 75})}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_{i-2}}, i = 3 \text{ to } ng$$

- 6.5.5.2.1.3. At the downshift phase the gear lever shall be set to first gear but the clutch shall be disengaged, if:
  - the vehicle speed drops below 10 km/h or
  - the engine speed drops below  $n_{idle} + 0.03 \times (s n_{idle})$ ,
  - engine roughness is evident,
  - engine stalling is imminent.
- 6.5.5.2.2. Step 2 Gear choice for each cycle sample

The appropriate gear for each sample shall then be calculated according to phase indicators in the tables in Annex 5 for the cycle parts appropriate for the test vehicle as follows:

- 6.5.5.2.2.1. Gear lever in neutral and clutch disengaged;
- 6.5.5.2.2.2. The gear lever shall be set to first gear and the clutch shall be disengaged, if the following conditions are met:
  - During stop phases,
  - During cruise or deceleration phases, if:
    - the vehicle speed drops below 10 km/h or
    - the engine speed drops below  $n_{idle} + 0.03 \times (s n_{idle})$ ;
  - Gear choice for acceleration phases:

 $\begin{array}{l} Gear = 6, \mbox{ if } v > v_{5 \rightarrow 6}, \\ Gear = 5, \mbox{ if } v > v_{4 \rightarrow 5}, \\ Gear = 4, \mbox{ if } v > v_{3 \rightarrow 4}, \\ Gear = 3, \mbox{ if } v > v_{2 \rightarrow 3}, \\ Gear = 2, \mbox{ if } v > v_{1 \rightarrow 2}, \\ Gear = 1, \mbox{ if } v \leq v_{1 \rightarrow 2}. \end{array}$ 

- Gear choice for deceleration or cruise phases:

 $\begin{array}{l} Gear = 6, \mbox{ if } v > v_{4 \rightarrow 5}, \\ Gear = 5, \mbox{ if } v > v_{3 \rightarrow 4}, \\ Gear = 4, \mbox{ if } v > v_{2 \rightarrow 3}, \\ Gear = 3, \mbox{ if } v > v_{1 \rightarrow 2}, \\ Gear = 2, \mbox{ if } v \leq v_{1 \rightarrow 2}. \end{array}$ 

6.5.5.2.3. Step 3 – Corrections according to additional requirements

6.5.5.2.3.1. The gear choice has then to be modified according to the following requirements:

- (a) No gearshift at a transition from an acceleration phase to a deceleration phase: keep the gear that was used for the last second of the acceleration phase also for the following deceleration phase unless the speed drops below a downshift speed.
- (b) No upshifts during deceleration phases.
- (c) No gearshift in cycle phases, where "no gearshift" is indicated.

- (d) No downshift to first gear at a transition from a deceleration or a cruise phase to an acceleration phase, if "no use of 1. gear" is indicated.
- (e) If a gear is used for only one second, this gear shall also be assigned to the following second. Since it could happen that the modifications according to this criterion create new phases where a gear is used for only one second, this modification step has to be applied several times.
- 6.5.5.2.3.2. To give the test engineer more flexibility and to assure driveability, the use of lower gears than calculated with the routines above are permitted in any cycle phase. Manufacturers recommendations for gear use shall be followed, if they do not lead to higher gears than calculated with the routines above.
- 6.5.5.2.3.3. Explanations about the approach and the gearshift strategy and a calculation example are given in Annex 13.
- <u>Note 5</u> The calculation programme to be found on the UN website at the URL below may be used as an aid for the gear selection. If the output from the calculation programme is not suitable for the model of motorcycle, the equations above shall be used as basis for generating the appropriate gear change points. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/wmtc.html
- 6.5.6. Dynamometer settings

A full description of the chassis dynamometer and instruments shall be provided in accordance with Annex 6. Measurements shall be made to the accuracies as specified in paragraph 6.5.7. The running resistance force for the chassis dynamometer settings can be derived either from on-road coast down measurements or from a running resistance table (see Annex 3).

6.5.6.1. Chassis dynamometer setting derived from on-road coast down measurements

To use this alternative on road cost down measurements have to be carried out as specified in Annex 7.

6.5.6.1.1. Requirements for the equipment

The instrumentation for the speed and time measurement shall have the accuracies as specified in paragraph 6.5.7.

- 6.5.6.1.2. Inertia mass setting
- 6.5.6.1.2.1. The equivalent inertia mass for the chassis dynamometer shall be the flywheel equivalent inertia mass,  $m_{fi}$ , closest to the actual mass of the motorcycle,  $m_a$ . The actual mass,  $m_a$ , is obtained by adding the rotating mass of the front wheel,  $m_{rf}$ , to the total mass of the motorcycle, rider and instruments measured during the road test. Alternatively, the equivalent inertia mass  $m_i$  can be derived from Annex 3. The

value of  $m_{rf}$ , in kilograms, may be measured or calculated as appropriate, or may be estimated as 3 per cent of m.

6.5.6.1.2.2. If the actual mass  $m_a$  cannot be equalized to the flywheel equivalent inertia mass  $m_i$ , to make the target running resistance force  $F^*$  equal to the running resistance force  $F_E$  (which is to be set to the chassis dynamometer), the corrected coast down time  $\Delta T_E$  may be adjusted in accordance with the total mass ratio of the target coast down time  $\Delta T_{road}$  in the following sequence:

| $\Delta T_{road} = \frac{1}{3.6} \left( m_a + m_{r1} \right) \frac{2\Delta v}{F^*}$                         | Equation 6-4 |
|-------------------------------------------------------------------------------------------------------------|--------------|
| $\Delta T_E = \frac{1}{3.6} \left( m_i + m_{r1} \right) \frac{2\Delta v}{F_E}$                              | Equation 6-5 |
| $\mathbf{F}_E = \mathbf{F}^*$                                                                               | Equation 6-6 |
| $\Delta T_E = \Delta T_{road} \times \frac{\mathbf{m}_i + \mathbf{m}_{r1}}{\mathbf{m}_a + \mathbf{m}_{r1}}$ | Equation 6-7 |
|                                                                                                             |              |

with  $0.95 < \frac{m_i + m_{r1}}{m_a + m_{r1}} < 1.05$ 

where:

 $m_{r1}$  may be measured or calculated, in kilograms, as appropriate. As an alternative,  $m_{r1}$  may be estimated as 4 per cent of m.

- 6.5.6.2. Running resistance force derived from a running resistance table
- 6.5.6.2.1. The chassis dynamometer can be set by the use of the running resistance table instead of the running resistance force obtained by the coast down method. In this table method, the chassis dynamometer shall be set by the mass in running order regardless of particular motorcycle characteristics.
- <u>Note 6</u> Cares should be taken for the application of this method to motorcycles having extraordinary characteristics.
- 6.5.6.2.2. The flywheel equivalent inertia mass m<sub>f1</sub> shall be the equivalent inertia mass m<sub>i</sub> specified in Annex 3. The chassis dynamometer shall be set by the rolling resistance of the front wheel a and the aero drag coefficient b as specified in Annex 3.

# ECE/TRANS/180/Add.2 page 24

6.5.6.2.3. The running resistance force on the chassis dynamometer  $F_E$  shall be determined from the following equation:

$$\mathbf{F}_E = \mathbf{F}_T = \mathbf{a} + \mathbf{b} \times \mathbf{v}^2$$

Equation 6-8

- 6.5.6.2.4. The target running resistance force  $F^*$  shall be equal to the running resistance force obtained from the running resistance table  $F_T$ , because the correction for the standard ambient conditions is not necessary.
- 6.5.7. Measurement accuracies

Measurements have to be carried out using equipment that fulfil the accuracy requirements as described in table 6-1 below:

Table 6-1: Required accuracy of measurements

|    | Measurement Items                                   | At measured value  | Resolution |
|----|-----------------------------------------------------|--------------------|------------|
| a) | Running resistance force, F                         | + 2 per cent       | -          |
| b) | Motorcycle speed $(v_1, v_2)$                       | $\pm 1$ per cent   | 0.2 km/h   |
| c) | Coast down speed interval $(2\Delta v = v_1 - v_2)$ | $\pm 1$ per cent   | 0.1 km/h   |
| d) | Coast down time ( $\Delta t$ )                      | $\pm 0.5$ per cent | 0.01 s     |
| e) | Total motorcycle mass $(m_k + m_{rid})$             | $\pm 0.5$ per cent | 1.0 kg     |
| f) | Wind speed                                          | $\pm 10$ per cent  | 0.1 m/s    |
| g) | Wind direction                                      | -                  | 5 deg.     |
| h) | Temperatures                                        | ±1°C               | 1 °C       |
| i) | Barometric pressure                                 | -                  | 0.2 kPa    |
| j) | Distance                                            | $\pm 0.1$ per cent | 1 m        |
| k) | Time                                                | ± 0.1 s            | 0.1 s      |

#### 6.6. Type II tests

#### 6.6.1. Application

This requirement applies to all test vehicles (motorcycles) powered by a positiveignition engine.

6.6.2. Test fuel

The fuel shall be the reference fuel whose specifications are given in paragraph 6.4 to this regulation.

6.6.3. Measured gaseous pollutant

The content by volume of carbon monoxide shall be measured immediately after the Type I test.

6.6.4. Engine test speeds

The test has to be carried out with the engine at normal idling speed and at "high idle" speed. High idle speed is defined by the manufacturer but it has to be higher than  $2,000 \text{ min}^{-1}$ .

6.6.5. Gear lever position

In the case of test vehicles (motorcycles) with manually operated or semi-automatic shift gearboxes, the test shall be carried out with the gear lever in the "neutral" position and with the clutch engaged. In the case of test vehicles (motorcycles) with automatic-shift gearboxes, the test shall be carried out with the gear selector in either the "zero" or the "park" position.

- 7. <u>Test procedures</u>
- 7.1. Description of tests.

The test vehicle (motorcycle) shall be subjected, according to its category, to tests of two types, I and II, as specified below.

- 7.1.1. Type I test (verifying the average emission of gaseous pollutants, CO<sub>2</sub> emissions and fuel consumption in a characteristic driving cycle).
- 7.1.1.1. The test shall be carried out by the method described in paragraph 7.2. to this regulation. The gases shall be collected and analysed by the prescribed methods.
- 7.1.1.2. Number of tests
- 7.1.1.2.1. The number of tests shall be determined as shown in figure 7-1. R<sub>i1</sub> to R<sub>i3</sub> describe the final measurement results for the first (No.1) test to the third (No.3) test and the gaseous pollutant, the carbon dioxide emission or fuel consumption as defined in paragraph 8.1.1.6. L is the limit value as defined in paragraph 5.
- 7.1.1.2.2. In each test, the mass of the carbon monoxide, the mass of the hydrocarbons, the mass of the nitrogen oxides, the mass of carbon dioxide and the mass of the fuel, consumed during the test shall be determined.

# ECE/TRANS/180/Add.2 page 26

7.1.2. Type II test (test of carbon monoxide at idling speed) and emissions data required for roadworthiness testing.

The carbon monoxide content of the exhaust gases emitted shall be checked by a test with the engine at normal idling speed and at "high idle" speed (i.e.  $> 2.000 \text{ min}^{-1}$ ) carried out by the method described in paragraph 7.3. to this regulation.



Figure 7-1: Flowchart for the number of Type I tests

- 7.2. Type I tests
- 7.2.1. Overview
- 7.2.1.1. The Type I test consists of prescribed sequences of dynamometer preparation, fuelling, parking, and operating conditions.
- 7.2.1.2. The test is designed to determine hydrocarbon, carbon monoxide, oxides of nitrogen, carbon dioxide mass emissions and fuel consumption while simulating real world operation. The test consists of engine start-ups and motorcycle operation on a chassis dynamometer, through a specified driving cycle. A proportional part of the diluted exhaust emissions is collected continuously for subsequent analysis, using a constant volume (variable dilution) sampler (CVS).
- 7.2.1.3. Except in cases of component malfunction or failure, all emission control systems installed on or incorporated in a tested motorcycle shall be functioning during all procedures.
- 7.2.1.4. Background concentrations are measured for all species for which emissions measurements are made. For exhaust testing, this requires sampling and analysis of the dilution air.
- 7.2.2. Dynamometer settings and verification
- 7.2.2.1. Test vehicle (motorcycle) preparation
- 7.2.2.1.1. The manufacturer shall provide additional fittings and adapters, as required to accommodate a fuel drain at the lowest point possible in the tank(s) as installed on the vehicle, and to provide for exhaust sample collection.
- 7.2.2.1.2. The tyre pressures shall be adjusted to the specifications of the manufacturer or to those at which the speed of the motorcycle during the road test and the motorcycle speed obtained on the chassis dynamometer are equal.
- 7.2.2.1.3. The test vehicle shall be warmed up on the chassis dynamometer to the same condition as it was during the road test.
- 7.2.2.2. Dynamometer preparation, if settings are derived from on-road coast down measurements. Before the test, the chassis dynamometer shall be appropriately warmed up to the stabilized frictional force  $F_f$ . The load on the chassis dynamometer  $F_E$  is, in view of its construction, composed of the total friction loss  $F_f$  which is the sum of the chassis dynamometer rotating frictional resistance, the tyre rolling resistance, the frictional resistance of the rotating parts in the driving system of the motorcycle and the braking force of the power absorbing unit (pau)  $F_{pau}$ , as shown in the following equation:

$$\mathbf{F}_E = \mathbf{F}_f + \mathbf{F}_{pau}$$

Equation 7-1

The target running resistance force  $F^*$  derived from paragraph 6.3 of Annex 7 shall be reproduced on the chassis dynamometer in accordance with the motorcycle speed. Namely:

$$\mathbf{F}_{E}(\mathbf{v}_{i}) = \mathbf{F}^{*}(\mathbf{v}_{i})$$
 Equation 7-2

The total friction loss  $F_f$  on the chassis dynamometer shall be measured by the method in paragraph 7.2.2.2.1. or paragraph 7.2.2.2.2.

#### 7.2.2.2.1. Motoring by chassis dynamometer

This method applies only to chassis dynamometers capable of driving a motorcycle. The motorcycle shall be driven by the chassis dynamometer steadily at the reference speed v<sub>0</sub> with the transmission engaged and the clutch disengaged. The total friction loss  $F_f(v_0)$  at the reference speed v<sub>0</sub> is given by the chassis dynamometer force.

#### 7.2.2.2.2. Coast down without absorption

The method of measuring the coast down time is the coast down method for the measurement of the total friction loss  $F_{f}$ . The motorcycle coast down shall be performed on the chassis dynamometer by the procedure described in paragraph 5 of Annex 7 with zero chassis dynamometer absorption, and the coast down time  $\Delta t_i$  corresponding to the reference speed v<sub>0</sub> shall be measured. The measurement shall be carried out at least three times, and the mean coast down time  $\overline{\Delta t}$  shall be calculated by the following equation:

$$\overline{\Delta t} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_i$$
 Equation 7-3

#### 7.2.2.2.3. Total friction loss

The total friction loss  $F_f(v_0)$  at the reference speed  $v_0$  is calculated by the following equation:

$$F_{f}(v_{0}) = \frac{1}{3.6} (m_{i} + m_{r1}) \frac{2\Delta v}{\Delta t}$$
 Equation 7-4

#### 7.2.2.2.4. Calculation of power absorption unit force

The force  $F_{pau}(v_0)$  to be absorbed by the chassis dynamometer at the reference speed v<sub>0</sub> is calculated by subtracting  $F_f(v_0)$  from the target running resistance force  $F^*(v_0)$  as shown in the following equation:

$$F_{pau}(\mathbf{v}_0) = F^*(\mathbf{v}_0) - F_f(\mathbf{v}_0)$$
Equation 7-5

#### 7.2.2.2.5. Chassis dynamometer setting

According to its type, the chassis dynamometer shall be set by one of the methods described in paragraphs 7.2.2.2.5.1. to 7.2.2.2.5.4. The chosen setting shall be applied to the pollutant emissions measurements as well as to the  $CO_2$  emission measurements.

7.2.2.2.5.1. Chassis dynamometer with polygonal function

In the case of a chassis dynamometer with polygonal function, in which the absorption characteristics are determined by load values at several speed points, at least three specified speeds, including the reference speed, shall be chosen as the setting points. At each setting point, the chassis dynamometer shall be set to the value  $F_{pau}(v_j)$  obtained in paragraph 7.2.2.2.4.

7.2.2.2.5.2. Chassis dynamometer with coefficient control

In the case of a chassis dynamometer with coefficient control, in which the absorption characteristics are determined by given coefficients of a polynomial function, the value of  $F_{pau}(v_j)$  at each specified speed should be calculated by the procedure in paragraph 7.2.2.2

Assuming the load characteristics to be:

$$F_{pau}(v) = a \times v^{2} + b \times v + c$$
 Equation 7-6

where:

the coefficients a, b and c shall be determined by the polynomial regression method.

The chassis dynamometer shall be set to the coefficients a, b and c obtained by the polynomial regression method.

### 7.2.2.2.5.3. Chassis dynamometer with F\* polygonal digital setter

In the case of a chassis dynamometer with a polygonal digital setter, where a central processor unit (CPU) is incorporated in the system, F \* is input directly, and  $\Delta t_i$ , F<sub>f</sub> and F<sub>pau</sub> are automatically measured and calculated to set the chassis dynamometer to the target running resistance force F<sup>\*</sup> = f<sup>\*</sup> + f<sup>\*</sup><sub>2</sub> × v<sup>2</sup>.

In this case, several points in succession are directly input digitally from the data set of  $F^*_j$  and  $v_j$ , the coast down is performed and the coast down time  $\Delta t_j$  is measured. After the coast down test has been repeated several times,  $F_{pau}$  is automatically

calculated and set at motorcycle speed intervals of 0.1 km/h, in the following sequence:

$$F^{*} + F_{f} = \frac{1}{3.6} (m_{i} + m_{r1}) \frac{2\Delta v}{\Delta t_{i}}$$
Equation 7-7  
$$F_{f} = \frac{1}{3.6} (m_{i} + m_{r1}) \frac{2\Delta v}{\Delta t_{i}} - F^{*}$$
Equation 7-8  
$$F_{pau} = F^{*} - F_{f}$$
Equation 7-9

## 7.2.2.5.4. Chassis dynamometer with $f_0^*$ , $f_2^*$ coefficient digital setter

In the case of a chassis dynamometer with a coefficient digital setter, where a CPU (central processor unit) is incorporated in the system, the target running resistance force  $F^* = f^*_{0} + f^*_{2} \times v^2$  is automatically set on the chassis dynamometer.

In this case, the coefficients  $f^*_0$  and  $f^*_2$  are directly input digitally; the coast down is performed and the coast down time  $\Delta t_i$  is measured. F<sub>pau</sub> is automatically calculated and set at motorcycle speed intervals of 0.06 km/h, in the following sequence:

$$F^{*} + F_{f} = \frac{1}{3.6} (m_{i} + m_{r1}) \frac{2\Delta v}{\Delta t_{i}}$$
Equation 7-10  
$$F_{f} = \frac{1}{3.6} (m_{i} + m_{r1}) \frac{2\Delta v}{\Delta t_{i}} - F^{*}$$
Equation 7-11  
$$F_{pau} = F^{*} - F_{f}$$
Equation 7-12

#### 7.2.2.2.6. Dynamometer settings verification

#### 7.2.2.2.6.1. Verification test

Immediately after the initial setting, the coast down time  $\Delta t_E$  on the chassis dynamometer corresponding to the reference speed (v<sub>0</sub>), shall be measured by the same procedure as in paragraph 5 of Annex 7. The measurement shall be carried out at least three times, and the mean coast down time  $\Delta t_E$  shall be calculated from the results. The set running resistance force at the reference speed,  $F_E(v_0)$  on the chassis dynamometer is calculated by the following equation:

$$F_E(v_0) = \frac{1}{3.6} (m_i + m_{r1}) \frac{2\Delta v}{\Delta t_E}$$
 Equation 7-13

#### 7.2.2.2.6.2. Calculation of setting error

The setting error  $\varepsilon$  is calculated by the following equation:

$$\varepsilon = \frac{\left| F_{E}(\mathbf{v}_{0}) - F^{*}(\mathbf{v}_{0}) \right|}{F^{*}(\mathbf{v}_{0})} \times 100$$
 Equation 7-14

The chassis dynamometer shall be readjusted if the setting error does not satisfy the following criteria:

 $\epsilon \le 2$  per cent for  $v_0 \ge 50$  km/h  $\epsilon \le 3$  per cent for 30 km/h  $\le v_0 < 50$  km/h  $\epsilon \le 10$  per cent for  $v_0 < 30$  km/h

The procedure in paragraphs 7.2.2.2.6.1. to 7.2.2.2.6.2. shall be repeated until the setting error satisfies the criteria. The chassis dynamometer setting and the observed errors shall be recorded. The examples of the record forms are given in Annex 9.

- 7.2.2.3. Dynamometer preparation, if settings are derived from a running resistance table
- 7.2.2.3.1. The specified speed for the chassis dynamometer

The running resistance on the chassis dynamometer shall be verified at the specified speed v. At least four specified speeds should be verified. The range of specified speed points (the interval between the maximum and minimum points) shall extend either side of the reference speed or the reference speed range, if there is more than one reference speed, by at least  $\Delta v$ , as defined in paragraph 4. of Annex 7. The specified speed points, including the reference speed point(s), shall be no greater than 20 km/h apart and the interval of specified speeds should be the same.

- 7.2.2.3.2. Verification of chassis dynamometer
- 7.2.2.3.2.1. Immediately after the initial setting, the coast down time on the chassis dynamometer corresponding to the specified speed shall be measured. The motorcycle shall not be set up on the chassis dynamometer during the coast down time measurement. When the chassis dynamometer speed exceeds the maximum speed of the test cycle, the coast down time measurement shall start.
- 7.2.2.3.2.2. The measurement shall be carried out at least three times, and the mean coast down time  $\Delta t_E$  shall be calculated from the results.
- 7.2.2.3.2.3. The set running resistance force  $F_E(v_j)$  at the specified speed on the chassis dynamometer is calculated by the following equation:

$$F_{E}(\mathbf{v}_{j}) = \frac{1}{3.6} \times \mathbf{m}_{i} \times \frac{2\Delta \mathbf{v}}{\Delta \mathbf{t}_{E}}$$
 Equation 7-15

7.2.2.3.2.4. The setting error  $\varepsilon$  at the specified speed is calculated by the following equation:

$$\varepsilon = \frac{\left| \mathbf{F}_{E}(\mathbf{v}_{j}) - \mathbf{F}_{T} \right|}{\mathbf{F}_{T}} \times 100$$

Equation 7-16

- 7.2.2.3.2.5. The chassis dynamometer shall be readjusted if the setting error does not satisfy the following criteria:
  - $$\begin{split} \epsilon &\leq 2 \text{ per cent for } v \geq 50 \text{ km/h} \\ \epsilon &\leq 3 \text{ per cent for } 30 \text{ km/h} \leq v < 50 \text{ km/h} \\ \epsilon &\leq 10 \text{ per cent for } v < 30 \text{ km/h} \end{split}$$
- 7.2.2.3.2.6. The procedure described above shall be repeated until the setting error satisfies the criteria. The chassis dynamometer setting and the observed errors shall be recorded. An example of the record form is given in Annex 10.
- 7.2.3. Calibration of analysers
- 7.2.3.1. The quantity of gas at the indicated pressure compatible with the correct functioning of the equipment shall be injected into the analyser with the aid of the flow metre and the pressure-reducing valve mounted on each gas cylinder. The apparatus shall be adjusted to indicate as a stabilized value the value inserted on the standard gas cylinder. Starting from the setting obtained with the gas cylinder of greatest capacity, a curve shall be drawn of the deviations of the apparatus according to the content of the various standard cylinders used. The flame ionisation analyser shall be recalibrated periodically, at intervals of not more than one month, using air/propane or air/hexane mixtures with nominal hydrocarbon concentrations equal to 50 per cent and 90 per cent of full scale.
- 7.2.3.2. Non-dispersive infrared absorption analysers shall be checked at the same intervals using nitrogen/C0 and nitrogen/CO<sub>2</sub> mixtures in nominal concentrations equal to 10, 40, 60, 85 and 90 per cent of full scale.
- 7.2.3.3. To calibrate the NO<sub>X</sub> chemiluminescence analyser, nitrogen/nitrogen oxide (NO) mixtures with nominal concentrations equal to 50 per cent and 90 per cent of full scale shall be used. The calibration of all three types of analysers shall be checked before each series of tests, using mixtures of the gases, which are measured in a concentration equal to 80 per cent of full scale. A dilution device can be applied for diluting a 100 per cent calibration gas to required concentration.
- 7.2.4. Test vehicle (motorcycle) preconditioning
- 7.2.4.1. The test vehicle shall be moved to the test area and the following operations performed:
  - The fuel tank(s) shall be drained through the provided fuel tank(s) drain(s) and charged with the test fuel as specified in paragraph 6.4. to half the tank(s) capacity.

- The test vehicle shall be placed, either by being driven or pushed, on a dynamometer and operated through the cycles as specified in paragraph 6.5.4. The vehicle need not be cold, and may be used to set dynamometer power.
- 7.2.4.2. Practice runs over the prescribed driving schedule may be performed at test points, provided an emission sample is not taken, for the purpose of finding the minimum throttle action to maintain the proper speed-time relationship, or to permit sampling system adjustments.
- 7.2.4.3. Within 5 minutes of completion of preconditioning, the test vehicle shall be removed from the dynamometer and may be driven or pushed to the soak area to be parked. The vehicle shall be stored for not less than 6 hours and not more than 36 hours prior to the cold start Type I test or until the engine oil temperature T<sup>O</sup> or the coolant temperature T<sup>C</sup> or the sparkplug seat/gasket temperature T<sup>P</sup> (only for air cooled engine) equals the air temperature of the soak area.
- 7.2.5. Emissions tests
- 7.2.5.1. Engine starting and restarting
- 7.2.5.1.1. The engine shall be started according to the manufacturer's recommended starting procedures. The test cycle run shall begin when the engine starts.
- 7.2.5.1.2. Test vehicles equipped with automatic chokes shall be operated according to the instructions in the manufacturer's operating instructions or owner's manual including choke setting and "kick-down" from cold fast idle. The transmission shall be placed in gear 15 seconds after the engine is started. If necessary, braking may be employed to keep the drive wheels from turning.
- 7.2.5.1.3. Test vehicles equipped with manual chokes shall be operated according to the manufacturer's operating instructions or owner's manual. Where times are provided in the instructions, the point for operation may be specified, within 15 seconds of the recommended time.
- 7.2.5.1.4. The operator may use the choke, throttle etc. where necessary to keep the engine running.
- 7.2.5.1.5. If the manufacturer's operating instructions or owner's manual do not specify a warm engine starting procedure, the engine (automatic and manual choke engines) shall be started by opening the throttle about half way and cranking the engine until it starts.
- 7.2.5.1.6. If, during the cold start, the test vehicle does not start after 10 seconds of cranking, or ten cycles of the manual starting mechanism, cranking shall cease and the reason for failure to start determined. The revolution counter on the constant volume sampler shall be turned off and the sample solenoid valves placed in the "standby" position during this diagnostic period. In addition, either the CVS blower shall be turned off or the exhaust tube disconnected from the tailpipe during the diagnostic period.

- 7.2.5.1.7. If failure to start is an operational error, the test vehicle shall be rescheduled for testing from a cold start. If failure to start is caused by vehicle malfunction, corrective action (following the unscheduled maintenance provisions) of less than 30 minutes duration may be taken and the test continued. The sampling system shall be reactivated at the same time cranking is started. When the engine starts, the driving schedule timing sequence shall begin. If failure to start is caused by vehicle malfunction and the vehicle cannot be started, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken (following the unscheduled maintenance provisions), and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.
- 7.2.5.1.8. If the test vehicle does not start during the hot start after ten seconds of cranking, or ten cycles of the manual starting mechanism, cranking shall cease, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.
- 7.2.5.1.9. If the engine "false starts", the operator shall repeat the recommended starting procedure (such as resetting the choke, etc.)
- 7.2.5.2. Stalling
- 7.2.5.2.1. If the engine stalls during an idle period, the engine shall be restarted immediately and the test continued. If the engine cannot be started soon enough to allow the vehicle to follow the next acceleration as prescribed, the driving schedule indicator shall be stopped. When the vehicle restarts, the driving schedule indicator shall be reactivated.
- 7.2.5.2.2. If the engine stalls during some operating mode other than idle, the driving schedule indicator shall be stopped, the test vehicle shall then be restarted and accelerated to the speed required at that point in the driving schedule and the test continued. During acceleration to this point, shifting shall be performed in accordance with paragraph 6.5.5.
- 7.2.5.2.3. If the test vehicle will not restart within one minute, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken, and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.
- 7.2.6. Drive instructions
- 7.2.6.1. The test vehicle shall be driven with minimum throttle movement to maintain the desired speed. No simultaneous use of brake and throttle shall be permitted.
- 7.2.6.2. If the test vehicle cannot accelerate at the specified rate, it shall be operated with the throttle fully opened until the roller speed reaches the value prescribed for that time in the driving schedule.

# ECE/TRANS/180/Add.2 page 36

- 7.2.7. Dynamometer test runs
- 7.2.7.1. The complete dynamometer test consists of consecutive parts as described in paragraph 6.5.4.
- 7.2.7.2. The following steps shall be taken for each test:
  - (a) Place drive wheel of vehicle on dynamometer without starting engine.
  - (b) Activate vehicle cooling fan.
  - (c) For all test vehicles, with the sample selector valves in the "standby" position connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection systems.
  - (d) Start the CVS (if not already on), the sample pumps and the temperature recorder. (The heat exchanger of the constant volume sampler, if used, and sample lines should be preheated to their respective operating temperatures before the test begins.)
  - (e) Adjust the sample flow rates to the desired flow rate and set the gas flow measuring devices to zero.
    - For gaseous bag samples (except hydrocarbon samples), the minimum flow rate is 0.08 litre/second.
    - For hydrocarbon samples, the minimum flame ionization detection (FID) (or heated flame ionization detection (HFID) in the case of methanol-fuelled vehicles) flow rate is 0.031 litre/second.
  - (f) Attach the flexible exhaust tube to the vehicle tailpipe(s).
  - (g) Start the gas flow measuring device, position the sample selector valves to direct the sample flow into the "transient" exhaust sample bag, the "transient" dilution air sample bag, turn the key on, and start cranking the engine.
  - (h) Fifteen seconds after the engine starts, place the transmission in gear.
  - (i) Twenty seconds after the engine starts, begin the initial vehicle acceleration of the driving schedule.
  - (j) Operate the vehicle according to the driving cycles specified in paragraph 6.5.4.
  - (k) At the end of the part 1 or part 1 reduced speed in cold condition, simultaneously switch the sample flows from the first bags and samples to the second bags and samples, switch off gas flow measuring device No. 1 and start gas flow measuring device No. 2.
  - (1) In case of class 3 vehicles, at the end of part 2 simultaneously switch the sample flows from the second bags and samples to the third bags and samples, switch off gas flow measuring device No. 2 and, start gas flow measuring device No. 3.
  - (m) Before starting a new part, record the measured roll or shaft revolutions and reset the counter or switch to a second counter. As soon as possible, transfer the exhaust and dilution air samples to the analytical system and process the samples according to paragraph 8.1.1., obtaining a stabilised reading of the exhaust bag sample on all analysers within 20 minutes of the end of the sample collection phase of the test.
  - (n) Turn the engine off 2 seconds after the end of the last part of the test.
  - (o) Immediately after the end of the sample period, turn off the cooling fan.
- (p) Turn off the constant volume sampler (CVS) or critical flow venturi (CFV) or disconnect the exhaust tube from the tailpipe(s) of the vehicle.
- (q) Disconnect the exhaust tube from the vehicle tailpipe(s) and remove the vehicle from dynamometer.
- (r) For comparison and analysis reasons besides the bag results also second by second data of the emissions (diluted gas) have to be monitored. For the same reasons also the temperatures of the cooling water and the crankcase oil as well as the catalyst temperature shall be recorded.
- 7.3. Type II tests
- 7.3.1. Conditions of measurement
- 7.3.1.1. The Type II test specified in paragraph 6.6. must be measured immediately after the Type I test with the engine at normal idling speed and at high idle.
- 7.3.1.2. The following parameters must be measured and recorded at normal idling speed and at high idle speed:
  - (a) the carbon monoxide content by volume of the exhaust gases emitted,
  - (b) the carbon dioxide content by volume of the exhaust gases emitted,
  - (c) the engine speed during the test, including any tolerances,
  - (d) the engine oil temperature at the time of the test.
- 7.3.2. Sampling of exhaust gases
- 7.3.2.1. The exhaust outlets shall be provided with an air-tight extension, so that the sample probe used to collect exhaust gases may be inserted into the exhaust outlet at least 60 cm, without increasing the back pressure of more than 125 mm H<sub>2</sub>0, and without disturbance of the vehicle running. The shape of this extension shall however be chosen in order to avoid, at the location of the sample probe, any appreciable dilution of exhaust gases in the air. Where a motorcycle is equipped with an exhaust system having multiple outlets, either these shall be joined to a common pipe or the content of carbon monoxide must be collected from each of them, the result of the measurement being reached from the arithmetical average of these contents.
- 7.3.2.2. The concentrations in CO ( $C_{CO}$ ) and CO2 ( $C_{CO2}$ ) shall be determined from the measuring instrument readings or recordings, by use of appropriate calibration curves. The results have to be corrected according to paragraph 8.2.
- 8. <u>Analysis of results</u>
- 8.1. Type I tests
- 8.1.1. Exhaust emission and fuel consumption analysis
- 8.1.1.1. Analysis of the samples contained in the bags

The analysis shall begin as soon as possible, and in any event not later than 20 minutes after the end of the tests, in order to determine:

- the concentrations of hydrocarbons, carbon monoxide, nitrogen oxides and carbon dioxide in the sample of dilution air contained in bag(s) B;
- the concentrations of hydrocarbons, carbon monoxide, nitrogen oxides and carbon dioxide in the sample of diluted exhaust gases contained in bag(s) A.
- 8.1.1.2. Calibration of analysers and concentration results

The analysis of the results has to be carried out in the following steps:

- (a) Prior to each sample analysis the analyser range to be used for each pollutant must be set to zero with the appropriate zero gas.
- (b) The analysers are then set to the calibration curves by means of span gases of nominal concentrations of 70 per cent to 100 per cent of the range.
- (c) The analysers' zeros are then rechecked. If the reading differs by more than 2 per cent of range from that set in b), the procedure is repeated.
- (d) The samples are then analysed.
- (e) After the analysis, zero and span points are rechecked using the same gases. If these rechecks are within 2 per cent of those in c), the analysis is considered acceptable.
- (f) At all points in this section the flow-rates and pressures of the various gases must be the same as those used during calibration of the analysers.
- (g) The figure adopted for the concentration of each pollutant measured in the gases is that read off after stabilisation on the measuring device.
- 8.1.1.3. Measuring the distance covered

The distance actually covered for a test part shall be arrived at by multiplying the number of revolutions read from the cumulative counter (see paragraph 7.2.7.) by the circumference of the roller. This distance shall be measured in km.

8.1.1.4. Determination of the quantity of gas emitted

The reported test results shall be computed for each test and each cycle part by use of the following formulas. The results of all emission tests shall be rounded, using the "Rounding-Off Method" specified in ASTM E 29-67, to the number of places to the right of the decimal point indicated by expressing the applicable standard to three significant figures.

8.1.1.4.1. Total volume of diluted gas

The total volume of diluted gas, expressed in  $m^3$ /cycle part, adjusted to the reference conditions of 20 °C (293 K) and 101.3 kPa is calculated by

$$V = \frac{293.15 \times V_0 \times N \times (P_a - P_i)}{101.325 \times (T_P + 273.15)}$$
 Equation 8-1

- $V_0$  is the volume of gas displaced by pump P during one revolution, expressed in m<sup>3</sup>/revolution. This volume is a function of the differences between the intake and output sections of the pump,
- N is the number of revolutions made by pump P during each part of the test;
- Pa is the ambient pressure in kPa;
- P<sub>i</sub> is the average under-pressure during the test part in the intake section of pump P, expressed in kPa;
- $T_{p}$  is the temperature of the diluted gases during the test part in °C, measured in the intake section of pump P.

### 8.1.1.4.2. Hydrocarbons

The mass of unburned hydrocarbons emitted by the vehicle's exhaust during the test shall be calculated by means of the following formula:

$$HC_{\rm m} = \frac{HC_{\rm c} \times V \times dHC}{dist \times 10^6}$$
 Equation 8-2

where:

HCm is the mass of hydrocarbons emitted during the test part, in g/km

- dist is the distance defined in paragraph 8.1.1.3. above;
- V is the total volume, defined in paragraph 8.1.1.4.1.,
- dHC is the density of the hydrocarbons at a temperature of 20 °C and a pressure of 101.3 kPa, where the average carbon/hydrogen ratio is 1:1.85;  $dHC = 0.577 \text{ kg/m}^3$  for gasoline and 0.579 kg/m<sup>3</sup> for diesel fuel,
- HC<sub>c</sub> is the concentration of diluted gases, expressed in parts per million (ppm) of carbon equivalent (e.g. the concentration in propane multiplied by 3), corrected to take account of the dilution air by the following equation:

$$HC_{\rm c} = HC_{\rm e} - HC_{\rm d} \times (1 - \frac{1}{DF})$$

Equation 8-3

where:

- HCe is the concentration of hydrocarbons expressed in parts per million (ppm) of carbon equivalent, in the sample of diluted gases collected in bag(s) A,
- HCd is the concentration of hydrocarbons expressed in parts per million (ppm) of carbon equivalent, in the sample of dilution air collected in bag(s) B,
- DF is the coefficient defined in paragraph 8.1.1.4.6. below.

### 8.1.1.4.3. Carbon monoxide

The mass of carbon monoxide emitted by the vehicle's exhaust during the test shall be calculated by means of the following formula:

$$CO_m = \frac{CO_c \times V \times dCO}{dist \times 10^6}$$
 Equation 8-4

 $\mathrm{CO}_{\mathrm{m}}$  is the mass of carbon monoxide emitted during the test part, in g/km

dist is the distance defined in paragraph 8.1.1.3.,

- V is the total volume defined in paragraph 8.1.1.4.1.,
- dCO is the density of the carbon monoxide at a temperature of 20 °C and a pressure of 101.3 kPa,  $dCO = 1.16 \text{ kg/m}^3$ ,
- CO<sub>c</sub> s the concentration of diluted gases, expressed in parts per million (ppm) of carbon monoxide, corrected to take account of the dilution air by the following equation:

$$CO_c = CO_e - CO_d \times (1 - \frac{1}{DF})$$
 Equation 8-5

where:

- CO<sub>e</sub> is the concentration of carbon monoxide expressed in parts per million (ppm), in the sample of diluted gases collected in bag(s) A,
- CO<sub>d</sub> is the concentration of carbon monoxide expressed in parts per million (ppm), in the sample of dilution air collected in bag(s) B,
- DF is the coefficient defined in paragraph 8.1.1.4.6. below.

#### 8.1.1.4.4. Nitrogen oxides

The mass of nitrogen oxides emitted by the vehicle's exhaust during the test shall be calculated by means of the following formula:

$$NO_{xm} = \frac{NO_{xc} \times K_h \times V \times dNO_2}{dist \times 10^6}$$
Equation 8-6

where:

NO<sub>xm</sub> is the mass of nitrogen oxides emitted during the test part, in g/km

dist is the distance defined in paragraph 8.1.1.3.,

V is the total volume defined in paragraph 8.1.1.4.1.,

- dNO<sub>2</sub> is the density of the nitrogen oxides in the exhaust gases, assuming that they will be in the form of nitric oxide, at a temperature of 20 °C and a pressure of 101.3 kPa,  $dNO_2 = 1.91 \text{ kg/m}^3$ ,
- NO<sub>XC</sub> is the concentration of diluted gases, expressed in parts per million (ppm), corrected to take account of the dilution air by the following equation:

$$NO_{xc} = NO_{xe} - NO_{xd} \times (1 - \frac{1}{DF})$$

Equation 8-7

- NO<sub>xe</sub> is the concentration of nitrogen oxides expressed in parts per million (ppm) of nitrogen oxides, in the sample of diluted gases collected in bag(s) A,
- NO<sub>xd</sub> is the concentration of nitrogen oxides expressed in parts per million (ppm) of nitrogen oxides, in the sample of dilution air collected in bag(s) B,
- DF is the coefficient defined in paragraph 0 below,
- K<sub>h</sub> is the humidity correction factor, calculated by the following formula:

$$K_h = \frac{1}{1 - 0.0329 \times (H - 10.7)}$$

Equation 8-8

Equation 8-9

Equation 8-11

where:

H is the absolute humidity in g of water per kg of dry air:

$$H = \frac{6.211 \times U \times P_d}{P_a - P_d \times \frac{U}{100}}$$

where:

- U is the humidity in per cent,
- Pd is the saturated pressure of water at the test temperature, in kPa,
- P<sub>a</sub> is the atmospheric pressure in kPa.

#### 8.1.1.4.5. Carbon dioxide

The mass of carbon dioxide emitted by the vehicle's exhaust during the test shall be calculated by means of the following formula:

$$CO_{2m} = \frac{CO_{2c} \times V \times dCO_2}{dist \times 10^2}$$
 Equation 8-10

where:

- $CO_{2m}$  is the mass of carbon dioxide emitted during the test part, in g/km
- dist is the distance defined in paragraph 8.1.1.3.,
- V is the total volume defined in paragraph 8.1.1.4.1.,
- $dCO_2$  is the density of the carbon dioxide at a temperature of 20 °C and a pressure of 101.3 kPa,  $dCO_2 = 1.83 \text{ kg/m}^3$ ,
- $CO_{2c}$  is the concentration of diluted gases, expressed in per cent carbon dioxide equivalent, corrected to take account of the dilution air by the following equation:

$$\mathrm{CO}_{2c} = \mathrm{CO}_{2e} - \mathrm{CO}_{2d} \times (1 - \frac{1}{\mathrm{DF}})$$

where:

CO<sub>2e</sub> is the concentration of carbon dioxide expressed in per cent, in the sample of diluted gases collected in bag(s) A,

- CO<sub>2d</sub> is the concentration of carbon dioxide expressed in per cent, in the sample of dilution air collected in bag(s) B,
- DF is the coefficient defined in paragraph 8.1.1.4.6. below.
- 8.1.1.4.6. Dilution factor DF

The dilution factor DF (in per cent vol.) is a coefficient expressed for gasoline by the formula

$$DF = \frac{13.4}{CO_2 + (CO + HC) \times 10^{-4}}$$
 Equation 8-12

The dilution factor DF (in vol-%) is a coefficient expressed for diesel fuel by the formula

$$DF = \frac{13.28}{CO_2 + (CO + HC) \times 10^{-4}}$$
 Equation 8-13

where:

CO,  $CO_2$  and HC are the concentrations of carbon monoxide and hydrocarbons, expressed in parts per million (ppm) and carbon dioxide, expressed in per cent, in the sample of diluted gases contained in bag(s) A.

8.1.1.5. Fuel consumption calculation

The fuel consumption, expressed in litres per 100 km is calculated by means of the following formulae:

8.1.1.5.1. Test vehicles (motorcycles) with a positive ignition engine fuelled with petrol

FC = 
$$\frac{0.1155}{D} \times (0.866 \times HC + 0.429 \times CO + 0.273 \times CO_2)$$
 Equation 8-14

where:

- FC is the fuel consumption in litre/100 km
- HC is the measured emission of hydrocarbons in g/km
- CO is the measured emission of carbon monoxide in g/km
- $CO_2$  is the measured emission of carbon dioxide in g/km
- D is the density of the test fuel in kg/litre. In the case of gaseous fuels this is the density at 20 °C.
- 8.1.1.5.2 Test vehicles (motorcycles) with a compression ignition engine

$$FC = \frac{0.1160}{D} \times (0.862 \times HC + 0.429 \times CO + 0.273 \times CO_2)$$
 Equation 8-15

- FC is the fuel consumption in litre/100 km
- HC is the measured emission of hydrocarbons in g/km
- CO is the measured emission of carbon monoxide in g/km
- CO<sub>2</sub> is the measured emission of carbon dioxide in g/km
- D is the density of the test fuel in kg/litre. In the case of gaseous fuels this is the density at 20 °C.
- 8.1.1.6. Weighting of results
- 8.1.1.6.1. In case of repeated measurements (see paragraph 7.1.1.1.) the emission results in g/km and the fuel consumption in litre/100 km obtained by the calculation method described in paragraph 8.1.1. are averaged for each cycle part.
- 8.1.1.6.2. The (average) result of part 1 or part 1 reduced speed is named R1, the (average) result of part 2 or part 2 reduced speed is named R2 and the (average) result of part 3 or part 3 reduced speed is named R3. Using these emission results in g/km and the fuel consumption in litre/100 km; the final result R, depending on the vehicle class as defined in paragraph 6.3., shall be calculated by means of the following equation:

Class 1 
$$R = R_1 \times w_1 + R_{1 hot} \times w_{1 hot}$$
  
Class 2 
$$R = R_1 \times w_1 + R_2 \times w_2$$
  
Class 3 
$$R = R_1 \times w_1 + R_2 \times w_2 + R_3 \times w_3$$
  
Equation 8-16

8.1.1.6.3. For each pollutant, the carbon dioxide emission and the fuel consumption the weightings shown in table 8-1 shall be used.

| Vehicle class | Cycle        | Weighting             |             |  |
|---------------|--------------|-----------------------|-------------|--|
| Class 1       | Part 1, cold | <b>W</b> <sub>1</sub> | 50 per cent |  |
|               | Part 1, hot  | W <sub>1hot</sub>     | 50 per cent |  |
| Class 2       | Part 1, cold | <b>W</b> <sub>1</sub> | 30 per cent |  |
|               | Part 2, hot  | W2                    | 70 per cent |  |
|               | Part 1, cold | <b>W</b> <sub>1</sub> | 25 per cent |  |
| Class 3       | Part 2, hot  | W2                    | 50 per cent |  |
|               | Part 3, hot  | W3                    | 25 per cent |  |

- 8.2. Type II tests
- 8.2.1. The corrected concentration for carbon monoxide (C<sub>COcorr</sub> in per cent vol.) calculated by the following equations:

8.2.1.1. For two stroke engines:

$$C_{COcorr} = 10 \times \frac{C_{CO}}{C_{CO} + C_{CO_2}}$$
Equation 8-17

8.2.1.2. For four stroke engines:

$$C_{COcorr} = 15 \times \frac{C_{CO}}{C_{CO} + C_{CO_2}}$$
Equation 8-18

8.2.2. The concentration in C<sub>CO</sub> measured according to paragraph 7.3.2. need not be corrected if the total of the concentrations measured ( $C_{CO} + C_{CO_2}$ ) is at least 10 for two-stroke engines and 15 for four-stroke engines.

#### 9. <u>Records required</u>

The following information shall be recorded with respect to each test:

- (a) Test number,
- (b) System or device tested (brief description),
- (c) Date and time of day for each part of the test schedule,
- (d) Instrument operator,
- (e) Driver or operator,
- (f) Test vehicle: make, vehicle identification number, model year, transmission type, odometer reading at initiation of preconditioning, engine displacement, engine family, emission control system, recommended engine speed at idle, nominal fuel tank capacity, inertial loading, actual curb mass recorded at 0 kilometre, and drive wheel tyre pressure.
- (g) Dynamometer serial number: as an alternative to recording the dynamometer serial number, a reference to a vehicle test cell number may be used, with the advance approval of the Administration, provided the test cell records show the pertinent instrument information.
- (h) All pertinent instrument information such as tuning-gain-serial numberdetector number-range. As an alternative, a reference to a vehicle test cell number may be used, with the advance approval of the Administration, provided test cell calibration records show the pertinent instrument information.
- (i) Recorder charts: Identify zero, span, exhaust gas, and dilution air sample traces.
- (j) Test cell barometric pressure, ambient temperature and humidity.
- Note 7 A central laboratory barometer may be used; provided, that individual test cell barometric pressures are shown to be within  $\pm 0.1$  per cent of the barometric pressure at the central barometer location.
- (k) Pressure of the mixture of exhaust and dilution air entering the CVS metering device, the pressure increase across the device, and the temperature at the inlet.

The temperature should be recorded continuously or digitally to determine temperature variations.

- (1) The number of revolutions of the positive displacement pump accumulated during each test phase while exhaust samples are being collected. The number of standard cubic meters metered by a critical flow venturi (CFV) during each test phase would be the equivalent record for a CFV-CVS.
- (m) The humidity of the dilution air.
- <u>Note 8</u> If conditioning columns are not used this measurement can be deleted. If the conditioning columns are used and the dilution air is taken from the test cell, the ambient humidity can be used for this measurement.
- (n) The driving distance for each part of the test, calculated from the measured roll or shaft revolutions.
- (o) The actual roller speed pattern of the test.
- (p) The gear use schedule of the test.
- (q) The emissions results of the Type I test for each part of the test (see Annex 11).
- (r) The second by second emission values of the Type I tests, if necessary.
- (s) The emissions results of the Type II test (see Annex 12).

ECE/TRANS/180/Add.2 page 46 Annex 1

# Annex 1

# SYMBOLS USED

| Symbol               | Definition                                                                              | Unit              |
|----------------------|-----------------------------------------------------------------------------------------|-------------------|
| а                    | Coefficient of polygonal function                                                       | -                 |
| aT                   | Rolling resistance force of front wheel                                                 | Ν                 |
| b                    | Coefficient of polygonal function                                                       | -                 |
| bT                   | Coefficient of aerodynamic function                                                     | N/(km/h)2         |
| с                    | Coefficient of polygonal function                                                       | -                 |
| CCO                  | Concentration of carbon monoxide                                                        | per cent vol.     |
| C <sub>CO</sub> corr | Corrected concentration of carbon monoxide                                              | per cent vol.     |
| CO <sub>2 c</sub>    | Carbon dioxide concentration of diluted gas, corrected to take account of diluents air  | per cent          |
| CO <sub>2 d</sub>    | Carbon dioxide concentration in the sample of diluents air corrected to in bag B        | per cent          |
| CO <sub>2 e</sub>    | Carbon dioxide concentration in the sample of diluents air corrected to in bag A        | per cent          |
| CO <sub>2 m</sub>    | Mass of carbon dioxide emitted during the test part                                     | g/km              |
| COc                  | Carbon monoxide concentration of diluted gas, corrected to take account of diluents air | ppm               |
| COd                  | Carbon monoxide concentration in the sample of diluents air, corrected to in bag B      | ppm               |
| COe                  | Carbon monoxide concentration in the sample of diluents air, corrected to in bag A      | ppm               |
| COm                  | Mass of carbon dioxide emitted during the test part                                     | g/km              |
| d0                   | Standard ambient relative air density                                                   | -                 |
| dCO                  | Density of carbon monoxide                                                              | kg/m <sup>3</sup> |
| d <sub>CO2</sub>     | Density of carbon dioxide                                                               | kg/m <sup>3</sup> |
| DF                   | Dilution factor                                                                         | -                 |
| dHC                  | Density of hydrocarbon                                                                  | kg/m <sup>3</sup> |
| dist                 | Distance driven in a cycle part                                                         | km                |
| d <sub>NOX</sub>     | Density of nitrogen oxide                                                               | kg/m <sup>3</sup> |
| dT                   | Relative air density under test condition                                               | -                 |
| Δt                   | Coast down time                                                                         | S                 |
| Δt <sub>a</sub> i    | Coast down time measured the first road test                                            | S                 |
| Δth i                | Coast down time measured the second road test                                           | S                 |
| ΔΤΕ                  | Corrected coast down time for the inertia mass (mT+ mrf)                                | S                 |
| ΔtE                  | Mean coast down time on the chassis dynamometer at the reference speed                  | S                 |
| ΔTi                  | Average coast down time at specified speed                                              | S                 |
| Δti                  | Coast down time corresponding speed                                                     | S                 |
| ΔΤί                  | Average coast down time at specified speed                                              | S                 |

# ECE/TRANS/180/Add.2 page 47 Annex 1

| Symbol                | Definition                                                                                                            | Unit      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|
| ΔTroad                | Target coast down time                                                                                                | S         |
| $\overline{\Delta t}$ | Mean coast down time on the chassis dynamometer without absorption                                                    | S         |
| Δv                    | Coast down speed interval $(2\Delta v = v_1 - v_2)$                                                                   | km/h      |
| 3                     | Chassis dynamometer setting error                                                                                     | per cent  |
| F                     | Running resistance force                                                                                              | N         |
| $F^*$                 | Target running resistance force                                                                                       | Ν         |
| F*(v0)                | Target running resistance force at reference speed on chassis dynamometer                                             | Ν         |
| F*(vi)                | Target running resistance force at specified speed on chassis dynamometer                                             | Ν         |
| f*0                   | Corrected rolling resistance in the standard ambient condition                                                        | Ν         |
| f*2                   | Corrected coefficient of aerodynamic drag in the standard ambient condition                                           | N/(km/h)2 |
| F*i                   | Target running resistance force at specified speed                                                                    | Ν         |
| f 0                   | Rolling resistance                                                                                                    | Ν         |
| f 2                   | Coefficient of aerodynamic drag                                                                                       | N/(km/h)2 |
| FE                    | Set running resistance force on the chassis dynamometer                                                               | N         |
| FE(v0)                | Set running resistance force at the reference speed on the chassis dynamometer                                        | Ν         |
| FE(v2)                | Set running resistance force at the specified speed on the chassis dynamometer                                        | Ν         |
| F f                   | Total friction loss                                                                                                   | Ν         |
| Ff(v0)                | Total friction loss at the reference speed                                                                            | Ν         |
| Fj                    | Running resistance force                                                                                              | Ν         |
| Fj(v0)                | Running resistance force at the reference speed                                                                       | Ν         |
| Fpau                  | Braking force of the power absorbing unit                                                                             | Ν         |
| Fpau(v0)              | Braking force of the power absorbing unit at the reference speed                                                      | Ν         |
| Fpau(vj)              | Braking force of the power absorbing unit at the specified speed                                                      | Ν         |
| FT                    | Running resistance force obtained from the running resistance table                                                   | Ν         |
| Н                     | Absolute humidity                                                                                                     | g/km      |
| HCc                   | Concentration of diluted gases expressed in the carbon equivalent, corrected to take account of diluents air          | ppm       |
| HCd                   | Concentration of hydrocarbons expressed in the carbon equivalent, in the sample of diluents air corrected to in bag B | ppm       |
| HCe                   | Concentration of hydrocarbons expressed in the carbon equivalent, in the sample of diluents air corrected to in bag A | ppm       |
| HCm                   | Mass of hydrocarbon emitted during the test part                                                                      | g/km      |
| K0                    | Temperature correction factor for rolling resistance                                                                  | -         |
| Kh                    | Humidity correction factor                                                                                            | -         |
| L                     | Limit values of gaseous emission                                                                                      | g/km      |
| m                     | Test motorcycle mass                                                                                                  | kg        |
| ma                    | Actual mass of the test motorcycle                                                                                    | kg        |

| Symbol               | Definition                                                                                                               | Unit             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|
| $m_{\rm fi}$         | Flywheel equivalent inertia mass                                                                                         | kg               |
| mi                   | Equivalent inertia mass                                                                                                  | kg               |
| mk                   | Unladen mass of the vehicle (motorcycle)                                                                                 | kg               |
| m <sub>r</sub>       | Equivalent inertia mass of all the wheel                                                                                 | kg               |
| m <sub>ri</sub>      | Equivalent inertia mass of all the rear wheel and motorcycle parts rotating with wheel                                   | kg               |
| m <sub>ref</sub>     | Mass in running order of the vehicle (motorcycle)                                                                        | kg               |
| m <sub>rf</sub>      | Rotating mass of the front wheel                                                                                         | kg               |
| mrid                 | Rider mass                                                                                                               | kg               |
| n                    | Engine speed                                                                                                             | min-1            |
| n                    | Number of data regarding the emission or the test                                                                        | -                |
| N                    | Number of revolution made by pump P                                                                                      | -                |
| ng                   | Number of foreward gears                                                                                                 | -                |
| nidle                | Idling speed                                                                                                             | min-1            |
| $n_max\_acc(1)$      | Upshift speed from 1 to 2 gear during acceleration phases                                                                | min-1            |
| n_max_acc(i)         | Upshift speed from i to i+1 gear during acceleration phases, i>1                                                         | min-1            |
| <i>n_min_acc</i> (i) | Minimum engine speed for cruising or deceleration in gear 1                                                              | min-1            |
| NO <sub>XC</sub>     | Nitrogen oxides concentration of diluted gases, corrected to take account of diluents air                                | ppm              |
| NO <sub>xd</sub>     | Nitrogen oxides concentration in the sample of diluents air corrected<br>to in bag B                                     | ppm              |
| NO <sub>xe</sub>     | Nitrogen oxides concentration in the sample of diluents air corrected<br>to in bag A                                     | ppm              |
| NO <sub>xm</sub>     | Mass of nitrogen oxides emitted during the test part                                                                     | g/km             |
| P0                   | Standard ambient pressure                                                                                                | kPa              |
| Pa                   | Ambient/Atmospheric pressure                                                                                             | kPa              |
| Pd                   | Saturated pressure of water at the test temperature                                                                      | kPa              |
| Pi                   | Average under-pressure during the test part in the section of pump P                                                     | kPa              |
| Pn                   | Rated engine power                                                                                                       | kW               |
| PT                   | Mean ambient pressure during the test                                                                                    | kPa              |
| ρ0                   | Standard relative ambient air volumetric mass                                                                            | kg/m3            |
| r(i)                 | Gear ratio in the gear i                                                                                                 | -                |
| R                    | Final test result of pollutant emissions, carbon dioxide or fuel consumption                                             | g/km,<br>1/100km |
| R1                   | Test results of pollutant emissions, carbon dioxide emission or fuel consumption for cycle part 1 with cold start.       | g/km,<br>1/100km |
| R1 hot               | Test results of pollutant emissions, carbon dioxide emission or fuel<br>consumption for cycle part 2 with hot condition  | g/km,<br>1/100km |
| R2                   | Test results of pollutant emissions, carbon dioxide emission or fuel<br>consumption for cycle part 3 with hot condition  | g/km,<br>1/100km |
| R3                   | Test results of pollutant emissions, carbon dioxide emission or fuel<br>consumption for cycle part 1 with hot condition. | g/km,<br>1/100km |

ECE/TRANS/180/Add.2 page 49 Annex 1

| Symbol           | Definition                                                                                      | Unit     |
|------------------|-------------------------------------------------------------------------------------------------|----------|
| Ri1              | First Type I test results of pollutant emissions                                                | g/km     |
| Ri2              | Second Type I test results of pollutant emissions                                               | g/km     |
| Ri3              | Third Type I test results of pollutant emissions                                                | g/km     |
| S                | Rated engine speed                                                                              | min-1    |
| TC               | Temperature of the coolant                                                                      | °C       |
| OT               | Temperature of the engine oil                                                                   | °C       |
| ТР               | Temperature of the spark plug seat/gasket                                                       | °C       |
| T0               | Standard ambient temperature                                                                    | K        |
| Тр               | Temperature of the diluted gases during the test part, measured in the intake section of pump P | °C       |
| T <sub>T</sub>   | Mean ambient temperature during the test                                                        | K        |
| U                | humidity                                                                                        | per cent |
| v                | Specified speed                                                                                 |          |
| V                | Total volume of diluted gas                                                                     | m3       |
| V <sub>max</sub> | Maximum speed of test vehicle (motorcycle)                                                      | km/h     |
| v0               | Reference speed                                                                                 | km/h     |
| V0               | Volume of gas displaced by pump P during one revolution                                         | m3/rev.  |
| v1               | Speed at which the measurement of the coast down time begins                                    | km/h     |
| v2               | Speed at which the measurement of the coast down time ends                                      | km/h     |
| vi               | Specified speed which are selected for the coast down time measurement.                         | km/h     |
| w1               | Weighting factor of cycle part 1 with cold start                                                | -        |
| w1 hot           | Weighting factor of cycle part 1 with hot condition                                             | -        |
| w2               | Weighting factor of cycle part 2 with hot condition                                             | -        |
| w3               | Weighting factor of cycle part 3 with hot condition                                             | -        |

#### Annex 2

#### A2.1. TECHNICAL DATA OF THE REFERENCE FUEL TO BE USED FOR TESTING VEHICLES EQUIPPED WITH POSITIVE IGNITION ENGINES (UNLEADED PETROL PROPERTIES)

|                             | Unit            | Limits (1) |         | Test method         |             |
|-----------------------------|-----------------|------------|---------|---------------------|-------------|
| Parameter                   |                 | Minimum    | Maximum | Test method         | Publication |
| Research octane number, RON |                 | 95.0       |         | EN 25164            | 1993        |
| Motor octane number, MON    |                 | 85.0       |         | EN 25163            | 1993        |
| Density at 15 °C            | kg/m3           | 748        | 762     | ISO 3675            | 1995        |
| Reid vapour pressure        | kPa             | 56.0       | 60.0    | EN 12               | 1993        |
| Distillation:               |                 |            |         |                     |             |
| - initial boiling point     | °C              | 24         | 40      | EN-ISO 3205         | 1988        |
| - evaporated at 100 °C      | per cent $v/v$  | 49.0       | 57.0    | EN-ISO 3205         | 1988        |
| - evaporated at 150 °C      | per cent v/v    | 81.0       | 87.0    | EN-ISO 3205         | 1988        |
| - final boiling point       | °C              | 190        | 215     | EN-ISO 3205         | 1988        |
| Residue                     | per cent        |            | 2       | EN-ISO 3205         | 1988        |
| Hydrocarbon analysis:       |                 |            |         |                     |             |
| - olefins                   | per cent $v/v$  |            | 10      | ASTM D 1319         | 1995        |
| - aromatics(3)              | per cent $v/v$  | 28.0       | 40.0    | ASTM D 1319         | 1995        |
| - benzene                   | per cent v/v    |            | 1.0     | pr. EN 12177        | 1998 (2)    |
| - saturates                 | per cent $v/v$  |            | balance | ASTM D 1319         | 1995        |
| Carbon/hydrogen ratio       |                 | report     | report  |                     |             |
| Oxidation stability (4)     | min.            | 480        |         | EN-ISO 7536         | 1996        |
| Oxygen content (5)          | per cent<br>m/m |            | 2.3     | EN 1601             | 1997 (2)    |
| Existent gum                | mg/ml           |            | 0.04    | EN-ISO 6246         | 1997 (2)    |
| Sulphur content (6)         | mg/kg           |            | 100     | pr.EN-ISO/DIS 14596 | 1998 (2)    |
| Copper corrosion at 50 °C   |                 |            | 1       | EN-ISO 2160         | 1995        |
| Lead content                | g/l             |            | 0.005   | EN 237              | 1996        |
| Phosphorus content          | g/l             |            | 0.0013  | ASTM D 3231         | 1994        |

(1) The values quoted in the specification are "true values". In establishment of their limit values the terms of ISO 4259 "Petroleum products - Determination and application of precision data in relation to methods of test,' have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

Notwithstanding this measure, which is necessary for statistical reasons, the manufacturer of fuels should nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify the question as to whether a fuel meets the requirements of the specifications, the terms of ISO 4259 should be applied.

- (2) The month of publication will be completed in due course.
- (3) The reference fuel used shall have a maximum aromatics content of 35 per cent v/v.
- (4) The fuel may contain oxidation inhibitors and metal deactivators normally used to stabilise refinery gasoline streams, but detergent/dispersive additives and solvent oils shall not be added.
- (5) The actual oxygen content of the fuel for the tests shall be reported. In addition the maximum oxygen content of the reference fuel shall be 2.3 per cent.
- (6) The actual sulphur content of the fuel used for the tests shall be reported. In addition the reference fuel shall have a maximum sulphur content of 50 ppm.

#### ECE/TRANS/180/Add.2 page 51 Annex 2

# A2.2. TECHNICAL DATA OF THE REFERENCE FUEL TO BE USED FOR TESTING VEHICLES EQUIPPED WITH DIESEL ENGINES (DIESEL FUEL PROPERTIES)

| Deremeter                                 | Unit               | Limits (1) |         | Test method          | Dublication |  |
|-------------------------------------------|--------------------|------------|---------|----------------------|-------------|--|
| rarameter                                 | Unit               | Minimum    | Maximum | Test method          | 1 uoncation |  |
| Cetane number (2)                         |                    | 52.0       | 54.0    | EN-ISO 5165          | 1998 (3)    |  |
| Density at 15°C                           | kg/m <sup>3</sup>  | 833        | 837     | EN-ISO 3675          | 1995        |  |
| Distillation:                             |                    |            |         |                      |             |  |
| - 50 per cent point                       | °C                 | 245        | -       | EN-ISO 3405          | 1988        |  |
| - 95 per cent                             | °C                 | 345        | 350     | EN-ISO 3405          | 1988        |  |
| - final boiling point                     | °C                 | -          | 370     | EN-ISO 3405          | 1988        |  |
| Flash point                               | °C                 | 55         | -       | EN 22719             | 1993        |  |
| CFPP                                      | °C                 | -          | -5      | EN 116               | 1981        |  |
| Viscosity at 40 °C                        | mm <sup>2</sup> /s | 2.5        | 3.5     | EN-ISO 3104          | 1996        |  |
| Polycyclic aromatic hydrocarbons          | per cent m/m       | 3          | 6.0     | IP 391               | 1995        |  |
| Sulphur content (4)                       | mg/kg              | -          | 300     | pr. EN-ISO/DIS 14596 | 1998(3)     |  |
| Copper corrosion                          |                    | -          | 1       | EN-ISO 2160          | 1995        |  |
| Conradson carbon residue (10 per cent DR) | per cent m/m       | -          | 0.2     | EN-ISO 10370         | 1995        |  |
| Ash content                               | per cent m/m       | -          | 0.01    | EN-ISO 6245          | 1995        |  |
| Water content                             | per cent m/m       | -          | 0.05    | EN-ISO 12937         | 1998 (3)    |  |
| Neutralisation (strong acid) number       | mg KOH/g           | -          | 0.02    | ASTM D 974-95        | 1998 (3)    |  |
| Oxidation stability (5)                   | mg/ml              | -          | 0.025   | EN-ISO 12205         | 1996        |  |

(1) The values quoted in the specification are "true values". In establishment of their limit values the terms of ISO 4259 "Petroleum products - Determination and application of precision data in relation to methods of test" have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

Notwithstanding this measure, which is necessary for statistical reasons, the manufacturer of fuels should nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify the question as to whether a fuel meets the requirements of the specifications, the terms of ISO 4259 should be applied.

- (2) The range for the cetane number is not in accordance with the requirement of a minimum range of 4R. However, in the case of a dispute between fuel supplier and fuel user, the terms in ISO 4259 may be used to resolve such disputes provided replicate measurements, of sufficient number to archive the necessary precision, are made in preference to single determinations.
- (3) The month of publication will be completed in due course.
- (4) The actual sulphur content of the fuel used for the Type I test shall be reported. In addition the reference fuel shall have a maximum sulphur content of 50 ppm.
- (5) Even though oxidation stability is controlled, it is likely that shelf life will be limited. Advice should be sought from the supplier as to storage conditions and life.

# Annex 3

# CLASSIFICATION OF EQUIVALENT INERTIA MASS AND RUNNING RESISTANCE

| Mass in running         | Equivalent | Rolling resistance of front wheel a | Aero drag coefficient b  |
|-------------------------|------------|-------------------------------------|--------------------------|
| in kg                   | in kg      | in N                                | in N/(km/h) <sup>2</sup> |
| $95 < m_{ref} \le 105$  | 100        | 8.8                                 | 0.0215                   |
| $105 < m_{ref} \le 115$ | 110        | 9.7                                 | 0.0217                   |
| $115 < m_{ref} \le 125$ | 120        | 10.6                                | 0.0218                   |
| $125 < m_{ref} \le 135$ | 130        | 11.4                                | 0.0220                   |
| $135 < m_{ref} \le 145$ | 140        | 12.3                                | 0.0221                   |
| $145 < m_{ref} \le 155$ | 150        | 13.2                                | 0.0223                   |
| $155 < m_{ref} \le 165$ | 160        | 14.1                                | 0.0224                   |
| $165 < m_{ref} \le 175$ | 170        | 15.0                                | 0.0226                   |
| $175 < m_{ref} \le 185$ | 180        | 15.8                                | 0.0227                   |
| $185 < m_{ref} \le 195$ | 190        | 16.7                                | 0.0229                   |
| $195 < m_{ref} \le 205$ | 200        | 17.6                                | 0.0230                   |
| $205 < m_{ref} \le 215$ | 210        | 18.5                                | 0.0232                   |
| $215 < m_{ref} \le 225$ | 220        | 19.4                                | 0.0233                   |
| $225 < m_{ref} \le 235$ | 230        | 20.2                                | 0.0235                   |
| $235 < m_{ref} \le 245$ | 240        | 21.1                                | 0.0236                   |
| $245 < m_{ref} \le 255$ | 250        | 22.0                                | 0.0238                   |
| $255 < m_{ref} \le 265$ | 260        | 22.9                                | 0.0239                   |
| $265 < m_{ref} \le 275$ | 270        | 23.8                                | 0.0241                   |
| $275 < m_{ref} \le 285$ | 280        | 24.6                                | 0.0242                   |
| $285 < m_{ref} \le 295$ | 290        | 25.5                                | 0.0244                   |
| $295 < m_{ref} \le 305$ | 300        | 26.4                                | 0.0245                   |
| $305 < m_{ref} \le 315$ | 310        | 27.3                                | 0.0247                   |
| $315 < m_{ref} \le 325$ | 320        | 28.2                                | 0.0248                   |
| $325 < m_{ref} \le 335$ | 330        | 29.0                                | 0.0250                   |
| $335 < m_{ref} \le 345$ | 340        | 29.9                                | 0.0251                   |
| $345 < m_{ref} \le 355$ | 350        | 30.8                                | 0.0253                   |

ECE/TRANS/180/Add.2 page 53 Annex 3

# CLASSIFICATION OF EQUIVALENT INERTIA MASS AND RUNNING RESISTANCE (CONTINUED)

| Mass in running         | Equivalent                  | Rolling resistance of front wheel a    | Aero drag coefficient b      |
|-------------------------|-----------------------------|----------------------------------------|------------------------------|
| order m <sub>ref</sub>  | inertia mass m <sub>i</sub> |                                        |                              |
| in kg                   | in kg                       | in N                                   | in N/(km/h) <sup>2</sup>     |
| $355 < m_{ref} \le 365$ | 360                         | 31.7                                   | 0.0254                       |
| $365 < m_{ref} \le 375$ | 370                         | 32.6                                   | 0.0256                       |
| $375 < m_{ref} \le 385$ | 380                         | 33.4                                   | 0.0257                       |
| $385 < m_{ref} \le 395$ | 390                         | 34.3                                   | 0.0259                       |
| $395 < m_{ref} \le 405$ | 400                         | 35.2                                   | 0.0260                       |
| $405 < m_{ref} \le 415$ | 410                         | 36.1                                   | 0.0262                       |
| $415 < m_{ref} \le 425$ | 420                         | 37.0                                   | 0.0263                       |
| $425 < m_{ref} \le 435$ | 430                         | 37.8                                   | 0.0265                       |
| $435 < m_{ref} \le 445$ | 440                         | 38.7                                   | 0.0266                       |
| $445 < m_{ref} \le 455$ | 450                         | 39.6                                   | 0.0268                       |
| $455 < m_{ref} \le 465$ | 460                         | 40.5                                   | 0.0269                       |
| $465 < m_{ref} \le 475$ | 470                         | 41.4                                   | 0.0271                       |
| $475 < m_{ref} \le 485$ | 480                         | 42.2                                   | 0.0272                       |
| $485 < m_{ref} \le 495$ | 490                         | 43.1                                   | 0.0274                       |
| $495 < m_{ref} \le 505$ | 500                         | 44.0                                   | 0.0275                       |
| At every 10 kg          | At every 10 kg              | $a = 0.088 \times m; */$               | $b = 0.000015 \times m_i + $ |
| At every 10 kg          | At every 10 kg              | a 0.000 × m <u>1_</u> /                | 0.02 <u>**/</u>              |
|                         | <u>*/</u> The value         | shall be rounded to one decimal plac   | e.                           |
|                         | <u>**/</u> The value s      | shall be rounded to four decimal place | es.                          |

### Annex 4

# ESSENTIAL CHARACTERISTICS OF THE ENGINE, THE EMISSION CONTROL SYSTEMS AND INFORMATION CONCERNING THE CONDUCT OF TESTS

| 1.     | General                                                                                 |
|--------|-----------------------------------------------------------------------------------------|
| 1.1.   | Make:                                                                                   |
| 1.2.   | Type (state any possible variants and versions: each variant and each version must      |
|        | be identified by a code consisting of numbers or a combination of letters and numbers): |
| 1.2.1  | Commercial name (where applicable):                                                     |
| 1.2.2. | Vehicle category <u>1</u> /):                                                           |
| 1.3.   | Name and address of manufacturer:                                                       |
| 1.3.1. | Name(s) and address(es) of assembly plants:                                             |
| 1.4    | Name and address of manufacturer's authorised representative, if any:                   |
| 2.     | Masses (in kg) 2/)                                                                      |
| 2.1.   | Unladen mass <u>3</u> /):                                                               |
| 2.2.   | Mass of vehicle in running order4/:                                                     |
| 2.2.1. | Distribution of that mass between the axles:                                            |
| 2.3.   | Mass of vehicle in running order, together with rider 5/:                               |

- $\underline{1}$  Classification in accordance with paragraph 6.3.
- $\frac{\overline{2}}{3}$ / State tolerance(s) 3/ mass of vehicle re

 $\underline{3}$ / mass of vehicle ready for normal use and equipped as follows:

- additional equipment required solely for the normal use under consideration,
  - complete electrical equipment, including the lighting and light-signalling devices supplied by the manufacturer,
  - instruments and devices required by the laws under which the unladen mass of the vehicle has been measured,
  - the appropriate amounts of liquids in order to ensure the proper operation of all parts of the vehicle.
  - the fuel and the fuel/oil mixture are not included in the measurement, but components such as the battery acid, the hydraulic fluid, the coolant and the engine oil must be included.
- $\underline{4}$  unladen mass to which the mass of the following components is added:
  - fuel: tank filled to at least 90 per cent of the capacity stated by the manufacturer,
  - additional equipment normally supplied by the manufacturer in addition to that needed for normal operation (tool kit, luggage carrier, windscreen, protective equipment, etc.).
  - in the case of a vehicle operating with a fuel/oil mixture:
    - (a) when the fuel and oil are pre-mixed the word "fuel" must be interpreted as meaning a pre-mixture of fuel and oil of this type;
    - (b) when the fuel and oil are put in separately the word "fuel" must be interpreted as meaning only the petrol. In this case, the oil is already included in the measurement of the unladen mass.
- 5/ The mass of the rider is taken to be a round figure of 75 kg.

#### ECE/TRANS/180/Add.2 page 55 Annex 4

| 2.3.1.       | Distribution of that mass between the axles:                                         |
|--------------|--------------------------------------------------------------------------------------|
| 2.4.         | Maximum technically permissible mass declared by the manufacturer $\underline{6}/$ : |
| 2.4.1.       | Division of that mass between the axles:                                             |
| 2.4.2.       | Maximum technically permissible mass on each of the axles:                           |
| 3.           | Engine 7/                                                                            |
| 3.1.         | Manufacturer:                                                                        |
| 3.2.         | Make:                                                                                |
| 3.2.1.       | Type (stated on the engine, or other means of identification):                       |
| 3.2.2.       | Location of engine number (if applicable):                                           |
| 3.3.         | Spark- or compression-ignition engine8/                                              |
| 3.3.1.       | Specific characteristics of the engine                                               |
| 3.3.1.1.     | Operating cycle (four or two-stroke, spark or compression ignition) 8/               |
| 3.3.1.2.     | Number, arrangement and firing order of cylinders:                                   |
| 3.3.1.2.1.   | Bore: mm 9/                                                                          |
| 3.3.1.2.2.   | Stroke: $mm \frac{1}{9}$                                                             |
| 3.3.1.3.     | Cylinder capacity: $cm^3 10/$                                                        |
| 3.3.1.4.     | Compression ratio 2/:                                                                |
| 3.3.1.5.     | Drawings of cylinder head, piston(s), piston rings and cylinder(s);                  |
| 3.3.1.6.     | Idling speed 2/: min <sup>-1</sup>                                                   |
| 3.3.1.7.     | Maximum net power output: $kW$ at min <sup>-1</sup>                                  |
| 3.3.1.8.     | Net maximum torque: Nm at min <sup>-1</sup>                                          |
| 3.3.2.       | Fuel: diesel/petrol/mixture/LPG/other 8/                                             |
| 3.3.3.       | Fuel supply                                                                          |
| 3.3.3.1.     | Via carburettor(s): yes/no 8/                                                        |
| 3.3.3.1.1.   | Make(s):                                                                             |
| 3.3.3.1.2.   | Type(s):                                                                             |
| 3.3.3.1.3.   | Number fitted:                                                                       |
| 3.3.3.1.4.   | Settings <u>2</u> /                                                                  |
| i.e. of      |                                                                                      |
| 3.3.3.1.4.1. | Diffusers:                                                                           |
| 3.3.3.1.4.2. | Level in float chamber:                                                              |
| 3.3.3.1.4.3. | Mass of float:                                                                       |
| 3.3.3.1.4.4. | Float needle:                                                                        |
| or           |                                                                                      |
| 3.3.3.1.4.5. | Fuel curve as a function of the airflow and setting required in order to maintain    |
|              | that curve:                                                                          |
| 3.3.3.1.5.   | Cold-starting system: manual/automatic <u>8</u> /                                    |
| 3.3.3.1.5.1. | Operating principle(s):                                                              |

 $<sup>\</sup>underline{6}$ / Mass calculated by the manufacturer for specific operating conditions, taking account of factors such as the strength of the materials, loading capacity of the tyres, etc.

<sup>&</sup>lt;u>7</u>/ Where unconventional engines and systems are fitted, information equivalent to that referred under this heading must be supplied by their manufacturer.

 $<sup>\</sup>underline{8}$ / Delete where inappropriate

 $<sup>\</sup>overline{9}$  This figure should be to the nearest tenth of a millimetre

<sup>10/</sup> This value should be calculated with p = 3.1416 to the nearest cm<sup>3</sup>

# ECE/TRANS/180/Add.2 page 56

| 3.3.3.2.          | By fuel injection (solely in the case of compression ignition): yes/no $\underline{8}$ /                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
| 33322.1.          | Operating principle: direct/indirect/turbulence chamber injection 8/                                                 |
| 3.3.3.2.2.        | Injection nump                                                                                                       |
| 5.5.5.2.5.        | injection pump                                                                                                       |
|                   | $M_{2}$                                                                                                              |
| 3.3.3.2.3.1.      | Make(s):                                                                                                             |
| 3.3.3.2.3.2.      | Type(s):                                                                                                             |
| or                | 2                                                                                                                    |
| 3.3.3.2.3.3.      | Maximum fuel flow rate $\underline{2}$ / mm <sup>3</sup> /per stroke or cycle $\underline{8}$ / at a pump rotational |
|                   | speed of: min <sup>-1</sup> or characteristic diagram:                                                               |
| 3.3.3.2.3.4.      | Injection advance $\underline{2}/$                                                                                   |
| 3.3.3.2.3.5.      | Injection advance curve <u>2</u> /:                                                                                  |
| 3.3.3.2.3.6.      | Calibration procedure: test bench/engine <u>8</u> /                                                                  |
| 3.3.3.2.4.        | Regulator                                                                                                            |
| 3.3.3.2.4.1.      | Туре:                                                                                                                |
| 3.3.3.2.4.2.      | Cut-off point                                                                                                        |
| 3.3.3.2.4.2.1.    | Cut-off point under load: min <sup>-1</sup>                                                                          |
| 3.3.3.2.4.2.2.    | Cut-off point under no load: min <sup>-1</sup>                                                                       |
| 3.3.3.2.4.3.      | Idling speed: min <sup>-1</sup>                                                                                      |
| 3.3.3.2.5.        | Injection pipework                                                                                                   |
| 3.3.3.2.5.1.      | Length: mm                                                                                                           |
| 3.3.3.2.5.2.      | Internal diameter: mm                                                                                                |
| 3 3 3 2 6         | Injector(s)                                                                                                          |
| either            |                                                                                                                      |
| 3 3 3 2 6 1       | Make(s):                                                                                                             |
| 3 3 3 2 6 2       | Type(s).                                                                                                             |
| or                | Typ•(0)                                                                                                              |
| 333263            | Opening pressure $2/$ · kPa or characteristic diagram $2/$ ·                                                         |
| 33327             | Cold starting system (if annlicable)                                                                                 |
| either            | cold starting system (if uppreable)                                                                                  |
| 3 3 3 2 7 1       | Make(s):                                                                                                             |
| 333277            | Type(s):                                                                                                             |
| or                | Type(3)                                                                                                              |
| 333773            | Description:                                                                                                         |
| 3.3.3.2.7.3.      | Secondary starting davice (if applicable)                                                                            |
| 3.3.3.2.0.        | Secondary starting device (II applicable)                                                                            |
|                   | Malza(g):                                                                                                            |
| 3.3.3.2.0.1.      | Tyme(a):                                                                                                             |
| 3.3.3.2.8.2.      | Type(s)                                                                                                              |
|                   | Description of sustain                                                                                               |
| 5.5.5.2.8.5.      |                                                                                                                      |
| 3.3.3.3.          | By fuel injection (solely in the case of spark-ignition): yes/no $\underline{8}$ /                                   |
|                   | Description of sustain                                                                                               |
| <i>3.3.3.3.1.</i> | Description of system:                                                                                               |
| 3.3.3.3.2.        | Operating principle: injection into induction manifold (single/multiple point) $\underline{8}$ /                     |
|                   |                                                                                                                      |
|                   | (state wnich):                                                                                                       |

# ECE/TRANS/180/Add.2 page 57 Annex 4

| or                |                                                                        |
|-------------------|------------------------------------------------------------------------|
| 3.3.3.3.2.1.      | Make(s) of the injection pump:                                         |
| 3.3.3.2.2.        | Type(s) of the injection pump:                                         |
| 3.3.3.3.3.        | Injectors: opening pressure <u>2</u> /: kPa                            |
|                   | or characteristic diagram <u>2</u> /:                                  |
| 3.3.3.4.          | Injection advance:                                                     |
| 3.3.3.3.5.        | Cold-starting system                                                   |
| 3.3.3.3.5.1.      | Operating principle(s):                                                |
| 3.3.3.3.5.2.      | Operating/setting limits 8/. 2/:                                       |
| 3.3.3.4.          | Fuel pump: ves/no 8/                                                   |
| 3.3.4.            | Ignition                                                               |
| 3 3 4 1           | Make(s)                                                                |
| 3 3 4 2           | Type(s):                                                               |
| 3 3 4 3           | Operating principle:                                                   |
| 3344              | Ignition advance curve or operating set point 2/                       |
| 3345              | Static timing $2/$ before TDC                                          |
| 3346              | Points gap $2/2$ mm                                                    |
| 3.3.4.0           | Dwell angle $2/$ . degrees                                             |
| 3.3.4.7.          | Cooling system (liquid/air) $8/$                                       |
| 5.5.5.<br>2 2 5 1 | Nominal softing for the angine temperature control device:             |
| 3.3.3.1.          | Liquid                                                                 |
| 3.3.3.2.          | Liquid<br>Natura of liquid:                                            |
| 3.3.3.2.1.        |                                                                        |
| 3.3.5.2.2.        | Circulating pump(s): yes/no <u>8/</u>                                  |
| 3.3.5.3.          | Air                                                                    |
| 3.3.5.3.1.        | Blower: yes/no <u>8</u> /                                              |
| 3.3.6.            | Induction system                                                       |
| 3.3.6.1.          | Supercharging: yes/no <u>8</u> /                                       |
| 3.3.6.1.1.        | Make(s):                                                               |
| 3.3.6.1.2.        | Type(s):                                                               |
| 3.3.6.1.3.        | Description of system (example: maximum boost pressure kPa, waste gate |
|                   | (where appropriate))                                                   |
| 3.3.6.2.          | Intercooler: with/without <u>8</u> /                                   |
| 3.3.6.3.          | Description and drawings of induction pipework and accessories (plenum |
|                   | chamber, heating device, additional air intakes, etc.):                |
| 3.3.6.3.1.        | Description of induction manifold (with drawings and/or photos):       |
| 3.3.6.3.2.        | Air filter, drawings:                                                  |
| or                |                                                                        |
| 3.3.6.3.2.1.      | Make(s):                                                               |
| 3.3.6.3.2.2.      | Type(s):                                                               |
| 3.3.6.3.3.        | Inlet silencer, drawings:                                              |
| or                |                                                                        |
| 3.3.6.3.3.1.      | Make(s):                                                               |
| 3.3.6.3.3.2.      | Type(s):                                                               |
| 3.3.7.            | Exhaust system                                                         |
| 3.3.7.1.          | Drawing of complete exhaust system:                                    |
| 3.3.8.            | Minimum cross-section of the inlet and exhaust ports:                  |

ECE/TRANS/180/Add.2 page 58 Annex 4

| <ul> <li>3.3.9.1. Maximum valve lift, opening and closing angles in relation to the dead ced data concerning the settings of other possible systems:</li></ul>                                                                         | entres, or       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| data concerning the settings of other possible systems:3.3.9.2.3.3.9.2.Reference and/or setting ranges 8/:3.3.10.Anti-air pollution measures adopted3.3.10.1.Crankcase-gas recycling device, solely in the case of four-stroke engines | inother          |
| <ul> <li>3.3.9.2. Reference and/or setting ranges <u>8</u>/:</li></ul>                                                                                                                                                                 | nother           |
| <ul><li>3.3.10. Anti-air pollution measures adopted</li><li>3.3.10.1. Crankcase-gas recycling device, solely in the case of four-stroke engines</li></ul>                                                                              | inother          |
| 3.3.10.1. Crankcase-gas recycling device, solely in the case of four-stroke engines                                                                                                                                                    | inother          |
|                                                                                                                                                                                                                                        | nother           |
| (description and drawings):                                                                                                                                                                                                            | nother           |
| 3.3.10.2. Additional anti-pollution devices (where present and not included under a                                                                                                                                                    |                  |
| heading):                                                                                                                                                                                                                              |                  |
| 3.3.10.2.1. Description and/or drawings:                                                                                                                                                                                               |                  |
| 3.3.11. Location of the coefficient of absorption symbol (compression-ignition er                                                                                                                                                      | ngines           |
| only):                                                                                                                                                                                                                                 |                  |
| 3.4. Cooling system temperatures permitted by the manufacturer                                                                                                                                                                         |                  |
| 3.4.1. Liquid cooling                                                                                                                                                                                                                  |                  |
| 3.4.1.1. Maximum temperature at outlet: °C                                                                                                                                                                                             |                  |
| 3.4.2. Air cooling                                                                                                                                                                                                                     |                  |
| 3.4.2.1. Reference point:                                                                                                                                                                                                              |                  |
| 3.4.2.2. Maximum temperature at reference point: °C                                                                                                                                                                                    |                  |
| 3.5. Lubrication system                                                                                                                                                                                                                |                  |
| 3.5.1. Description of system:                                                                                                                                                                                                          |                  |
| 3.5.1.1. Location of oil reservoir (if any):                                                                                                                                                                                           |                  |
| 3.5.1.2. Feed system (pump/injection into induction system/mixed with the fuel, e                                                                                                                                                      | etc.) <u>8</u> / |
| 3.5.2. Lubricant mixed with the fuel                                                                                                                                                                                                   |                  |
| 3.5.2.1. Percentage:                                                                                                                                                                                                                   |                  |
| 3.5.3. Oil cooler: yes/no $\underline{8}/$                                                                                                                                                                                             |                  |
| 3.5.3.1. Drawing(s):                                                                                                                                                                                                                   |                  |
| or                                                                                                                                                                                                                                     |                  |
| 3.5.3.1.1. Make(s):                                                                                                                                                                                                                    |                  |
| 3.5.3.1.2. Type(s):                                                                                                                                                                                                                    |                  |
| 4. Transmission <u>11</u> /                                                                                                                                                                                                            |                  |
| 4.1. Diagram of transmission system:                                                                                                                                                                                                   |                  |
| 4.2. Type (mechanical, hydraulic, electrical, etc.):                                                                                                                                                                                   |                  |
| 4.3. Clutch (type):                                                                                                                                                                                                                    |                  |
| 4.4. Gearbox                                                                                                                                                                                                                           |                  |
| 4.4.1. Type: automatic/manual <u>8</u> /                                                                                                                                                                                               |                  |
| 4.4.2. Method of selection: by hand/foot $\underline{8}/$                                                                                                                                                                              |                  |

 $<sup>\</sup>underline{11}$ / The information requested should be supplied for a possible variant.

#### 4.5. Gear ratios

| Number of gear | Ratio 1 | Ratio 2 | Ratio 3 | Ratio t |
|----------------|---------|---------|---------|---------|
| Minimum        |         |         |         |         |
| continuously   |         |         |         |         |
| variable       |         |         |         |         |
| transmission   |         |         |         |         |
| 1              |         |         |         |         |
| 2              |         |         |         |         |
| 3              |         |         |         |         |
| 4              |         |         |         |         |
| 5              |         |         |         |         |
| 6              |         |         |         |         |
| Maximum        |         |         |         |         |
| continuously   |         |         |         |         |
| variable       |         |         |         |         |
| transmission   |         |         |         |         |
| Reverse gear   |         |         |         |         |

Ratio 1 = primary ratio (ratio of engine speed to rotational speed of primary gearbox shaft).

Ratio 2 = secondary ratio (ratio of rotational speed of primary shaft to rotational speed of secondary shaft in gearbox).

- Ratio 3 = final drive ratio (ratio of rotational speed of gearbox output shaft to rotational speed of driven wheels).
- Ratio t = overall ratio.

Annex 5



DRIVING CYCLES FOR TYPE I TESTS

Figure A5-2: Cycle part 2 for vehicle classes 2 and 3

ECE/TRANS/180/Add.2 page 61 Annex 5



Figure A5-3: Cycle part 3 for vehicle class 3

# ECE/TRANS/180/Add.2 page 62 Annex 5

Table A5-1: Cycle part 1, 1 to 120 s

| time     normal     reduced<br>speed     indicators     time     normal     reduced<br>speed       Image: speed     no     no     no     no     no     no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | indio    | cators | 5                    |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|----------------------|---------------|
| no no no 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |          |        |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          | 1      | 1                    | 1             |
| s km/h km/h stop acc cruise dec gear-<br>shift gear s km/h km/h stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | op acc | c cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear |
| 1 0.0 0.0 x 61 29.7 29.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | х      |                      |               |
| 2 0.0 0.0 x 62 26.9 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | х      |                      |               |
| 3 0.0 0.0 x 63 23.0 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | х      |                      |               |
| 4 0.0 0.0 x 64 18.7 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | х      |                      |               |
| 5 0.0 0.0 X 65 14.2 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |          | X      |                      |               |
| b         0.0         0.0         X         66         9.4         9.4           7         0.0         0.0         x         67         4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          | X      |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~      |          | X      |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ^<br>X |          |        |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x      |          |        |                      |               |
| 11 0.0 0.0 x 71 0.0 0.0 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x      |          |        |                      |               |
| 12 0.0 0.0 x 72 0.0 0.0 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x      |          |        |                      |               |
| 13 0.0 0.0 x 73 0.0 0.0 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x      |          |        |                      |               |
| 14 0.0 0.0 x 74 1.7 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х      |          |        |                      |               |
| 15 0.0 0.0 x 75 5.8 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х      |          |        |                      |               |
| 16 0.0 0.0 x 76 11.8 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х      |          |        |                      |               |
| 17 0.0 0.0 x 77 18.3 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х      |          |        |                      |               |
| 18 0.0 0.0 x 78 24.5 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х      |          |        |                      |               |
| 19 0.0 0.0 x 79 29.4 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x      |          |        |                      |               |
| 20 0.0 0.0 x 80 32.5 32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х      |          |        |                      |               |
| 21 0.0 0.0 x 81 34.2 34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X      |          |        |                      |               |
| 22 1.0 1.0 X 82 34.4 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X      |          |        |                      |               |
| 23 2.0 2.0 X 83 34.5 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X      |          |        |                      |               |
| 24         4.0         4.0         X         04         34.0         34.0           25         7.2         7.2         y         85         34.7         34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×      |          |        |                      |               |
| 26 0.6 0.6 v 86 34.8 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×      |          |        |                      |               |
| 27 12 0 12 0 x 87 35 2 35 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×      |          |        |                      |               |
| 28 14 3 14 3 x 88 36 0 36 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x      |          |        |                      |               |
| 29 16.6 16.6 x 89 37.0 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x      |          |        |                      |               |
| 30 18.9 18.9 x 90 37.9 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x      |          |        |                      |               |
| 31 21.2 21.2 x 91 38.5 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x      |          |        |                      |               |
| 32 23.5 23.5 x 92 38.8 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | х      |          |        |                      |               |
| 33 25.6 25.6 x 93 38.8 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | х      |          |        |                      |               |
| 34 27.1 27.1 x 94 38.7 38.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | х      |          |        |                      |               |
| 35 28.0 28.0 x 95 38.4 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x      |          |        |                      |               |
| 36 28.7 28.7 x 96 38.0 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | х        |        |                      |               |
| 37 29.2 29.2 x 97 37.4 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | x        |        |                      |               |
| 38 29.8 29.8 X 98 36.9 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | X        |        |                      |               |
| 39 30.3 30.3 X X 99 36.6 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | X        |        |                      |               |
| 40 29.0 29.0 X X 100 30.4 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | X        |        |                      |               |
| 41         20.7         X         X         101         30.4         30.4           42         27.9         27.9         x         x         x         102         36.5         36.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | ×        |        |                      |               |
| 43 27 5 27 5 x x x 103 36 7 36 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | ×        |        |                      |               |
| 44         27.3         27.3         x         x         x         104         36.9         36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | x        | 1      |                      |               |
| 45 27.3 27.3 x x 105 37.0 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | x        | 1      |                      |               |
| 46 27.4 27.4 x x 106 37.2 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | x        |        |                      |               |
| 47 27.5 27.5 x x 107 37.3 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | x        |        |                      |               |
| 48 27.6 27.6 x x 108 37.4 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | х        |        |                      |               |
| 49 27.6 27.6 x x 109 37.3 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | х        |        |                      |               |
| 50         27.7         27.7         x         x         x         110         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8         36.8 |        | х        |        |                      |               |
| 51 27.8 27.8 x x 111 35.8 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | Х      |                      |               |
| 52 28.1 28.1 X X 112 34.6 34.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -        | Х      |                      |               |
| 53 28.6 28.6 X X 113 31.8 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |          | X      |                      |               |
| 54         28.9         X         X         114         28.9         28.9           55         20.2         20.2         x         145         20.7         20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          | X      |                      | L             |
| JO         Z9.2         Z9.2         X         IID         Z0.7         Z0.7           56         20.4         20.4         y         116         24.6         24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X      |          |        |                      | X             |
| 50         20.1         20.1         A         110         24.0         24.0           57         20.7         20.7         y         y         117         25.2         25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | -        |        |                      | ×<br>v        |
| 58 30 1 30 1 x x 118 26 2 26 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×      | -        | +      |                      | x             |
| 59 30.5 30.5 x x 119 27.5 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x      | 1        | 1      |                      | x             |
| 60 30.7 30.7 x x 120 29.2 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x      |          | 1      |                      | x             |

# ECE/TRANS/180/Add.2 page 63 Annex 5

Table A5-2: Cycle part 1, 121 to 240 s

|      |        |         |          |          | -      |        | 1        | r    |      |              | 1001    | 0115 | <u> </u> | yele pu | ,     | 21 10 | 2100     |
|------|--------|---------|----------|----------|--------|--------|----------|------|------|--------------|---------|------|----------|---------|-------|-------|----------|
|      | roller | speed   |          |          |        |        |          |      |      | roller       | speed   |      |          |         |       |       | Í        |
|      |        | raduard |          |          |        |        |          |      |      |              | raduaad |      |          |         |       |       |          |
| time | normal | reaucea |          |          | indi   | cators | 5        |      | time | normal       | reduced |      |          | indic   | ators |       |          |
|      | normai | speed   |          |          |        |        |          |      |      | nonnai       | speed   |      |          |         |       |       |          |
|      |        |         |          |          |        |        | no       |      |      |              |         |      |          |         |       | no    |          |
|      |        |         |          |          |        |        |          | no 1 |      |              |         |      |          |         |       | 110   | no 1     |
| S    | km/h   | km/h    | stop     | acc      | cruise | dec    | gear-    |      | S    | km/h         | km/h    | stop | acc      | cruise  | dec   | gear- |          |
| -    |        |         |          |          |        |        | - h : 64 | gear | -    |              |         | P    |          |         |       |       | gear     |
|      |        |         |          |          |        |        | sniπ     | _    |      |              |         |      |          |         |       | sniπ  | -        |
| 121  | 31.0   | 31.0    |          | х        |        |        |          | x    | 181  | 0.0          | 0.0     | х    |          |         |       |       | Í        |
| 100  | 22.0   | 22.0    |          | v        |        |        |          | v    | 100  | 0.0          | 0.0     | v    |          |         |       |       |          |
| 122  | 32.0   | 32.0    |          | X        |        |        |          | ×    | 102  | 0.0          | 0.0     | X    |          |         |       |       |          |
| 123  | 34.3   | 34.3    |          | х        |        |        |          | x    | 183  | 2.0          | 2.0     | х    |          |         |       |       | Í        |
| 124  | 25.1   | 35.1    |          | v        |        |        |          |      | 19/  | 6.0          | 6.0     |      | v        |         |       |       |          |
| 124  | 55.1   | 35.1    |          | ^        |        |        |          |      | 104  | 0.0          | 0.0     |      | ^        |         |       |       |          |
| 125  | 35.3   | 35.3    |          | х        |        |        |          |      | 185  | 12.4         | 12.4    |      | X        |         |       |       | Í        |
| 126  | 35.1   | 35.1    |          | v        |        |        |          |      | 186  | 21 /         | 21/     |      | v        |         |       |       |          |
| 120  | 55.1   | 35.1    |          | ^        |        |        |          |      | 100  | 21.4         | 21.4    |      | ^        |         |       |       |          |
| 127  | 34.6   | 34.6    |          | х        |        |        |          |      | 187  | 30.0         | 30.0    |      | X        |         |       |       | Í        |
| 100  | 22.7   | 22.7    |          |          |        | v      |          |      | 100  | 27.1         | 27.1    |      | v        |         |       |       |          |
| 120  | 55.7   | 55.7    |          |          |        | ~      |          |      | 100  | 57.1         | 57.1    |      | ^        |         |       |       |          |
| 129  | 32.2   | 32.2    |          |          |        | Х      |          |      | 189  | 42.5         | 40.5    |      | X        |         |       |       | Í        |
| 130  | 20.6   | 20.6    |          |          |        | v      |          |      | 100  | 46.6         | 126     |      | v        |         |       |       |          |
| 130  | 29.0   | 29.0    |          |          |        | ~      |          |      | 190  | 40.0         | 42.0    |      | ^        |         |       |       |          |
| 131  | 26.0   | 26.0    |          |          |        | х      |          |      | 191  | 49.8         | 43.8    |      | Х        |         |       |       | Í        |
| 132  | 22.0   | 22.0    |          |          |        | v      |          |      | 102  | 52.4         | 44.4    |      | v        |         |       |       |          |
| 102  | 22.0   | 22.0    |          |          |        | ^      |          |      | 102  | 52.4         |         |      | ^        |         |       |       |          |
| 133  | 18.5   | 18.5    |          | X        |        |        |          |      | 193  | 54.4         | 45.4    |      | X        |         |       |       | Í        |
| 134  | 16.6   | 16.6    |          | Y        |        |        |          |      | 194  | 55.6         | 45.6    |      | Y        |         |       |       |          |
| 104  |        |         |          | <u> </u> |        |        |          |      | 107  |              |         |      | <u> </u> |         |       |       | l        |
| 135  | 17.5   | 17.5    |          | X        |        |        |          |      | 195  | 56.1         | 46.1    |      | Х        |         |       |       |          |
| 136  | 20.9   | 20.9    |          | x        |        |        |          |      | 196  | 56.2         | 46.2    |      | x        |         |       |       |          |
| 100  | 20.5   | 20.3    |          | <u>^</u> |        |        |          |      | 100  | 50.2         | +0.2    |      | <u> </u> | -       |       |       |          |
| 137  | 25.2   | 25.2    |          | X        |        |        |          |      | 197  | 56.2         | 46.2    |      |          | X       |       |       | L        |
| 138  | 29.1   | 29.1    |          | x        |        |        |          | 1    | 198  | 56.2         | 46.2    |      |          | X       |       |       | i        |
| 400  | 20.1   | 20.1    |          | <u>^</u> |        |        |          |      | 100  | 50.2         | +0.2    |      |          | ^       |       |       |          |
| 139  | 31.4   | 31.4    |          | х        |        |        |          |      | 199  | 56.7         | 46.7    |      | L        | X       |       |       | <u> </u> |
| 140  | 31.9   | 31.9    |          | x        |        |        |          |      | 200  | 57.2         | 47.2    |      |          | x       |       |       | 1        |
| 140  | 01.0   | 01.0    |          | <u>^</u> |        |        |          |      | 200  | 57.2         | 47.2    |      |          | ~       |       |       |          |
| 141  | 31.4   | 31.4    |          |          |        | Х      |          |      | 201  | 57.7         | 47.7    |      |          | х       |       |       |          |
| 142  | 30.6   | 30.6    |          |          |        | х      |          |      | 202  | 58.2         | 48.2    |      |          | x       |       |       | 1        |
| 440  | 20.5   | 00.0    |          |          |        |        |          |      | 202  | 50. <u>-</u> | 40.7    |      |          |         |       |       |          |
| 143  | 29.5   | 29.5    |          |          |        | X      |          |      | 203  | 58.7         | 48.7    |      |          | X       |       |       |          |
| 144  | 27.9   | 27.9    |          |          |        | х      |          |      | 204  | 59.3         | 49.3    |      |          | x       |       |       | Í        |
| 145  | 24.0   | 24.0    |          |          |        |        | -        |      | 205  | 50.0         | 40.0    |      |          |         |       |       |          |
| 145  | 24.9   | 24.9    |          |          |        | X      |          |      | 205  | 0.90         | 49.0    |      |          | X       |       |       |          |
| 146  | 20.2   | 20.2    |          |          |        | х      |          |      | 206  | 60.0         | 50.0    |      |          | x       |       |       | Í        |
| 1/7  | 110    | 110     |          |          |        | v      |          |      | 207  | 60.0         | 50.0    |      |          | ×       |       |       |          |
| 147  | 14.0   | 14.0    |          |          |        | ^      |          |      | 207  | 00.0         | 50.0    |      |          | ^       |       |       |          |
| 148  | 9.5    | 9.5     |          |          |        | Х      |          |      | 208  | 59.9         | 49.9    |      |          | х       |       |       | Í        |
| 140  | 48     | 48      |          |          |        | v      |          |      | 200  | 59.9         | 40 0    |      |          | v       |       |       |          |
| 145  | 4.0    | 4.0     |          |          |        | ^      |          |      | 200  | 55.5         | +0.0    |      |          | ^       |       |       | İ        |
| 150  | 1.4    | 1.4     |          |          |        | х      |          |      | 210  | 59.9         | 49.9    |      |          | х       |       |       | Í        |
| 151  | 0.0    | 0.0     | v        |          |        |        |          |      | 211  | 59.9         | 40 0    |      |          | ×       |       |       | 1        |
| 101  | 0.0    | 0.0     | ^        |          |        |        |          |      | 211  | 55.5         | +0.0    |      |          | ^       |       |       | İ        |
| 152  | 0.0    | 0.0     | Х        |          |        |        |          |      | 212  | 59.9         | 49.9    |      |          | х       |       |       | Í        |
| 153  | 0.0    | 0.0     | Y        |          |        |        |          |      | 213  | 59.8         | 49.8    |      |          | Y       |       |       |          |
| 100  | 0.0    | 0.0     | ^        |          |        |        | -        |      | 210  |              | +0.0    |      |          | ^       |       |       | -        |
| 154  | 0.0    | 0.0     | X        |          |        |        |          |      | 214  | 59.6         | 49.6    |      |          | х       |       |       | Í        |
| 155  | 0.0    | 0.0     | Y        |          |        |        |          |      | 215  | 59.1         | 49.1    |      |          | Y       |       |       |          |
| 100  | 0.0    | 0.0     | ^        |          |        |        |          |      | 210  | 57.1         | 40.1    |      |          | ~       |       |       |          |
| 156  | 0.0    | 0.0     | Х        |          |        |        |          |      | 216  | 57.1         | 47.1    |      |          |         | х     |       |          |
| 157  | 0.0    | 0.0     | x        |          |        |        |          |      | 217  | 53.2         | 43.2    |      |          |         | х     |       |          |
| 450  | 0.0    | 0.0     |          | l        |        |        |          |      | 040  | 40.0         | 00.2    |      |          |         |       |       | i        |
| 158  | 0.0    | 0.0     | X        |          |        |        |          |      | 218  | 48.3         | 38.3    |      |          |         | X     |       |          |
| 159  | 0.0    | 0.0     | х        |          |        |        |          |      | 219  | 43.9         | 33.9    |      |          |         | х     |       | i        |
| 100  | 0.0    | 0.0     |          | 1        |        |        |          |      | 200  | 40.0         | 20.0    |      |          |         |       |       | l .      |
| 100  | 0.0    | 0.0     | X        |          |        |        |          |      | 220  | 40.3         | 30.3    |      |          |         | X     |       |          |
| 161  | 0.0    | 0.0     | X        | 1        |        |        |          |      | 221  | 39.5         | 29.5    |      |          | х       |       |       | í –      |
| 160  | 0.0    | 0.0     | v        |          |        |        | 1        |      | 222  | 11 0         | 21.0    |      |          | v       |       |       | [        |
| 102  | 0.0    | 0.0     | ×        |          |        |        |          |      | 222  | 41.3         | 31.3    |      |          | ×       |       |       |          |
| 163  | 0.0    | 0.0     | X        |          |        | 1      |          |      | 223  | 45.2         | 35.2    |      | X        |         |       |       | i        |
| 164  | 0.0    | 0.0     | v        |          |        |        |          |      | 224  | 50 1         | 40.1    |      | Y        |         |       |       |          |
| 104  | 0.0    | 0.0     | <u> </u> |          |        |        |          |      | 224  | 50.1         | +0.1    |      | ⊢^_      |         |       |       | i        |
| 165  | 0.0    | 0.0     | х        |          |        |        |          |      | 225  | 53.7         | 43.7    |      | х        |         |       |       | <u> </u> |
| 166  | 0.0    | 0.0     | x        |          |        |        |          |      | 226  | 55.8         | 45.8    |      | x        |         |       |       |          |
| 407  | 0.0    | 0.0     |          |          |        |        |          |      | 220  |              | 45.0    |      |          |         |       |       |          |
| 167  | 0.0    | 0.0     | X        |          |        |        |          |      | 227  | 55.8         | 45.8    |      | X        |         |       |       |          |
| 168  | 0.0    | 0.0     | x        | 1        |        |        |          |      | 228  | 54 7         | 44 7    |      |          |         | х     |       | í —      |
| 100  | 0.0    | 0.0     |          | l        |        |        |          |      | 200  |              | 40.0    |      |          |         |       |       | i        |
| 169  | 0.0    | 0.0     | X        |          |        |        |          |      | 229  | 53.3         | 43.3    |      |          |         | х     |       |          |
| 170  | 0.0    | 0.0     | x        |          |        |        |          |      | 230  | 52.2         | 42.2    |      |          |         | х     |       | 1        |
| 174  | 0.0    | 0.0     | ~        |          |        |        |          |      | 224  | ED 0         | 40.0    |      |          |         | <br>V |       |          |
| 171  | 0.0    | 0.0     | ×        | L        |        |        | L        |      | 231  | 52.0         | 42.0    |      |          |         | X     |       | i        |
| 172  | 0.0    | 0.0     | x        | 1        |        |        | 1        |      | 232  | 52.1         | 42.1    |      |          |         | x     |       | l I      |
| 170  | 0.0    | 0.0     | ~        |          |        |        |          |      | 222  | <b>E1 0</b>  | 11 0    |      |          |         | ~     |       | i        |
| 1/3  | 0.0    | 0.0     | <u> </u> | I        |        |        |          |      | 233  | 51.8         | 41.8    |      |          |         | ~     |       | I        |
| 174  | 0.0    | 0.0     | X        |          |        | 1      |          |      | 234  | 50.8         | 41.8    |      |          |         | X     |       | i        |
| 175  | 0.0    | 0.0     | v        |          |        |        |          |      | 225  | 10.2         | 11 2    |      |          |         | v     |       |          |
| 115  | 0.0    | 0.0     | <u>^</u> | L        |        |        | L        |      | 200  | 43.2         | 41.2    |      |          |         | ^     |       | i        |
| 176  | 0.0    | 0.0     | X        |          |        | 1      |          |      | 236  | 47.4         | 40.4    |      |          |         | X     |       | i        |
| 177  | 0.0    | 0.0     | Y        |          |        |        |          |      | 237  | 45 7         | 39.7    |      |          |         | x     |       |          |
| 4-0  | 0.0    | 0.0     |          |          |        |        |          |      | 201  | 40.7         | 00.7    |      |          |         | ^     |       | l        |
|      | 0.0    | 0.0     | X        |          |        |        |          |      | 238  | 43.9         | 38.9    |      |          |         | X     |       | <u> </u> |
| 179  | 0.0    | 0.0     | x        |          |        |        |          |      | 239  | 42 0         | 38.7    |      |          |         | X     |       |          |
| 110  | 0.0    | 0.0     | ⊢^       |          |        |        |          |      | 200  | 72.0         | 00.7    |      |          |         | ^     |       |          |
| 180  | 0.0    | 0.0     | X        | 1        |        |        | 1        | 1    | 240  | 40.2         | 38.7    |      | 1        |         | X     |       | í –      |

# ECE/TRANS/180/Add.2 page 64 Annex 5

Table A5-3: Cycle part 1, 241 to 360 s

|        | roller | speed   |      |     |        |        |             |               |          | roller | speed   |      |     |        |       |             |               |
|--------|--------|---------|------|-----|--------|--------|-------------|---------------|----------|--------|---------|------|-----|--------|-------|-------------|---------------|
| 41.000 | normal | reduced |      |     | indi   | ootor  |             |               | 41.000.0 | mormal | reduced |      |     | india  | otoro |             |               |
| ume    | normai | speed   |      |     | mu     | Calors | 5           |               | ume      | normai | speed   |      |     | maic   | alors | •           |               |
| s      | km/h   | km/h    | stop | acc | cruise | dec    | no<br>gear- | no 1.<br>gear | s        | km/h   | km/h    | stop | acc | cruise | dec   | no<br>gear- | no 1.<br>gear |
| 2/1    | 38.3   | 38.3    |      |     |        | v      | SIIII       |               | 301      | 30.6   | 30.6    |      |     | v      |       | SIIII       |               |
| 241    | 36.4   | 36.4    |      |     |        | X      |             |               | 301      | 28.0   | 28.0    |      |     | X      |       | ×           |               |
| 242    | 34.6   | 34.6    |      |     |        | ~      |             |               | 302      | 20.9   | 20.9    |      |     | ×      |       |             |               |
| 243    | 34.0   | 34.0    |      |     |        | X      |             |               | 303      | 27.0   | 27.0    |      |     | X      |       |             |               |
| 244    | 20.6   | 20.6    |      |     |        | ~      |             |               | 205      | 21.2   | 21.2    |      |     | ^<br>V |       |             |               |
| 245    | 29.1   | 29.1    |      |     |        | ~      |             |               | 305      | 20.9   | 20.9    |      |     | ~      |       |             |               |
| 240    | 20.1   | 20.1    |      |     |        | ~      |             |               | 207      | 20.0   | 20.0    |      |     | ^<br>V |       |             |               |
| 247    | 20.4   | 20.4    |      |     |        | X      |             |               | 307      | 20.1   | 20.1    |      |     | X      |       |             | -             |
| 248    | 23.1   | 23.1    |      |     |        | X      |             |               | 308      | 25.7   | 25.7    |      |     | X      |       |             |               |
| 249    | 21.2   | 21.2    |      |     |        | X      |             |               | 309      | 20.0   | 25.5    |      |     | X      |       |             | -             |
| 250    | 19.5   | 19.5    |      |     |        | X      |             |               | 310      | 25.7   | 25.7    |      |     | X      |       |             |               |
| 251    | 17.8   | 17.8    |      |     |        | X      |             |               | 311      | 20.4   | 20.4    |      |     | X      |       |             |               |
| 252    | 15.2   | 15.2    |      |     |        | X      |             |               | 312      | 27.3   | 27.3    |      |     | X      |       |             |               |
| 253    | 11.5   | 11.5    |      |     |        | X      |             |               | 313      | 28.1   | 28.1    |      |     | X      |       |             |               |
| 254    | 1.Z    | 1.2     |      |     |        | X      |             |               | 314      | 27.9   | 27.9    |      |     |        | X     |             |               |
| 255    | 2.5    | 2.5     |      |     |        | х      |             |               | 315      | 26.0   | 26.0    |      |     |        | X     |             |               |
| 256    | 0.0    | 0.0     | X    |     |        |        |             |               | 316      | 22.7   | 22.7    |      |     |        | X     |             |               |
| 257    | 0.0    | 0.0     | X    |     |        |        |             |               | 317      | 19.0   | 19.0    |      |     |        | X     |             |               |
| 258    | 0.0    | 0.0     | X    |     |        |        |             |               | 318      | 16.0   | 16.0    |      | X   |        |       |             |               |
| 259    | 0.0    | 0.0     | X    |     |        |        |             |               | 319      | 14.6   | 14.6    |      | X   |        |       |             |               |
| 260    | 0.0    | 0.0     | X    |     |        |        |             |               | 320      | 15.2   | 15.2    |      | X   |        |       |             |               |
| 261    | 0.0    | 0.0     | X    |     |        |        |             |               | 321      | 16.9   | 16.9    |      | X   |        |       |             |               |
| 262    | 0.0    | 0.0     | X    |     |        |        |             |               | 322      | 19.3   | 19.3    |      | X   |        |       |             |               |
| 263    | 0.0    | 0.0     | X    |     |        |        |             |               | 323      | 22.0   | 22.0    |      | X   |        |       |             |               |
| 264    | 0.0    | 0.0     | X    |     |        |        |             |               | 324      | 24.6   | 24.6    |      | Х   |        |       |             |               |
| 265    | 0.0    | 0.0     | Х    |     |        |        |             |               | 325      | 26.8   | 26.8    |      | х   |        |       |             |               |
| 266    | 0.0    | 0.0     | Х    |     |        |        |             |               | 326      | 27.9   | 27.9    |      | х   |        |       |             |               |
| 267    | 0.5    | 0.5     | Х    |     |        |        |             |               | 327      | 28.1   | 28.1    |      | х   |        |       |             |               |
| 268    | 2.9    | 2.9     |      | х   |        |        |             |               | 328      | 27.7   | 27.7    |      |     | x      |       |             |               |
| 269    | 8.2    | 8.2     |      | х   |        |        |             |               | 329      | 27.2   | 27.2    |      |     | х      |       |             |               |
| 270    | 13.2   | 13.2    |      | х   |        |        |             |               | 330      | 26.7   | 26.7    |      |     | x      |       |             |               |
| 271    | 17.8   | 17.8    |      | х   |        |        |             |               | 331      | 26.6   | 26.6    |      |     | х      |       |             |               |
| 272    | 21.4   | 21.4    |      | х   |        |        |             |               | 332      | 26.8   | 26.8    |      |     | Х      |       |             |               |
| 273    | 24.1   | 24.1    |      | х   |        |        |             |               | 333      | 27.0   | 27.0    |      |     | х      |       |             |               |
| 274    | 26.4   | 26.4    |      | х   |        |        |             |               | 334      | 27.2   | 27.2    |      |     | Х      |       |             |               |
| 275    | 28.4   | 28.4    |      | х   |        |        |             |               | 335      | 27.4   | 27.4    |      |     | х      |       |             |               |
| 276    | 29.9   | 29.9    |      | х   |        |        |             |               | 336      | 27.5   | 27.5    |      |     | х      |       |             |               |
| 277    | 30.4   | 30.4    |      | х   |        |        |             |               | 337      | 27.7   | 27.7    |      |     | х      |       |             |               |
| 278    | 30.5   | 30.5    |      |     | Х      |        |             |               | 338      | 27.9   | 27.9    |      |     | Х      |       |             |               |
| 279    | 30.3   | 30.3    |      |     | х      |        |             |               | 339      | 28.1   | 28.1    |      |     | х      |       |             |               |
| 280    | 30.2   | 30.2    |      |     | X      |        |             |               | 340      | 28.3   | 28.3    |      |     | X      |       |             |               |
| 281    | 30.1   | 30.1    |      |     | х      |        |             |               | 341      | 28.6   | 28.6    |      |     | Х      |       |             |               |
| 282    | 30.1   | 30.1    |      |     | X      |        |             |               | 342      | 29.0   | 29.0    |      |     | X      |       |             |               |
| 283    | 30.1   | 30.1    |      |     | X      |        |             |               | 343      | 29.5   | 29.5    |      |     | X      |       |             | L             |
| 284    | 30.1   | 30.1    |      |     | X      |        |             |               | 344      | 30.1   | 30.1    |      |     | X      |       |             | <u> </u>      |
| 285    | 30.1   | 30.1    |      |     | X      |        |             |               | 345      | 30.5   | 30.5    |      |     | Х      |       |             |               |
| 286    | 30.1   | 30.1    |      |     | Х      |        |             |               | 346      | 30.7   | 30.7    |      |     | X      |       |             | <b> </b>      |
| 287    | 30.2   | 30.2    |      |     | X      |        |             |               | 347      | 30.8   | 30.8    |      |     | Х      |       |             |               |
| 288    | 30.4   | 30.4    |      |     | X      |        | X           | ļ             | 348      | 30.8   | 30.8    |      |     | X      |       |             | <u> </u>      |
| 289    | 31.0   | 31.0    |      |     | X      |        | X           |               | 349      | 30.8   | 30.8    |      |     | X      |       |             |               |
| 290    | 31.8   | 31.8    |      |     | Х      |        | X           |               | 350      | 30.8   | 30.8    |      |     | Х      |       |             | <b> </b>      |
| 291    | 32.7   | 32.7    |      |     | X      |        | X           |               | 351      | 30.8   | 30.8    |      |     | Х      |       |             |               |
| 292    | 33.6   | 33.6    |      |     | X      |        | X           |               | 352      | 30.8   | 30.8    |      |     | X      |       |             | <u> </u>      |
| 293    | 34.4   | 34.4    |      |     | X      |        | X           |               | 353      | 30.8   | 30.8    |      |     | Х      |       |             |               |
| 294    | 35.0   | 35.0    |      |     | X      |        | X           |               | 354      | 30.9   | 30.9    |      |     | X      |       |             | <u> </u>      |
| 295    | 35.4   | 35.4    |      |     | Х      |        | X           |               | 355      | 30.9   | 30.9    |      |     | Х      |       | x           | X             |
| 296    | 35.5   | 35.5    |      |     | X      |        | X           |               | 356      | 30.9   | 30.9    |      |     | X      |       | Х           | X             |
| 297    | 35.3   | 35.3    |      |     | X      |        | X           |               | 357      | 30.8   | 30.8    |      |     | X      |       | х           | X             |
| 298    | 34.9   | 34.9    |      |     | X      |        | X           |               | 358      | 30.4   | 30.4    |      |     | X      |       | Х           | Х             |
| 299    | 33.9   | 33.9    |      |     | X      |        | X           | L             | 359      | 29.6   | 29.6    |      |     | X      |       | L           | X             |
| 300    | 32.4   | 32.4    |      | 1   | X      | 1      | X           |               | 360      | 28.4   | 28.4    | 1    |     | x      | 1     |             | X             |

# ECE/TRANS/180/Add.2 page 65 Annex 5

Table A5-4: Cycle part 1, 361 to 480 s

|      |         |           |           |     |        |          |          | r        | -    |          | 1001      | 0 113    | <u>-</u> . C | yele pu |       | 01 10    | 400.5 |
|------|---------|-----------|-----------|-----|--------|----------|----------|----------|------|----------|-----------|----------|--------------|---------|-------|----------|-------|
|      | roller  | speed     |           |     |        |          |          |          |      | roller   | speed     |          |              |         |       |          |       |
|      |         | reduced   |           |     |        |          |          |          |      |          | reduced   |          |              |         |       |          |       |
| time | normal  | ieuuceu   |           |     | indi   | cators   | 3        |          | time | normal   |           |          |              | indic   | ators |          |       |
|      |         | speed     |           |     |        |          |          |          |      |          | speed     |          |              |         |       |          |       |
|      |         |           |           |     |        |          | no       |          |      |          |           |          |              |         |       | no       |       |
| -    | kuna /h | lenna /ha |           |     |        | dee      |          | no 1.    |      | lenne /h | lenna /ha | -        |              |         | 400   | ~~~~     | no 1. |
| S    | Km/n    | Km/n      | stop      | acc | cruise | aec      | gear-    | gear     | S    | Km/n     | Km/n      | stop     | acc          | cruise  | aec   | gear-    | gear  |
|      |         |           |           |     |        |          | shift    | goui     |      |          |           |          |              |         |       | shift    | gou.  |
| 361  | 27 1    | 27 1      |           |     | x      |          |          | x        | 421  | 34.0     | 34.0      |          | x            |         |       |          |       |
| 200  | 27.1    | 27.1      |           |     | ~      |          |          | ~        | 400  | 04.0     | 04.0      |          | <u>.</u>     |         |       |          |       |
| 302  | 20.0    | 20.0      |           |     | X      |          |          | X        | 422  | 35.4     | 35.4      |          | X            |         |       |          |       |
| 363  | 25.4    | 25.4      |           |     | х      |          |          | х        | 423  | 36.5     | 36.5      |          | x            |         |       |          |       |
| 364  | 25.5    | 25.5      |           |     | x      |          | x        | x        | 424  | 37.5     | 37.5      |          | x            |         |       |          |       |
| 2007 | 20.0    | 20.0      |           |     |        |          |          | ~        | 405  | 20.0     | 20.0      |          |              |         |       |          |       |
| 305  | 20.3    | 20.3      |           |     | X      |          | Х        | X        | 425  | 38.0     | 38.0      |          | х            |         |       |          |       |
| 366  | 27.3    | 27.3      |           |     | x      |          | Х        | Х        | 426  | 39.7     | 39.7      |          | X            |         |       |          |       |
| 367  | 28.4    | 28.4      |           |     | Y      |          | Y        | Y        | 427  | 40.7     | 40.7      |          | x            |         |       |          |       |
| 007  | 20.4    | 20.4      |           |     | ^      |          | ^        | ^        | 421  | 40.7     | 40.7      |          | ^            |         |       |          |       |
| 368  | 29.2    | 29.2      |           |     | X      |          | Х        | X        | 428  | 41.5     | 41.5      |          | Х            |         |       |          |       |
| 369  | 29.5    | 29.5      |           |     | х      |          | х        | х        | 429  | 41.7     | 41.7      |          | x            |         |       |          |       |
| 370  | 20.4    | 29.4      |           |     | v      |          | v        | v        | 430  | 41.5     | 415       |          |              |         | v     |          |       |
| 074  | 23.4    | 23.4      |           |     | ^      |          | ^        | ^        | 400  | 41.5     | 41.5      |          |              |         | ^     |          |       |
| 371  | 28.9    | 28.9      |           |     | X      |          | Х        | Х        | 431  | 41.0     | 41.0      |          |              |         | Х     |          |       |
| 372  | 28.1    | 28.1      |           |     | х      |          | х        | х        | 432  | 40.6     | 40.6      |          |              |         | х     |          |       |
| 373  | 27.2    | 27.2      |           |     | v      |          | v        | v        | 133  | 40.3     | 40.3      |          |              |         | v     |          |       |
| 070  | 21.2    | 21.2      |           |     | ^      |          | ^        | ^        | 400  | 40.5     | 40.5      |          |              |         | ^     |          |       |
| 374  | 26.3    | 26.3      |           |     | Х      |          | Х        | Х        | 434  | 40.1     | 40.1      |          |              |         | Х     |          |       |
| 375  | 25.7    | 25.7      |           |     | х      |          | х        | х        | 435  | 40.1     | 40.1      |          |              |         | х     |          |       |
| 276  | 25.5    | 25.5      |           |     | v      |          | v        | v        | 126  | 20.0     | 20.0      |          |              |         | v     |          |       |
| 5/0  | 20.0    | 20.0      | I         |     | ×      |          | ~        | ×        | 430  | 39.0     | 39.0      |          |              |         | ×     |          | I     |
| 377  | 25.6    | 25.6      |           |     | X      |          | X        | Х        | 437  | 38.9     | 38.9      |          |              |         | Х     |          |       |
| 378  | 26.0    | 26.0      |           |     | х      |          | х        | х        | 438  | 37.5     | 37.5      |          |              |         | х     |          |       |
| 370  | 26.0    | 26.0      | 1         |     | <br>V  |          | v        | <br>V    | 120  | 35.0     | 25.0      |          |              |         | v     |          |       |
| 5/9  | 20.4    | 20.4      | I         |     | ^      |          | <u>^</u> | <u>^</u> | +39  | 55.0     | 35.0      |          |              |         | ^     |          |       |
| 380  | 27.0    | 27.0      |           |     | Х      |          | X        | X        | 440  | 34.2     | 34.2      |          |              |         | Х     |          |       |
| 381  | 27.7    | 27.7      |           |     | х      |          | х        | х        | 441  | 32.5     | 32.5      |          |              |         | х     |          |       |
| 393  | 28.5    | 28.5      |           |     | v      |          | v        | v        | 112  | 30.0     | 30.0      |          |              |         | v     |          |       |
| 302  | 20.0    | 20.5      |           |     | X      |          | X        | X        | 442  | 30.9     | 30.9      |          |              |         | X     |          |       |
| 383  | 29.4    | 29.4      |           |     | Х      |          | Х        | Х        | 443  | 29.4     | 29.4      |          |              |         | х     |          |       |
| 384  | 30.2    | 30.2      |           |     | х      |          | х        | х        | 444  | 28.0     | 28.0      |          |              |         | х     |          |       |
| 395  | 30.5    | 30.5      |           |     | v      |          | v        | v        | 115  | 26.5     | 26.5      |          |              |         | v     |          |       |
| 365  | 30.5    | 30.5      |           |     | X      |          | X        | X        | 445  | 20.5     | 20.5      |          |              |         | X     |          |       |
| 386  | 30.3    | 30.3      |           |     | Х      |          | Х        |          | 446  | 25.0     | 25.0      |          |              |         | Х     |          |       |
| 387  | 29.5    | 29.5      |           |     | х      |          | х        |          | 447  | 23.4     | 23.4      |          |              |         | х     |          |       |
| 200  | 29.7    | 29.7      |           |     | v      |          | v        |          | 110  | 21.0     | 21.0      |          |              |         | v     |          |       |
| 300  | 20.7    | 20.7      |           |     | X      |          | X        |          | 440  | 21.9     | 21.9      |          |              |         | X     |          |       |
| 389  | 27.9    | 27.9      |           |     | Х      |          | Х        |          | 449  | 20.4     | 20.4      |          |              |         | Х     |          |       |
| 390  | 27.5    | 27.5      |           |     | х      |          |          |          | 450  | 19.4     | 19.4      |          |              |         | х     |          |       |
| 201  | 27.3    | 27.3      |           |     | v      |          |          |          | 451  | 10.0     | 10.0      |          |              |         | v     |          |       |
| 391  | 21.3    | 21.3      |           |     | X      |          |          |          | 451  | 10.0     | 10.0      |          |              |         | X     |          |       |
| 392  | 27.0    | 27.0      |           |     | Х      |          |          |          | 452  | 18.4     | 18.4      |          |              |         | Х     |          |       |
| 393  | 26.5    | 26.5      |           |     | х      |          |          |          | 453  | 18.0     | 18.0      |          |              |         | х     |          |       |
| 304  | 25.8    | 25.8      |           |     | v      |          |          |          | 151  | 17.5     | 17.5      |          |              |         | v     |          |       |
| 394  | 25.0    | 25.0      |           |     | X      |          |          |          | 404  | 17.5     | 17.5      |          |              |         | X     |          |       |
| 395  | 25.0    | 25.0      |           |     |        | Х        |          |          | 455  | 16.9     | 16.9      |          | Х            |         |       |          |       |
| 396  | 21.5    | 21.5      |           |     |        | x        |          |          | 456  | 16.4     | 16.4      |          | x            |         |       |          |       |
| 207  | 16.0    | 16.0      | 1         |     |        | v        |          |          | 457  | 16.6     | 16.6      |          | v            |         |       |          |       |
| 007  | 10.0    | 10.0      |           |     |        | <b>^</b> |          |          | +57  | 10.0     | 10.0      |          | <b>^</b>     |         |       |          |       |
| 398  | 10.0    | 10.0      |           |     |        | Х        |          |          | 458  | 17.7     | 17.7      |          | Х            |         |       |          |       |
| 399  | 5.0     | 5.0       |           |     |        | х        |          |          | 459  | 19.3     | 19.3      |          | х            |         |       |          |       |
| 400  | 2.2     | 2.2       |           |     |        | v        |          |          | 460  | 20.0     | 20.0      |          | v            |         |       |          |       |
| 404  | 2.2     | 2.2       |           |     |        | ^        |          |          | 404  | 20.9     | 20.9      |          |              |         |       | <u> </u> |       |
| 401  | 1.0     | 1.0       | X         |     |        |          |          |          | 401  | 22.3     | 22.3      |          | X            |         |       |          |       |
| 402  | 0.0     | 0.0       | X         |     |        |          |          |          | 462  | 23.2     | 23.2      |          |              |         | Х     |          |       |
| 403  | 0.0     | 0.0       | x         |     |        |          |          |          | 463  | 23.2     | 23.2      |          |              |         | х     |          |       |
| 404  | 0.0     | 0.0       |           |     |        |          |          |          | 161  | 20.2     | 20.2      |          |              |         | ~     |          |       |
| 404  | 0.0     | 0.0       | ×         |     |        |          |          |          | 404  | 22.2     | 22.2      |          |              |         | X     |          |       |
| 405  | 0.0     | 0.0       | X         |     |        |          |          |          | 465  | 20.3     | 20.3      |          |              |         | Х     |          |       |
| 406  | 0.0     | 0.0       | х         |     |        |          |          |          | 466  | 17.9     | 17.9      |          |              |         | х     |          |       |
| 107  | 0.0     | 0.0       | v         |     |        |          |          |          | 167  | 15.0     | 15.0      |          |              |         | v     |          |       |
| 407  | 0.0     | 0.0       | <b>⊢^</b> |     |        |          |          |          | 407  | 10.2     | 10.2      |          |              |         | ^     |          | I     |
| 408  | 1.2     | 1.2       |           | Х   |        |          |          |          | 468  | 12.3     | 12.3      |          |              |         | Х     |          |       |
| 409  | 3.2     | 3.2       |           | X   |        |          |          |          | 469  | 9.3      | 9.3       |          |              |         | Х     |          |       |
| 410  | 50      | 5.0       | 1         | v   |        |          |          |          | 470  | 6.4      | 6.4       |          |              |         | v     |          |       |
| +10  | 0.9     | 5.9       |           | ^   |        |          |          | ļ        | 470  | 0.4      | 0.4       |          |              |         | ^     |          |       |
| 411  | 8.8     | 8.8       |           | Х   |        |          |          |          | 4/1  | 3.8      | 3.8       |          |              |         | Х     |          |       |
| 412  | 12.0    | 12.0      | I –       | х   |        |          |          |          | 472  | 1.9      | 1.9       |          |              |         | х     |          |       |
| 412  | 15 /    | 15 /      | 1         | v   |        |          |          |          | 472  | 0.0      | 0.0       |          |              |         | v     |          |       |
|      | 10.4    | 10.4      | I         | ^   |        |          |          |          | -13  | 0.9      | 0.9       |          |              |         | ^     |          | I     |
| 414  | 18.9    | 18.9      |           | Х   |        |          |          |          | 474  | 0.0      | 0.0       | X        |              |         |       |          |       |
| 415  | 22.1    | 22.1      | I –       | х   |        |          |          |          | 475  | 0.0      | 0.0       | x        |              |         |       |          |       |
| 416  | 217     | 217       | 1         | v   |        |          |          |          | 476  | 0.0      | 0.0       | v        |              |         |       |          |       |
| +10  | 24.1    | 24.7      | I         | ^   |        |          |          | ļ        | 475  | 0.0      | 0.0       | ^        |              |         |       |          |       |
| 417  | 26.8    | 26.8      |           | Х   |        |          |          |          | 4//  | 0.0      | 0.0       | х        |              |         |       |          |       |
| 418  | 28.7    | 28.7      |           | х   |        |          |          |          | 478  | 0.0      | 0.0       | х        |              |         |       |          |       |
| 410  | 30.6    | 30.6      |           | Y   |        |          |          |          | 479  | 0.0      | 0.0       | x        | İ            |         | İ     |          |       |
| 400  | 00.0    | 00.0      |           |     |        |          |          |          | 400  | 0.0      | 0.0       | <u> </u> |              |         |       |          |       |
| 420  | 32.4    | 32.4      | 1         | X   | 1      | 1        | 1        |          | 480  | 0.0      | 0.0       | X        | 1            |         | 1     |          | 1     |

# ECE/TRANS/180/Add.2 page 66 Annex 5

Table A5-5: Cycle part 1, 481 to 600 s

|      | roller       | speed     |      |     |        |        |                      |               |      | roller | speed   |        |     |        |       |                      |               |
|------|--------------|-----------|------|-----|--------|--------|----------------------|---------------|------|--------|---------|--------|-----|--------|-------|----------------------|---------------|
| time | normal       | reduced   |      |     | indi   | cator  |                      |               | time | normal | reduced |        |     | indic  | ators |                      |               |
| ume  | normai       | speed     |      |     | mu     | cators | •                    |               | ume  | normai | speed   |        |     | muic   | aluis |                      |               |
| s    | km/h         | km/h      | stop | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h   | km/h    | stop   | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 481  | 0.0          | 0.0       | x    |     |        |        | 0                    |               | 541  | 0.0    | 0.0     | х      |     |        |       | 0                    |               |
| 482  | 0.0          | 0.0       | X    |     |        |        |                      |               | 542  | 2.7    | 2.7     |        | х   |        |       |                      |               |
| 483  | 0.0          | 0.0       | х    |     |        |        |                      |               | 543  | 8.0    | 8.0     |        | х   |        |       |                      |               |
| 484  | 0.0          | 0.0       | х    |     |        |        |                      |               | 544  | 16.0   | 16.0    |        | х   |        |       |                      |               |
| 485  | 0.0          | 0.0       | х    |     |        |        |                      |               | 545  | 24.0   | 24.0    |        | Х   |        |       |                      |               |
| 486  | 1.4          | 1.4       |      | х   |        |        |                      |               | 546  | 32.0   | 32.0    |        | х   |        |       |                      |               |
| 487  | 4.5          | 4.5       |      | х   |        |        |                      |               | 547  | 37.2   | 37.2    |        | х   |        |       |                      |               |
| 488  | 8.8          | 8.8       |      | х   |        |        |                      |               | 548  | 40.4   | 40.4    |        | х   |        |       |                      |               |
| 489  | 13.4         | 13.4      |      | х   |        |        |                      |               | 549  | 43.0   | 43.0    |        | х   |        |       |                      |               |
| 490  | 17.3         | 17.3      |      | х   |        |        |                      |               | 550  | 44.6   | 44.6    |        | Х   |        |       |                      |               |
| 491  | 19.2         | 19.2      |      | х   |        |        |                      |               | 551  | 45.2   | 45.2    |        |     | х      |       |                      |               |
| 492  | 19.7         | 19.7      |      | х   |        |        |                      |               | 552  | 45.3   | 45.3    |        |     | х      |       |                      |               |
| 493  | 19.8         | 19.8      |      | х   |        |        |                      |               | 553  | 45.4   | 45.4    |        |     | х      |       |                      |               |
| 494  | 20.7         | 20.7      |      | х   |        |        |                      |               | 554  | 45.5   | 45.5    |        |     | х      |       |                      |               |
| 495  | 23.6         | 23.6      |      | х   |        |        |                      |               | 555  | 45.6   | 45.6    |        |     | х      |       |                      | ļ             |
| 496  | 28.1         | 28.1      |      | х   |        |        |                      |               | 556  | 45.7   | 45.7    |        |     | Х      |       |                      | l             |
| 497  | 32.8         | 32.8      |      | х   |        |        |                      |               | 557  | 45.8   | 45.8    |        |     | Х      |       |                      | l             |
| 498  | 36.3         | 36.3      |      | х   |        |        |                      |               | 558  | 45.9   | 45.9    |        |     | Х      | -     |                      | l             |
| 499  | 37.1         | 37.1      |      |     |        | X      |                      |               | 559  | 46.0   | 46.0    |        |     | X      |       |                      | ļ             |
| 500  | 35.1         | 35.1      |      |     |        | X      |                      | X             | 560  | 46.1   | 46.1    |        |     | X      |       |                      |               |
| 501  | 31.1         | 31.1      |      |     |        | X      |                      | X             | 561  | 46.2   | 46.2    |        |     | X      |       |                      |               |
| 502  | 28.0         | 28.0      |      |     |        | X      |                      | X             | 562  | 46.3   | 46.3    |        |     | X      |       |                      | l             |
| 503  | 27.5         | 27.3      |      | X   |        |        |                      | X             | 503  | 40.4   | 40.4    |        |     | X      |       |                      |               |
| 504  | 29.0         | 29.0      |      | X   |        |        |                      | X             | 565  | 40.7   | 40.7    |        |     | X      |       |                      |               |
| 505  | 34.0         | 34.0      |      | X   |        |        |                      | X             | 566  | 47.2   | 47.2    |        |     | X      |       |                      |               |
| 507  | 38.0         | 38.0      |      | ^   |        | v      |                      | ×             | 567  | 40.0   | 40.0    |        |     | ~      |       |                      |               |
| 508  | 36.1         | 36.1      |      |     |        | × ×    |                      | ^             | 568  | 40.9   | 48.6    |        |     | × ×    |       |                      |               |
| 500  | 31.5         | 31.5      |      |     |        | Ŷ      |                      |               | 569  | 50.5   | 40.0    |        |     | ×      |       |                      |               |
| 510  | 24.5         | 24.5      |      |     |        | x      |                      |               | 570  | 51.0   | 49.8    |        |     | x      |       |                      |               |
| 511  | 17.5         | 17.5      |      |     |        | x      |                      |               | 571  | 51.0   | 50.0    |        |     | x      |       |                      |               |
| 512  | 10.5         | 10.5      |      |     |        | x      |                      |               | 572  | 51.0   | 49.9    |        |     | ~      | x     |                      |               |
| 513  | 4.5          | 4.5       |      |     |        | X      |                      |               | 573  | 50.4   | 49.3    |        |     |        | X     |                      |               |
| 514  | 1.0          | 1.0       | х    |     |        |        |                      |               | 574  | 49.0   | 49.0    |        |     |        | х     |                      |               |
| 515  | 0.0          | 0.0       | х    |     |        |        |                      |               | 575  | 46.7   | 46.7    |        |     |        | х     |                      |               |
| 516  | 0.0          | 0.0       | х    |     |        |        |                      |               | 576  | 44.0   | 44.0    |        |     |        | х     |                      |               |
| 517  | 0.0          | 0.0       | Х    |     |        |        |                      |               | 577  | 41.1   | 41.1    |        |     |        | х     |                      |               |
| 518  | 0.0          | 0.0       | х    |     |        |        |                      |               | 578  | 38.3   | 38.3    |        |     |        | х     |                      |               |
| 519  | 2.9          | 2.9       |      | х   |        |        |                      |               | 579  | 35.4   | 35.4    |        |     |        | х     |                      |               |
| 520  | 8.0          | 8.0       |      | х   |        |        |                      |               | 580  | 31.8   | 31.8    |        |     |        | х     |                      |               |
| 521  | 16.0         | 16.0      |      | х   |        |        |                      |               | 581  | 27.3   | 27.3    |        |     |        | х     |                      |               |
| 522  | 24.0         | 24.0      |      | х   |        |        |                      |               | 582  | 22.4   | 22.4    |        |     |        | Х     |                      | L             |
| 523  | 32.0         | 32.0      |      | х   |        |        |                      |               | 583  | 17.7   | 17.7    |        |     |        | Х     |                      |               |
| 524  | 38.8         | 38.8      |      | х   |        |        |                      |               | 584  | 13.4   | 13.4    |        |     |        | Х     |                      |               |
| 525  | 43.1         | 43.1      |      | X   |        |        |                      |               | 585  | 9.3    | 9.3     |        |     |        | Х     |                      | ļ             |
| 526  | 46.0         | 46.0      |      | X   |        |        |                      |               | 586  | 5.5    | 5.5     |        |     |        | Х     |                      | <b> </b>      |
| 527  | 47.5         | 47.5      |      | X   |        |        |                      |               | 587  | 2.0    | 2.0     |        |     |        | Х     |                      | <b> </b>      |
| 528  | 47.5         | 47.5      |      |     |        | X      |                      |               | 588  | 0.0    | 0.0     | Х      |     |        |       |                      | l             |
| 529  | 44.8         | 44.8      |      |     |        | X      |                      |               | 589  | 0.0    | 0.0     | X      |     |        |       |                      |               |
| 530  | 40.1         | 40.1      |      |     |        | X      |                      |               | 590  | 0.0    | 0.0     | X      |     |        |       |                      | <u> </u>      |
| 531  | <u>ა</u> კ.გ | 33.8      |      |     |        | X      |                      |               | 591  | 0.0    | 0.0     | X      |     |        |       |                      |               |
| 532  | 21.2         | 21.2      |      |     |        | X      |                      |               | 592  | 0.0    | 0.0     | X      |     |        |       |                      |               |
| 524  | 20.0         | 20.0      |      |     |        |        |                      |               | 504  | 0.0    | 0.0     | ~      |     |        |       |                      |               |
| 534  | 7.0          | 7 0       |      |     |        | ×      |                      |               | 505  | 0.0    | 0.0     | ×<br>× |     |        |       |                      |               |
| 536  | 22           | 7.0<br>20 |      |     |        | × ×    |                      |               | 506  | 0.0    | 0.0     | × ×    |     |        |       |                      | <u> </u>      |
| 537  | 0.0          | 0.0       | ×    |     |        | ^      |                      |               | 597  | 0.0    | 0.0     | x      |     |        |       |                      |               |
| 538  | 0.0          | 0.0       | x    |     |        |        |                      |               | 598  | 0.0    | 0.0     | x      |     |        |       |                      |               |
| 539  | 0.0          | 0.0       | x    |     |        |        |                      |               | 599  | 0.0    | 0.0     | x      |     |        |       |                      |               |
| 540  | 0.0          | 0.0       | x    |     |        |        |                      |               | 600  | 0.0    | 0.0     | x      |     |        |       |                      |               |

# ECE/TRANS/180/Add.2 page 67 Annex 5

Table A5-6: Cycle part 2 for vehicle classes 2 and 3, 1 to 120 s

| <b></b> | roller       | speed        |      |        |        |        |       |               |      | roller       | sneed   |      |     |        |       | /              | 1             |
|---------|--------------|--------------|------|--------|--------|--------|-------|---------------|------|--------------|---------|------|-----|--------|-------|----------------|---------------|
|         | Tonici       | reduced      |      |        |        |        |       |               |      | Tonici       | reduced |      |     |        |       |                |               |
| time    | normal       | sneed        |      |        | indi   | cators | 6     |               | time | normal       | sneed   |      |     | indic  | ators |                |               |
|         |              | speeu        |      |        |        |        | no    |               |      |              | Speed   |      |     |        |       | no             |               |
| s       | km/h         | km/h         | stop | acc    | cruise | dec    | gear- | no 1.<br>gear | s    | km/h         | km/h    | stop | acc | cruise | dec   | gear-<br>shift | no 1.<br>gear |
| 1       | 0.0          | 0.0          | х    |        |        |        |       |               | 61   | 23.7         | 23.7    |      | х   |        |       |                | х             |
| 2       | 0.0          | 0.0          | х    |        |        |        |       |               | 62   | 23.8         | 23.8    |      | х   |        |       |                | х             |
| 3       | 0.0          | 0.0          | х    |        |        |        |       |               | 63   | 25.0         | 25.0    |      | х   |        |       |                | х             |
| 4       | 0.0          | 0.0          | x    |        |        |        |       |               | 64   | 27.3         | 27.3    |      | x   |        |       |                | x             |
| 5       | 0.0          | 0.0          | x    |        |        |        |       |               | 65   | 30.4         | 30.4    |      | x   |        |       |                | x             |
| 6       | 0.0          | 0.0          | x    |        |        |        |       |               | 66   | 33.9         | 33.9    |      | x   |        |       |                | x             |
| 7       | 0.0          | 0.0          | Y    |        |        |        |       |               | 67   | 37.3         | 37.3    |      | x   |        |       |                | Y             |
| 8       | 0.0          | 0.0          | v    |        |        |        |       |               | 68   | 30.8         | 30.8    |      | Ŷ   |        |       |                | ×             |
| 9       | 2.3          | 23           | x    |        |        |        |       |               | 69   | 39.5         | 39.5    |      |     |        | Y     |                | ^             |
| 10      | 73           | 73           | ^    | v      |        |        |       |               | 70   | 36.3         | 36.3    |      |     |        | v     |                |               |
| 11      | 15.2         | 15.2         |      | Ŷ      |        |        |       |               | 70   | 31.4         | 31.4    |      |     |        | v     |                |               |
| 12      | 23.0         | 23.0         |      | ×      |        |        |       |               | 72   | 26.5         | 26.5    |      |     |        | × ×   |                |               |
| 12      | 20.0         | 20.0         |      | ×      |        |        |       |               | 73   | 20.0         | 20.0    |      | v   |        | ^     |                | v             |
| 1/      | 30.2         | 30.2         |      |        |        |        |       |               | 73   | 24.2         | 24.2    |      |     |        |       |                | ×             |
| 14      | J9.Z         | J9.Z         |      | ~<br>~ |        |        |       |               | 75   | 24.0         | 24.0    |      | Ŷ   |        |       |                | ^<br>V        |
| 10      | 44.1         | 44.1         |      | ~      |        |        |       |               | 75   | 20.0         | 20.0    |      | ^   |        | v     |                | ×             |
| 10      | 40.1<br>51.2 | 40.1<br>51.2 |      | X      |        |        |       |               | 70   | 27.0         | 27.0    |      |     |        | X     |                | X             |
| 17      | 51.2         | 51.2         |      | X      |        |        |       |               | 70   | 20.0         | 20.0    |      |     |        | X     |                | X             |
| 18      | 53.3         | 53.3         |      | X      |        |        |       |               | 78   | 25.3         | 25.3    |      |     |        | X     |                | X             |
| 19      | 54.5         | 54.5         |      | X      |        |        |       |               | 79   | 24.0         | 24.0    |      | X   |        |       |                | X             |
| 20      | 55.7         | 55.7         |      |        | X      |        |       |               | 80   | 23.3         | 23.3    |      | X   |        |       |                | X             |
| 21      | 56.8         | 56.8         |      |        | X      |        |       |               | 81   | 23.7         | 23.7    |      | X   |        |       |                | X             |
| 22      | 57.5         | 57.5         |      |        | X      |        |       |               | 82   | 24.9         | 24.9    |      | X   |        |       |                | X             |
| 23      | 58.0         | 58.0         |      |        | X      |        |       |               | 83   | 26.4         | 26.4    |      | X   |        |       |                | X             |
| 24      | 58.4         | 58.4         |      |        | Х      |        |       |               | 84   | 27.7         | 27.7    |      | х   |        |       |                | X             |
| 25      | 58.5         | 58.5         |      |        | х      |        |       |               | 85   | 28.3         | 28.3    |      | х   |        |       |                | х             |
| 26      | 58.5         | 58.5         |      |        | х      |        |       |               | 86   | 28.3         | 28.3    |      | х   |        |       |                | х             |
| 27      | 58.6         | 58.6         |      |        | х      |        | х     |               | 87   | 28.1         | 28.1    |      | х   |        |       |                | х             |
| 28      | 58.9         | 58.9         |      |        | х      |        | х     |               | 88   | 28.1         | 28.1    |      | х   |        |       |                | х             |
| 29      | 59.3         | 59.3         |      |        | х      |        | х     |               | 89   | 28.6         | 28.6    |      | х   |        |       |                | х             |
| 30      | 59.8         | 59.8         |      |        | х      |        | х     |               | 90   | 29.8         | 29.8    |      | х   |        |       |                | х             |
| 31      | 60.2         | 60.2         |      |        | х      |        | х     |               | 91   | 31.6         | 31.6    |      | х   |        |       |                | х             |
| 32      | 60.5         | 60.5         |      |        | х      |        | х     |               | 92   | 33.9         | 33.9    |      | х   |        |       |                | х             |
| 33      | 60.8         | 60.8         |      |        | х      |        | х     |               | 93   | 36.5         | 36.5    |      | х   |        |       |                |               |
| 34      | 61.1         | 61.1         |      |        | х      |        | х     |               | 94   | 39.1         | 39.1    |      | х   |        |       |                |               |
| 35      | 61.5         | 61.5         |      |        | х      |        | х     |               | 95   | 41.5         | 41.5    |      | х   |        |       |                |               |
| 36      | 62.0         | 62.0         |      |        | х      |        | х     |               | 96   | 43.3         | 43.3    |      | х   |        |       |                |               |
| 37      | 62.5         | 62.5         |      |        | х      |        | х     |               | 97   | 44.5         | 44.5    |      | х   |        |       |                |               |
| 38      | 63.0         | 63.0         |      |        | х      |        | х     |               | 98   | 45.1         | 45.1    |      | х   |        |       |                |               |
| 39      | 63.4         | 63.4         |      |        | x      |        | х     |               | 99   | 45.1         | 45.1    |      |     |        | х     |                |               |
| 40      | 63.7         | 63.7         |      |        | X      |        | х     |               | 100  | 43.9         | 43.9    |      |     |        | Х     |                |               |
| 41      | 63.8         | 63.8         |      |        | x      |        | х     |               | 101  | 41.4         | 41.4    |      |     |        | Х     |                |               |
| 42      | 63.9         | 63.9         |      |        | х      |        | х     |               | 102  | 38.4         | 38.4    |      |     |        | х     |                |               |
| 43      | 63.8         | 63.8         | l    |        | x      |        | x     |               | 103  | 35.5         | 35.5    | l    | l   |        | х     |                |               |
| 44      | 63.2         | 63.2         |      |        |        | х      | x     |               | 104  | 32.9         | 32.9    |      |     |        | х     |                |               |
| 45      | 61.7         | 61.7         |      |        |        | х      | x     |               | 105  | 31.3         | 31.3    |      |     |        | х     |                |               |
| 46      | 58.9         | 58.9         |      |        |        | х      | x     |               | 106  | 30.7         | 30.7    |      | x   |        |       |                | x             |
| 47      | 55.2         | 55.2         |      |        |        | х      |       |               | 107  | 31.0         | 31.0    |      | x   |        |       |                | x             |
| 48      | 51.0         | 51.0         |      |        |        | х      |       |               | 108  | 32.2         | 32.2    |      | x   |        |       |                | х             |
| 49      | 46.7         | 46.7         |      |        |        | X      |       |               | 109  | 34.0         | 34.0    |      | x   |        |       |                | x             |
| 50      | 42.8         | 42.8         |      |        |        | x      |       |               | 110  | 36.0         | 36.0    |      | x   |        |       |                |               |
| 51      | 40.2         | 40.2         |      |        |        | x      |       |               | 111  | 37.9         | 37.9    |      | x   |        |       |                |               |
| 52      | 38.8         | 38.8         |      |        |        | x      |       |               | 112  | 30.8         | 39.8    |      | x   |        |       |                |               |
| 53      | 37 0         | 37.9         |      |        |        | x      |       |               | 113  | 41.6         | 41.6    |      | x x |        |       |                |               |
| 54      | 36.7         | 36.7         |      |        |        | × ×    |       |               | 114  | <br>         | 43.1    |      | Ŷ   |        |       |                |               |
| 55      | 30.7         | 25.1         |      |        |        | × ×    |       |               | 115  | 41.2         | 41.2    |      | Ŷ   |        |       |                |               |
| 50      | 32.1         | 22.1         |      |        |        | ~      |       |               | 116  | 74.J<br>15 0 | 44.3    |      |     |        |       |                |               |
| 50      | 30 1         | 32.9<br>20.4 |      |        |        | ~      |       |               | 117  | 45.0         | 45.0    |      | Ŷ   |        |       |                |               |
| 57      | 20.4         | 20.4         |      |        |        | X      |       |               | 110  | 40.0         | 40.0    |      |     |        |       | Y              |               |
| 50      | 20.0         | 20.0         |      |        |        | X      |       |               | 110  | 40.8         | 40.8    |      | X   |        |       | X              |               |
| 59      | 25.9         | 25.9         |      |        |        | Х      |       |               | 119  | 46.0         | 46.0    |      | X   |        |       | X              |               |
| 60      | 24.4         | 24.4         | 1    | X      |        |        | 1     | X             | 120  | 46.1         | 46.1    | 1    | X   | 1      | 1     | х              | 1             |

# ECE/TRANS/180/Add.2 page 68 Annex 5

|      | roller        | speed         |          |        |        |        |                      |               |      | roller       | speed   |      |     |        |       |                      |               |
|------|---------------|---------------|----------|--------|--------|--------|----------------------|---------------|------|--------------|---------|------|-----|--------|-------|----------------------|---------------|
| time | normal        | reduced       |          |        | indi   | cators | \$                   |               | time | normal       | reduced |      |     | indic  | ators |                      |               |
| line | normai        | speed         |          |        |        |        |                      |               | unio | norma        | speed   |      |     |        |       |                      | 1             |
| s    | km/h          | km/h          | stop     | acc    | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h         | km/h    | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 121  | 46.2          | 46.2          |          | х      |        |        | х                    |               | 181  | 57.0         | 57.0    |      |     |        | х     |                      |               |
| 122  | 46.1          | 46.1          |          | х      |        |        | х                    |               | 182  | 56.3         | 56.3    |      |     |        | х     |                      |               |
| 123  | 45.7          | 45.7          |          | х      |        |        | х                    |               | 183  | 55.2         | 55.2    |      |     |        | х     |                      |               |
| 124  | 45.0          | 45.0          |          | х      |        |        |                      |               | 184  | 53.9         | 53.9    |      |     |        | х     |                      |               |
| 125  | 44.3          | 44.3          |          | Х      |        |        |                      |               | 185  | 52.6         | 52.6    |      |     |        | х     |                      |               |
| 126  | 44.7          | 44.7          |          | X      |        |        |                      |               | 186  | 51.3         | 51.3    |      | X   |        |       |                      |               |
| 127  | 40.8          | 40.8          |          | X      |        |        |                      |               | 107  | 50.1         | 50.1    |      | X   |        |       |                      |               |
| 120  | 53.6          | 53.6          |          | x      |        |        |                      |               | 189  | 53.1         | 53.1    |      | x   |        |       |                      |               |
| 130  | 56.9          | 56.9          |          | x      |        |        |                      |               | 190  | 54.8         | 54.8    |      | x   |        |       |                      |               |
| 131  | 59.4          | 59.4          |          | x      |        |        |                      |               | 191  | 56.6         | 56.6    |      | x   |        |       |                      |               |
| 132  | 60.2          | 60.2          |          |        |        | х      |                      |               | 192  | 58.5         | 58.5    |      | х   |        |       |                      |               |
| 133  | 59.3          | 59.3          |          |        |        | х      |                      |               | 193  | 60.6         | 60.6    |      | х   |        |       |                      |               |
| 134  | 57.5          | 57.5          |          |        |        | х      |                      |               | 194  | 62.8         | 62.8    |      | х   |        |       |                      |               |
| 135  | 55.4          | 55.4          |          |        |        | х      |                      |               | 195  | 64.9         | 64.9    |      | х   |        |       |                      |               |
| 136  | 52.5          | 52.5          |          |        |        | х      |                      |               | 196  | 67.0         | 67.0    |      | х   |        |       |                      |               |
| 137  | 47.9          | 47.9          |          |        |        | х      |                      |               | 197  | 69.1         | 69.1    |      | х   |        |       |                      |               |
| 138  | 41.4          | 41.4          |          |        |        | X      |                      |               | 198  | 70.9         | 70.9    |      | X   |        |       |                      |               |
| 139  | 34.4          | 34.4          |          | v      |        | X      |                      |               | 199  | 72.2         | 72.2    |      | X   |        | v     |                      |               |
| 140  | 27.0          | 27.0          |          | X      |        |        |                      | X             | 200  | 72.8         | 72.0    |      |     |        | X     |                      |               |
| 142  | 26.5          | 26.5          |          | ×      |        |        |                      | × ×           | 201  | 72.0         | 72.0    |      |     |        | × ×   |                      |               |
| 143  | 28.7          | 28.7          |          | x      |        |        |                      | x             | 203  | 70.5         | 70.5    |      |     |        | x     |                      |               |
| 144  | 33.8          | 33.8          |          | x      |        |        |                      | ~             | 204  | 68.8         | 68.8    |      |     |        | x     |                      |               |
| 145  | 40.3          | 40.3          |          | х      |        |        |                      |               | 205  | 67.1         | 67.1    |      |     |        | х     |                      |               |
| 146  | 46.6          | 46.6          |          | х      |        |        |                      |               | 206  | 65.4         | 65.4    |      |     |        | х     |                      |               |
| 147  | 50.4          | 50.4          |          | х      |        |        |                      |               | 207  | 63.9         | 63.9    |      |     |        | х     |                      |               |
| 148  | 53.9          | 53.9          |          | х      |        |        |                      |               | 208  | 62.7         | 62.7    |      |     |        | х     |                      |               |
| 149  | 56.9          | 56.9          |          | х      |        |        |                      |               | 209  | 61.8         | 61.8    |      |     |        | х     |                      |               |
| 150  | 59.1          | 59.1          |          | х      |        |        |                      |               | 210  | 61.0         | 61.0    |      |     |        | х     |                      |               |
| 151  | 60.6          | 60.6          |          | X      |        |        |                      |               | 211  | 60.4         | 60.4    |      |     |        | X     | X                    |               |
| 152  | 62.6          | 62.6          |          | X      |        |        |                      |               | 212  | 60.0         | 60.0    |      | v   |        | X     | X                    |               |
| 153  | 63.1          | 63.1          |          | ^      |        | x      |                      |               | 213  | 61.4         | 61.4    |      | x   |        |       | ×                    |               |
| 155  | 62.9          | 62.9          |          |        |        | x      |                      |               | 215  | 63.3         | 63.3    |      | x   |        |       | X                    |               |
| 156  | 61.6          | 61.6          |          |        |        | х      |                      |               | 216  | 65.5         | 65.5    |      | х   |        |       | х                    |               |
| 157  | 59.4          | 59.4          |          |        |        | х      |                      |               | 217  | 67.4         | 67.4    |      | х   |        |       | Х                    |               |
| 158  | 56.6          | 56.6          |          |        |        | Х      |                      |               | 218  | 68.5         | 68.5    |      | х   |        |       | х                    |               |
| 159  | 53.7          | 53.7          |          |        |        | х      |                      |               | 219  | 68.7         | 68.7    |      |     |        | х     | Х                    |               |
| 160  | 50.7          | 50.7          |          |        |        | x      |                      |               | 220  | 68.1         | 68.1    |      |     |        | х     | х                    |               |
| 161  | 47.7          | 47.7          |          |        |        | X      |                      |               | 221  | 67.2         | 67.2    |      |     |        | X     | X                    |               |
| 162  | 45.0          | 45.0          |          |        |        | X      |                      |               | 222  | 66.5         | 66.5    |      |     |        | X     | X                    |               |
| 164  | 43.0<br>/1 0  | 43.0          | <u> </u> |        |        | ×      |                      |               | 223  | 05.9<br>65.5 | 65.5    |      |     |        | ×     | ×                    |               |
| 165  | 41.9          | 41.9          |          |        |        | x      |                      |               | 224  | 64.9         | 64.9    |      |     |        | ×     | ×                    |               |
| 166  | 41.3          | 41.3          |          | x      |        |        |                      |               | 226  | 64.1         | 64.1    |      |     |        | x     | x                    |               |
| 167  | 40.9          | 40.9          | 1        | x      |        |        |                      |               | 227  | 63.0         | 63.0    |      |     |        | x     | x                    |               |
| 168  | 41.8          | 41.8          |          | х      |        |        |                      |               | 228  | 62.1         | 62.1    |      |     |        | х     | х                    |               |
| 169  | 42.1          | 42.1          |          | х      |        |        |                      |               | 229  | 61.6         | 61.6    |      | х   |        |       | Х                    |               |
| 170  | 41.8          | 41.8          |          | х      |        |        |                      |               | 230  | 61.7         | 61.7    |      | х   |        |       | х                    |               |
| 171  | 41.3          | 41.3          |          | х      |        |        |                      |               | 231  | 62.3         | 62.3    |      | x   |        |       | Х                    |               |
| 172  | 41.5          | 41.5          |          | X      |        |        |                      |               | 232  | 63.5         | 63.5    |      | X   |        |       | X                    |               |
| 1/3  | 43.5          | 43.5          |          | X      |        |        |                      |               | 233  | 65.3         | 65.3    |      | X   |        |       | X                    |               |
| 1/4  | 40.5<br>7 01/ | 40.5          |          | ×      |        |        |                      |               | 234  | 607.3        | 60.3    |      | ×   |        |       | ×                    |               |
| 176  |               | -+9.7<br>52 A |          | ^<br>¥ |        |        |                      |               | 236  | 71 4         | 71 4    |      | ×   |        |       | ^<br>¥               |               |
| 177  | 55.0          | 55.0          |          | x      |        |        |                      |               | 237  | 73.5         | 73.5    |      | x   |        |       | ^                    |               |
| 178  | 56.5          | 56.5          |          | x      |        |        |                      |               | 238  | 75.6         | 75.6    |      | x   |        |       |                      |               |
| 179  | 57.1          | 57.1          |          | х      | l      |        |                      |               | 239  | 77.7         | 75.7    |      | x   |        |       |                      |               |
| 180  | 57.3          | 57.3          |          |        |        | х      |                      |               | 240  | 79.7         | 76.7    |      | х   |        |       |                      |               |

# ECE/TRANS/180/Add.2 page 69 Annex 5

| Table A5-8: Cycle part 2 for vehicle classes 2 and 3, 241 to 360 | ) s |
|------------------------------------------------------------------|-----|
|------------------------------------------------------------------|-----|

|      | roller       | speed        |      |     |        |        |                      |               |      | roller       | speed        |      |     |        |       |                      |               |
|------|--------------|--------------|------|-----|--------|--------|----------------------|---------------|------|--------------|--------------|------|-----|--------|-------|----------------------|---------------|
| time | normal       | reduced      |      |     | indi   | cators | 5                    |               | time | normal       | reduced      |      |     | indic  | ators |                      |               |
|      | normai       | speed        |      |     |        |        | ,<br>                |               | unie | normai       | speed        |      |     | maio   |       |                      |               |
| s    | km/h         | km/h         | stop | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h         | km/h         | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 241  | 81.5         | 77.5         |      | х   |        |        |                      |               | 301  | 68.3         | 68.3         |      |     |        | х     |                      |               |
| 242  | 83.0         | 78.0         |      | х   |        |        |                      |               | 302  | 67.3         | 67.3         |      |     |        | х     |                      |               |
| 243  | 84.5         | 78.5         |      | х   |        |        |                      |               | 303  | 66.1         | 66.1         |      |     |        | х     |                      |               |
| 244  | 86.0         | 79.0         |      | х   |        |        |                      |               | 304  | 63.9         | 63.9         |      |     |        | Х     | -                    |               |
| 245  | 87.4         | 79.4         |      | X   |        |        |                      |               | 305  | 60.2         | 60.2         |      |     |        | X     |                      |               |
| 240  | 88.7         | /9./<br>00.1 |      | X   |        |        |                      |               | 300  | 54.9<br>49.1 | 54.9         |      |     |        | X     |                      |               |
| 247  | 09.0         | 00.1<br>90.7 |      | X   |        |        |                      |               | 200  | 40.1         | 40.1         |      |     |        | X     |                      |               |
| 240  | 90.2         | 81.2         |      | × × |        |        |                      |               | 309  | 36.0         | 36.0         |      |     |        | × ×   |                      |               |
| 250  | 91.2         | 81.5         |      | x   |        |        |                      |               | 310  | 33.9         | 33.9         |      |     |        | x     |                      |               |
| 251  | 91.8         | 81.8         |      | x   |        |        |                      |               | 311  | 33.9         | 33.9         |      | х   |        | ~     |                      |               |
| 252  | 92.4         | 82.4         |      | х   |        |        |                      |               | 312  | 36.5         | 36.5         |      | х   |        |       |                      |               |
| 253  | 93.0         | 83.0         |      | х   |        |        |                      |               | 313  | 41.0         | 41.0         |      | х   |        |       |                      |               |
| 254  | 93.6         | 83.6         |      | х   |        |        |                      |               | 314  | 45.3         | 45.3         |      | х   |        |       |                      |               |
| 255  | 94.1         | 84.1         |      |     | х      |        |                      |               | 315  | 49.2         | 49.2         |      | х   |        |       |                      |               |
| 256  | 94.3         | 84.3         |      |     | х      |        |                      |               | 316  | 51.5         | 51.5         |      | х   |        |       |                      |               |
| 257  | 94.4         | 84.4         |      |     | х      |        |                      |               | 317  | 53.2         | 53.2         |      | х   |        |       |                      |               |
| 258  | 94.4         | 84.4         |      |     | x      |        |                      |               | 318  | 53.9         | 53.9         |      | Х   |        |       |                      |               |
| 259  | 94.3         | 84.3         |      |     | X      |        |                      |               | 319  | 53.9         | 53.9         |      | х   |        |       |                      |               |
| 260  | 94.3         | 84.3         |      |     | X      |        |                      |               | 320  | 53.7         | 53.7         |      | X   |        |       |                      |               |
| 201  | 94.2         | 84.Z         |      |     | X      |        |                      |               | 321  | 53.7         | 53.7         |      | X   |        |       |                      |               |
| 202  | 94.2         | 04.Z         |      |     | ×      |        | ×                    |               | 322  | 55.4         | 55.4         |      | ×   |        |       |                      |               |
| 203  | 94.2         | 84.1         |      |     | × ×    |        | × ×                  |               | 324  | 56.8         | 56.8         |      | × × |        |       |                      |               |
| 265  | 94.0         | 84.0         |      |     | x      |        | x                    |               | 325  | 58.1         | 58.1         |      | x   |        |       |                      |               |
| 266  | 94.0         | 84.0         |      |     | X      |        | x                    |               | 326  | 58.8         | 58.8         |      | ~   |        | х     |                      |               |
| 267  | 93.9         | 83.9         |      |     | x      |        | x                    |               | 327  | 58.2         | 58.2         |      |     |        | х     |                      |               |
| 268  | 93.9         | 83.9         |      |     | х      |        | x                    |               | 328  | 55.8         | 55.8         |      |     |        | х     |                      |               |
| 269  | 93.9         | 83.9         |      |     | х      |        | х                    |               | 329  | 52.6         | 52.6         |      |     |        | Х     |                      |               |
| 270  | 93.9         | 83.9         |      |     | х      |        | х                    |               | 330  | 49.2         | 49.2         |      |     |        | х     |                      |               |
| 271  | 93.9         | 83.9         |      |     | х      |        | х                    |               | 331  | 47.6         | 47.6         |      | х   |        |       |                      |               |
| 272  | 94.0         | 84.0         |      |     | X      |        | X                    |               | 332  | 48.4         | 48.4         |      | Х   |        |       |                      |               |
| 273  | 94.0         | 84.0         |      |     | X      |        | X                    |               | 333  | 51.8         | 51.8         |      | X   |        |       |                      |               |
| 274  | 94.1         | 84.1         |      |     | X      |        | X                    |               | 334  | 55.7         | 55.7         |      | X   |        |       |                      |               |
| 275  | 94.2         | 04.Z         |      |     | ×      |        |                      |               | 330  | 59.0<br>63.0 | 63.0         |      | ×   |        |       |                      |               |
| 270  | 94.5         | 84.4         |      |     | ×      |        |                      |               | 337  | 65.9         | 65.9         |      | × × |        |       |                      |               |
| 278  | 94.5         | 84.5         |      |     | x      |        |                      |               | 338  | 68.1         | 68.1         |      | x   |        |       |                      |               |
| 279  | 94.5         | 84.5         |      |     | x      |        |                      |               | 339  | 69.8         | 69.8         |      | x   |        |       |                      |               |
| 280  | 94.5         | 84.5         |      |     | x      |        |                      |               | 340  | 71.1         | 71.1         |      | х   |        |       |                      |               |
| 281  | 94.5         | 84.5         |      |     | х      |        |                      |               | 341  | 72.1         | 72.1         |      | х   |        |       |                      |               |
| 282  | 94.4         | 84.4         |      |     | x      |        |                      |               | 342  | 72.9         | 72.9         |      | х   |        |       |                      |               |
| 283  | 94.5         | 84.5         |      |     | x      |        |                      |               | 343  | 73.7         | 73.7         |      | х   |        |       |                      |               |
| 284  | 94.6         | 84.6         |      |     | X      |        |                      |               | 344  | 74.4         | 74.4         |      | X   |        |       |                      |               |
| 285  | 94.7         | 84.7         |      |     | X      |        |                      |               | 345  | /5.1         | /5.1         |      | X   |        |       |                      |               |
| 200  | 94.8         | 04.8<br>8/ 0 |      |     | ×      |        |                      |               | 340  | 76.5         | 76.5         |      | ×   |        |       |                      |               |
| 288  | 94.9<br>Q4 R | 84.9<br>84.8 |      |     | ×      |        |                      |               | 348  | 77.2         | 77.2         |      | ×   |        |       |                      |               |
| 289  | 94.3         | 84.3         |      |     |        | x      |                      |               | 349  | 77.8         | 77.8         |      | x   |        |       |                      |               |
| 290  | 93.3         | 83.3         |      |     |        | x      |                      |               | 350  | 78.5         | 78.5         |      | x   |        |       |                      |               |
| 291  | 91.7         | 82.7         |      |     |        | x      |                      |               | 351  | 79.2         | 79.2         |      | x   |        |       |                      |               |
| 292  | 89.6         | 81.6         |      |     |        | х      |                      |               | 352  | 80.0         | 80.0         |      | х   |        |       |                      |               |
| 293  | 87.0         | 81.0         |      |     |        | х      |                      |               | 353  | 81.0         | 81.0         |      | х   |        |       |                      |               |
| 294  | 84.1         | 80.1         |      |     |        | х      |                      |               | 354  | 82.0         | 82.0         |      | х   |        |       |                      |               |
| 295  | 81.2         | 79.2         |      |     |        | х      |                      |               | 355  | 82.9         | 82.9         |      | х   |        |       |                      |               |
| 296  | 78.4         | 78.4         |      |     |        | X      |                      |               | 356  | 83.7         | 83.7         |      | х   |        |       |                      |               |
| 297  | /5./         | /5./         |      |     |        | X      |                      |               | 357  | 84.2         | 84.2         |      |     | X      |       |                      |               |
| 298  | 71 1         | 71 1         |      |     |        | ×      |                      |               | 350  | 84.4         | 04.4<br>21 5 |      |     | ×      |       |                      |               |
| 299  | 60.5         | 60.5         |      |     |        | ~<br>~ |                      |               | 360  | 04.3<br>84 / | 84.0<br>84.1 |      |     | ~      |       |                      |               |
| 500  | 09.0         | 09.0         | 1    |     | 1      | · ^    | 1                    |               | 000  | 07.4         | 04.4         |      |     | · ∧    |       |                      | 1             |

# ECE/TRANS/180/Add.2 page 70 Annex 5

Table A5-9: Cycle part 2 for vehicle classes 2 and 3, 361 to 480 s

|            | roller       | speed        |      |     |        |       |                      |               |      | roller        | speed   |      |     |        |       |                      |               |
|------------|--------------|--------------|------|-----|--------|-------|----------------------|---------------|------|---------------|---------|------|-----|--------|-------|----------------------|---------------|
| timo       | normal       | reduced      |      |     | indi   | cator |                      |               | timo | normal        | reduced |      |     | indic  | ators |                      |               |
| ume        | normai       | speed        |      | -   |        |       |                      |               | ume  | normai        | speed   |      |     | muic   | alors |                      | -             |
| s          | km/h         | km/h         | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h          | km/h    | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 361        | 84.1         | 84.1         |      |     | х      |       |                      |               | 421  | 63.0          | 63.0    |      |     | х      |       | х                    |               |
| 362        | 83.7         | 83.7         |      |     | х      |       |                      |               | 422  | 63.6          | 63.6    |      |     | х      |       | х                    |               |
| 363        | 83.2         | 83.2         |      |     | х      |       |                      |               | 423  | 63.9          | 63.9    |      |     | х      |       | х                    |               |
| 364        | 82.8         | 82.8         |      |     | х      |       |                      |               | 424  | 63.8          | 63.8    |      |     | х      |       | х                    |               |
| 365        | 82.6         | 82.6         |      |     | х      |       |                      |               | 425  | 63.6          | 63.6    |      |     | х      |       | х                    |               |
| 366        | 82.5         | 82.5         |      |     | х      |       |                      |               | 426  | 63.3          | 63.3    |      |     |        | х     | х                    |               |
| 367        | 82.4         | 82.4         |      |     | х      |       |                      |               | 427  | 62.8          | 62.8    |      |     |        | х     | х                    |               |
| 368        | 82.3         | 82.3         |      |     | х      |       |                      |               | 428  | 61.9          | 61.9    |      |     |        | х     | х                    |               |
| 369        | 82.2         | 82.2         |      |     | x      |       |                      |               | 429  | 60.5          | 60.5    |      |     | -      | х     | х                    |               |
| 370        | 82.2         | 82.2         |      |     | X      |       |                      |               | 430  | 58.6          | 58.6    |      |     |        | х     | х                    |               |
| 371        | 82.2         | 82.2         |      |     | X      |       |                      |               | 431  | 56.5          | 56.5    |      |     |        | х     | х                    |               |
| 372        | 82.1         | 82.1         |      |     | X      |       |                      |               | 432  | 54.6          | 54.6    |      |     |        | X     | х                    |               |
| 3/3        | 81.9         | 81.9         |      |     | X      |       |                      |               | 433  | 53.8          | 53.8    |      | X   |        |       | х                    |               |
| 374        | 81.6         | 81.6         |      |     | X      |       |                      |               | 434  | 54.5          | 54.5    |      | X   |        |       | х                    |               |
| 375        | 81.3         | 81.3         |      |     | X      |       |                      |               | 435  | 56.1          | 56.1    |      | X   |        |       | X                    |               |
| 3/6        | 81.1         | 81.1         |      |     | X      |       |                      |               | 436  | 57.9          | 57.9    |      | X   |        |       | X                    |               |
| 3//        | 80.8         | 80.8         |      |     | X      |       |                      |               | 437  | 59.0          | 59.6    |      | X   |        |       | X                    |               |
| 270        | 00.0<br>90.4 | 00.0         |      |     | X      |       |                      |               | 430  | 01.Z          | 62.2    |      | X   |        |       | X                    |               |
| 200        | 00.4<br>00.1 | 00.4         |      |     | X      |       |                      |               | 439  | 62.3          | 62.0    |      | X   |        |       | X                    |               |
| 201        | 00.1<br>70.7 | 00.1<br>70.7 |      |     | X      |       |                      |               | 440  | 03.1          | 62.6    |      | X   |        | v     | X                    |               |
| 201        | 79.7         | 79.7         |      |     | X      |       |                      |               | 441  | 62.5          | 62.5    |      |     |        | X     | X                    |               |
| 302        | 76.8         | 76.8         |      |     | ×      |       |                      |               | 442  | 62.7          | 62.7    |      |     |        | X     | ×                    |               |
| 384        | 70.0         | 70.0         |      |     | ^      | v     |                      |               | 443  | 60.9          | 60.0    |      |     |        | ×     | ~                    |               |
| 385        | 69.4         | 69.4         |      |     |        | ×     |                      |               | 444  | 58.7          | 58.7    |      |     |        | ×     | ×                    |               |
| 386        | 64.0         | 64.0         |      |     |        | × ×   |                      |               | 446  | 56.4          | 56.4    |      |     |        | ×     | ~<br>×               |               |
| 387        | 58.6         | 58.6         |      |     |        | Ŷ     |                      |               | 447  | 54 5          | 54.5    |      |     |        | x     | ×                    |               |
| 388        | 53.2         | 53.2         |      |     |        | x     |                      |               | 448  | 53.3          | 53.3    |      | x   |        | ^     | x                    |               |
| 389        | 47.8         | 47.8         |      |     |        | x     |                      |               | 449  | 53.0          | 53.0    |      | x   |        |       | x                    |               |
| 390        | 42.4         | 42.4         |      |     |        | x     |                      |               | 450  | 53.5          | 53.5    |      | x   |        |       | x                    |               |
| 391        | 37.0         | 37.0         |      |     |        | X     |                      |               | 451  | 54.6          | 54.6    |      | X   |        |       | x                    |               |
| 392        | 33.0         | 33.0         |      | х   |        |       |                      |               | 452  | 56.1          | 56.1    |      | х   |        |       | х                    |               |
| 393        | 30.9         | 30.9         |      | х   |        |       |                      |               | 453  | 57.6          | 57.6    |      | х   |        |       | х                    |               |
| 394        | 30.9         | 30.9         |      | х   |        |       |                      |               | 454  | 58.9          | 58.9    |      | х   |        |       | х                    |               |
| 395        | 33.5         | 33.5         |      | х   |        |       |                      |               | 455  | 59.8          | 59.8    |      | х   |        |       | х                    |               |
| 396        | 38.0         | 38.0         |      | х   |        |       |                      |               | 456  | 60.3          | 60.3    |      | х   |        |       | х                    |               |
| 397        | 42.5         | 42.5         |      | х   |        |       |                      |               | 457  | 60.7          | 60.7    |      | х   |        |       | х                    |               |
| 398        | 47.0         | 47.0         |      | х   |        |       |                      |               | 458  | 61.3          | 61.3    |      | х   |        |       | х                    |               |
| 399        | 51.0         | 51.0         |      | х   |        |       |                      |               | 459  | 62.3          | 62.3    |      | х   |        |       | х                    |               |
| 400        | 53.5         | 53.5         |      | х   |        |       |                      |               | 460  | 64.1          | 64.1    |      | х   |        |       | х                    |               |
| 401        | 55.1         | 55.1         |      | х   |        |       |                      |               | 461  | 66.2          | 66.2    |      | х   |        |       | Х                    |               |
| 402        | 56.4         | 56.4         |      | х   |        |       |                      |               | 462  | 68.1          | 68.1    |      | х   |        |       | Х                    |               |
| 403        | 57.3         | 57.3         |      | х   |        |       |                      |               | 463  | 69.7          | 69.7    |      | х   |        |       | Х                    |               |
| 404        | 58.1         | 58.1         |      | X   |        |       |                      |               | 464  | 70.4          | 70.4    |      | Х   |        |       | Х                    |               |
| 405        | 58.8         | 58.8         |      | X   |        |       |                      |               | 465  | /0.7          | /0.7    |      | X   |        |       | Х                    |               |
| 406        | 59.4         | 59.4         |      | X   |        |       |                      |               | 466  | /0.7          | /0.7    |      |     | X      |       |                      |               |
| 407        | 59.8         | 59.8         |      |     | X      |       |                      |               | 467  | /0.7          | /0.7    |      |     | X      |       |                      |               |
| 408        | 59.7         | 59.7         |      |     | X      |       |                      |               | 468  | 70.7          | 70.7    |      |     | X      |       |                      |               |
| 409        | 59.4         | 59.4         |      |     | X      |       |                      |               | 409  | 70.6          | 70.6    |      |     | X      |       |                      |               |
| 410        | 59.2         | 59.2         |      |     | X      |       |                      |               | 4/0  | 70.5          | 70.5    |      |     | X      |       |                      |               |
| 411        | 50.2         | 59.Z         |      |     | ×      |       |                      |               | 4/1  | 70.3          | 70.3    |      |     | X      |       |                      |               |
| 412        | 09.0<br>60 0 | 09.0         |      |     | ~      |       |                      |               | 412  | 70.2          | 70.2    |      |     | ~      |       |                      |               |
| 413        | 60.5         | 0.00<br>60 5 |      |     | ~      |       |                      |               | 473  | 1.0.1<br>60.9 | 60.9    |      |     | ~      |       |                      |               |
| <u>414</u> | 61.0         | 61.0         |      |     | Ŷ      |       |                      |               | 475  | 60.5          | 60.5    |      |     | ^<br>¥ |       |                      |               |
| 416        | 61.0         | 61.0         |      |     | x      |       |                      |               | 476  | 69.1          | 69.1    |      |     | x      |       |                      |               |
| 417        | 61.3         | 61.3         |      |     | x      |       |                      |               | 477  | 69.1          | 69.1    |      |     | x      |       |                      |               |
| 418        | 61.4         | 61.4         |      |     | x      |       |                      |               | 478  | 69.5          | 69.5    |      |     | x      |       |                      |               |
| 419        | 61.7         | 61.7         |      |     | x      |       |                      |               | 479  | 70.3          | 70.3    |      |     | x      |       | х                    |               |
| 420        | 62.3         | 62.3         |      |     | x      |       |                      |               | 480  | 71.2          | 71.2    |      |     | x      |       | х                    |               |

# ECE/TRANS/180/Add.2 page 71 Annex 5

|      |         |         |            |       |        |     | Table | A3-10 | : Cyci | e part 2 | for veni     | cie ci | asse | es z and | 1 3, 4 | to 161 | 600 S |  |
|------|---------|---------|------------|-------|--------|-----|-------|-------|--------|----------|--------------|--------|------|----------|--------|--------|-------|--|
|      | roller  | speed   |            |       |        |     |       |       |        | roller   | speed        |        |      |          |        |        |       |  |
|      |         | reduced | indiastore |       |        |     |       |       |        |          | reduced      |        |      |          |        |        |       |  |
| time | normal  | sneed   | indicators |       |        | rs  |       | time  | normal | sneed    | indicators   |        |      |          |        |        |       |  |
|      |         | opecu   |            |       |        |     | no    |       |        |          | Speca        |        |      |          |        | no     |       |  |
| e    | km/h    | km/h    | ston       | 200   | cruisa | dec | noar- | no 1. | e      | km/h     | km/h         | ston   | 200  | cruiso   | dec    | noar-  | no 1. |  |
| 3    | KIII/II | KIII/II | stop       | acc   | ciuise | uec | geal- | gear  | 3      | K11/11   | KIII/II      | Stop   | acc  | cruise   | ucc    | geal-  | gear  |  |
| 101  | 72.0    | 72.0    |            |       | V      |     | Shint |       | 511    | 65.2     | 65.2         |        | v    |          |        | Shin   |       |  |
| 401  | 72.0    | 72.0    |            |       | X      |     | X     |       | 541    | 00.0     | 00.0         |        | X    |          |        |        |       |  |
| 482  | 72.6    | 72.6    |            |       | X      |     | X     |       | 542    | 69.6     | 69.6         |        | X    |          |        |        |       |  |
| 483  | /2.8    | /2.8    |            |       | X      |     | X     |       | 543    | 72.3     | /2.3         |        | X    |          |        |        |       |  |
| 484  | 72.7    | 72.7    |            |       | Х      |     | х     |       | 544    | 73.9     | 73.9         |        | Х    |          |        |        |       |  |
| 485  | 72.0    | 72.0    |            |       |        | х   | х     |       | 545    | 75.0     | 75.0         |        | х    |          |        |        |       |  |
| 486  | 70.3    | 70.3    |            |       |        | х   |       |       | 546    | 75.7     | 75.7         |        | х    |          |        |        |       |  |
| 487  | 67.7    | 67.7    |            |       |        | x   |       |       | 547    | 76.5     | 76.5         |        | х    |          |        |        |       |  |
| 488  | 64.4    | 64.4    |            |       |        | х   |       |       | 548    | 77.3     | 77.3         |        | х    |          |        |        |       |  |
| 489  | 61.0    | 61.0    |            |       |        | х   |       |       | 549    | 78.2     | 78.2         |        | х    |          |        |        |       |  |
| 490  | 57.6    | 57.6    |            |       |        | х   |       |       | 550    | 78.9     | 78.9         |        | х    |          |        |        |       |  |
| 491  | 54 0    | 54.0    |            |       |        | x   |       |       | 551    | 79.4     | 79.4         |        | x    |          |        |        |       |  |
| 492  | 49.7    | 49.7    |            |       |        | x   |       |       | 552    | 79.6     | 79.6         |        |      | x        |        |        |       |  |
| 102  | 10.1    | 10.1    |            |       |        | v   |       |       | 553    | 70.3     | 70.3         |        |      | v        |        |        |       |  |
| 400  | 38.2    | 38.2    |            |       |        | ~   |       |       | 554    | 78.8     | 78.8         |        |      | ×        |        |        |       |  |
| 494  | 21.2    | 21.2    |            |       |        | ~   |       |       | 554    | 70.0     | 70.0         |        |      | ×        |        |        |       |  |
| 495  | 31.2    | 31.2    |            |       |        | X   |       |       | 555    | 70.1     | 70.1         |        |      | X        |        |        |       |  |
| 496  | 24.0    | 24.0    |            |       |        | X   |       |       | 556    | //.5     | //.5         |        |      | X        |        |        |       |  |
| 497  | 16.8    | 16.8    |            |       |        | х   |       |       | 557    | 77.2     | 77.2         |        |      | Х        |        |        |       |  |
| 498  | 10.4    | 10.4    |            |       |        | х   |       |       | 558    | 77.2     | 77.2         |        |      | х        |        |        |       |  |
| 499  | 5.7     | 5.7     |            |       |        | х   |       |       | 559    | 77.5     | 77.5         |        |      | х        |        |        |       |  |
| 500  | 2.8     | 2.8     | х          |       |        |     |       |       | 560    | 77.9     | 77.9         |        |      | х        |        |        |       |  |
| 501  | 1.6     | 1.6     | х          |       |        |     |       |       | 561    | 78.5     | 78.5         |        |      | х        |        |        |       |  |
| 502  | 0.3     | 0.3     | х          |       |        |     |       |       | 562    | 79.1     | 79.1         |        |      | х        |        |        |       |  |
| 503  | 0.0     | 0.0     | x          |       |        |     |       |       | 563    | 79.6     | 79.6         |        |      | x        |        |        |       |  |
| 504  | 0.0     | 0.0     | x          |       |        |     |       |       | 564    | 80.0     | 80.0         |        |      | x        |        |        |       |  |
| 505  | 0.0     | 0.0     | ×          |       |        |     |       |       | 565    | 80.2     | 80.2         |        |      | v        |        |        |       |  |
| 505  | 0.0     | 0.0     |            |       |        |     |       |       | 566    | 80.2     | <u> </u>     |        |      | ×        |        |        |       |  |
| 500  | 0.0     | 0.0     | <u>^</u>   |       |        |     |       |       | 500    | 00.3     | 00.3         |        |      | <u>^</u> |        |        |       |  |
| 507  | 0.0     | 0.0     | X          |       |        |     |       |       | 507    | 70.0     | 00.1<br>70.0 |        |      | X        |        |        |       |  |
| 508  | 0.0     | 0.0     | X          |       |        |     |       |       | 508    | 79.8     | 79.8         |        |      | X        |        |        |       |  |
| 509  | 0.0     | 0.0     | X          |       |        |     |       |       | 569    | /9.5     | /9.5         |        |      | X        |        |        |       |  |
| 510  | 0.0     | 0.0     | Х          |       |        |     |       |       | 570    | 79.1     | 79.1         |        |      | х        |        |        |       |  |
| 511  | 0.0     | 0.0     | Х          |       |        |     |       |       | 571    | 78.8     | 78.8         |        |      | х        |        |        |       |  |
| 512  | 0.0     | 0.0     | Х          |       |        |     |       |       | 572    | 78.6     | 78.6         |        |      | х        |        |        |       |  |
| 513  | 0.0     | 0.0     | х          |       |        |     |       |       | 573    | 78.4     | 78.4         |        |      | х        |        |        |       |  |
| 514  | 0.0     | 0.0     | Х          |       |        |     |       |       | 574    | 78.3     | 78.3         |        |      | х        |        |        |       |  |
| 515  | 0.0     | 0.0     | Х          |       |        |     |       |       | 575    | 78.0     | 78.0         |        |      |          | х      |        |       |  |
| 516  | 0.0     | 0.0     | х          |       |        |     |       |       | 576    | 76.7     | 76.7         |        |      |          | х      |        |       |  |
| 517  | 0.0     | 0.0     | x          |       |        |     |       |       | 577    | 73.7     | 73.7         |        |      |          | х      |        |       |  |
| 518  | 0.0     | 0.0     | x          |       |        |     |       |       | 578    | 69.5     | 69.5         |        |      |          | x      |        |       |  |
| 519  | 0.0     | 0.0     | Y          |       |        |     |       |       | 579    | 64.8     | 64.8         |        |      |          | Y      |        |       |  |
| 520  | 0.0     | 0.0     | v          |       |        |     |       |       | 580    | 60.3     | 60.3         |        |      |          | v      |        |       |  |
| 521  | 0.0     | 0.0     | Ŷ          |       |        |     |       |       | 500    | 56.0     | 56.2         |        |      |          | ~<br>v |        |       |  |
| 521  | 0.0     | 0.0     |            |       |        |     |       |       | 501    | 50.Z     | 50.2         |        |      |          | ~      |        |       |  |
| 522  | 0.0     | 0.0     |            |       |        |     |       |       | 502    | 32.5     | 32.5         |        |      |          | X      |        |       |  |
| 523  | 0.0     | 0.0     | X          |       |        |     |       |       | 503    | 49.0     | 49.0         |        |      |          | X      |        |       |  |
| 524  | 0.0     | 0.0     | X          |       |        |     |       |       | 584    | 45.2     | 45.2         |        |      |          | X      |        |       |  |
| 525  | 0.0     | 0.0     | x          |       |        |     |       |       | 585    | 40.8     | 40.8         |        |      |          | Х      |        |       |  |
| 526  | 0.0     | 0.0     | Х          |       |        |     |       |       | 586    | 35.4     | 35.4         |        |      |          | Х      |        |       |  |
| 527  | 0.0     | 0.0     | Х          |       |        |     |       |       | 587    | 29.4     | 29.4         |        |      |          | Х      |        |       |  |
| 528  | 0.0     | 0.0     | х          |       |        |     |       |       | 588    | 23.4     | 23.4         |        |      |          | х      |        |       |  |
| 529  | 0.0     | 0.0     | х          |       |        |     |       |       | 589    | 17.7     | 17.7         |        |      |          | х      |        |       |  |
| 530  | 0.0     | 0.0     | х          |       |        |     |       |       | 590    | 12.6     | 12.6         |        |      |          | х      |        |       |  |
| 531  | 0.0     | 0.0     | х          |       |        |     |       |       | 591    | 8.0      | 8.0          |        |      |          | х      |        |       |  |
| 532  | 0.0     | 0.0     | x          |       |        |     |       |       | 592    | 4.1      | 4.1          |        |      |          | х      |        |       |  |
| 533  | 2.3     | 23      | x          |       |        |     |       |       | 593    | 13       | 13           | x      |      |          |        |        |       |  |
| 534  | 7.0     | 7.0     |            | Y     |        |     |       |       | 594    | 0.0      | 0.0          | x      |      |          |        |        |       |  |
| 525  | 11.2    | 1/ 6    |            | , v   |        |     |       |       | 505    | 0.0      | 0.0          | ~      |      |          |        |        |       |  |
| 500  | 14.0    | 14.0    |            | ^<br> |        |     |       |       | 590    | 0.0      | 0.0          | ^<br>V |      |          |        |        |       |  |
| 500  | 23.3    | 23.5    |            | X     |        |     |       |       | 590    | 0.0      | 0.0          | X      |      |          |        |        |       |  |
| 53/  | 33.0    | 33.0    |            | X     |        |     |       |       | 597    | 0.0      | 0.0          | X      |      |          |        |        |       |  |
| 538  | 42.7    | 42.7    |            | X     |        |     |       |       | 598    | 0.0      | 0.0          | X      |      |          |        |        |       |  |
| 539  | 51.8    | 51.8    |            | Х     |        |     |       |       | 599    | 0.0      | 0.0          | Х      |      |          |        |        |       |  |
| 540  | 59.4    | 59.4    |            | Х     | 1      |     | 1     |       | 600    | 0.0      | 0.0          | х      |      |          | 1      |        |       |  |

Table A5-10: Cycle part 2 for vehicle classes 2 and 3, 481 to 600 s

# ECE/TRANS/180/Add.2 page 72 Annex 5

| Table A5-11: | Cycle part 3 | for vehicle c | lass 3, 1 t | o 120 s |
|--------------|--------------|---------------|-------------|---------|
|--------------|--------------|---------------|-------------|---------|

|      | roller       | speed        |      |     |        |        |                      |               |          | roller       | speed        |      |     |        |       |                      |               |
|------|--------------|--------------|------|-----|--------|--------|----------------------|---------------|----------|--------------|--------------|------|-----|--------|-------|----------------------|---------------|
| time | normal       | reduced      |      |     | indi   | cators |                      |               | timo     | normal       | reduced      |      |     | indic  | ators |                      |               |
| unie | normai       | speed        |      | I   |        | outor  | -                    |               | unie     | normai       | speed        |      | r   | maio   | utors |                      |               |
| s    | km/h         | km/h         | stop | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s        | km/h         | km/h         | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 1    | 0.0          | 0.0          | Х    |     |        |        |                      |               | 61       | 73.9         | 73.9         |      | х   |        |       | х                    |               |
| 2    | 0.0          | 0.0          | х    |     |        |        |                      |               | 62       | 74.1         | 74.1         |      | х   |        |       | х                    |               |
| 3    | 0.0          | 0.0          | х    |     |        |        |                      |               | 63       | 75.1         | 75.1         |      | х   |        |       | х                    |               |
| 4    | 0.0          | 0.0          | Х    |     |        |        |                      |               | 64       | 76.8         | 76.8         |      | Х   |        |       | х                    |               |
| 5    | 0.0          | 0.0          | х    |     |        |        |                      |               | 65       | 78.7         | 78.7         |      | Х   |        |       | х                    |               |
| 6    | 0.0          | 0.0          | X    |     |        |        |                      |               | 66       | 80.4         | 80.4         |      | Х   |        |       | x                    |               |
| /    | 0.0          | 0.0          | Х    |     |        |        |                      |               | 67       | 81.7         | 81.7         |      | Х   |        |       | x                    |               |
| 8    | 0.9          | 0.9          | X    |     |        |        |                      |               | 68       | 82.6         | 82.6         |      | X   |        |       |                      |               |
| 9    | 3.2          | 3.2          |      | X   |        |        |                      |               | 69<br>70 | 83.5         | 83.5         |      | X   |        |       |                      |               |
| 10   | 12.4         | 1.3          |      | X   |        |        |                      |               | 70       | 04.4<br>95.1 | 04.4<br>95.1 |      | X   |        |       |                      |               |
| 12   | 12.4         | 17.4         |      | ×   |        |        |                      |               | 72       | 85.7         | 85.7         |      | ×   |        |       |                      |               |
| 13   | 23.5         | 23.5         |      | x   |        |        |                      |               | 73       | 86.3         | 86.3         |      | x   |        |       |                      |               |
| 14   | 29.0         | 20.0         |      | x   |        |        |                      |               | 74       | 87.0         | 87.0         |      | x   |        |       |                      |               |
| 15   | 34.3         | 34.3         |      | x   |        |        |                      |               | 75       | 87.9         | 87.9         |      | x   |        |       |                      |               |
| 16   | 38.6         | 38.6         |      | x   |        |        |                      |               | 76       | 88.8         | 88.8         |      | x   |        |       |                      |               |
| 17   | 41.6         | 41.6         |      | X   |        |        |                      |               | 77       | 89.7         | 89.7         |      | X   |        |       |                      |               |
| 18   | 43.9         | 43.9         |      | х   |        |        |                      |               | 78       | 90.3         | 90.3         |      |     | х      |       |                      |               |
| 19   | 45.9         | 45.9         |      | х   |        |        |                      |               | 79       | 90.6         | 90.6         |      |     | х      |       |                      |               |
| 20   | 48.1         | 48.1         |      | х   |        |        |                      |               | 80       | 90.6         | 90.6         |      |     | х      |       |                      |               |
| 21   | 50.3         | 50.3         |      | х   |        |        |                      |               | 81       | 90.5         | 90.5         |      |     | х      |       |                      |               |
| 22   | 52.6         | 52.6         |      | х   |        |        |                      |               | 82       | 90.4         | 90.4         |      |     | х      |       |                      |               |
| 23   | 54.8         | 54.8         |      | х   |        |        |                      |               | 83       | 90.1         | 90.1         |      |     | х      |       |                      |               |
| 24   | 55.8         | 55.8         |      | х   |        |        |                      |               | 84       | 89.7         | 89.7         |      |     | х      |       |                      |               |
| 25   | 55.2         | 55.2         |      | х   |        |        |                      |               | 85       | 89.3         | 89.3         |      |     | х      |       |                      |               |
| 26   | 53.8         | 53.8         |      | х   |        |        |                      |               | 86       | 88.9         | 88.9         |      |     | х      |       |                      |               |
| 27   | 52.7         | 52.7         |      | х   |        |        |                      |               | 87       | 88.8         | 88.8         |      |     | Х      |       |                      |               |
| 28   | 52.8         | 52.8         |      | X   |        |        |                      |               | 88       | 88.9         | 88.9         |      |     | Х      |       |                      |               |
| 29   | 55.0         | 55.0         |      | X   |        |        |                      |               | 89       | 89.1         | 89.1         |      |     | X      |       |                      |               |
| 30   | 58.5         | 58.5         |      | X   |        |        |                      |               | 90       | 89.3         | 89.3         |      |     | X      |       |                      |               |
| 31   | 62.3         | 02.3<br>65.7 |      | X   |        |        |                      |               | 91       | 89.4         | 89.4         |      |     | X      |       |                      |               |
| 32   | 68.0         | 68.0         |      | X   |        |        |                      |               | 92       | 09.4<br>80.2 | 09.4<br>80.2 |      |     | X      |       |                      |               |
| 34   | 60.0         | 60.0         |      | ×   |        |        |                      |               | 93       | 88.0         | 88.0         |      |     | ×      |       |                      |               |
| 35   | 69.5         | 69.5         |      | x   |        |        |                      |               | 95       | 88.5         | 88.5         |      |     | ×      |       |                      |               |
| 36   | 69.9         | 69.9         |      | x   |        |        |                      |               | 96       | 88.0         | 88.0         |      |     | x      |       | x                    |               |
| 37   | 70.6         | 70.6         |      | x   |        |        |                      |               | 97       | 87.5         | 87.5         |      |     | x      |       | x                    |               |
| 38   | 71.3         | 71.3         |      | х   |        |        |                      |               | 98       | 87.2         | 87.2         |      |     | х      |       | x                    |               |
| 39   | 72.2         | 72.2         |      | х   |        |        |                      |               | 99       | 87.1         | 87.1         |      |     | х      |       | х                    |               |
| 40   | 72.8         | 72.8         |      | х   |        |        |                      |               | 100      | 87.2         | 87.2         |      |     | х      |       | х                    |               |
| 41   | 73.2         | 73.2         |      | х   |        |        |                      |               | 101      | 87.3         | 87.3         |      |     | х      |       | х                    | _             |
| 42   | 73.4         | 73.4         |      | х   |        |        |                      |               | 102      | 87.4         | 87.4         |      |     | х      |       | Х                    |               |
| 43   | 73.8         | 73.8         |      | х   |        |        |                      |               | 103      | 87.5         | 87.5         |      |     | х      |       | х                    |               |
| 44   | 74.8         | 74.8         |      | х   |        |        |                      |               | 104      | 87.4         | 87.4         |      |     | х      |       | Х                    |               |
| 45   | 76.7         | 76.7         |      | х   |        |        |                      |               | 105      | 87.1         | 87.1         |      |     | х      |       |                      |               |
| 46   | 79.1         | 79.1         |      | x   |        |        |                      |               | 106      | 86.8         | 86.8         |      |     | X      |       |                      |               |
| 47   | 81.1         | 81.1         |      | X   |        |        |                      |               | 107      | 86.4         | 86.4         |      |     | X      |       |                      |               |
| 48   | 82.1         | 82.1         |      |     |        | X      |                      |               | 108      | 85.9         | 85.9         |      |     | X      |       |                      |               |
| 49   | 81.7         | 81.7         |      |     |        | X      | X                    |               | 109      | 85.2         | 85.2         |      |     | X      |       |                      |               |
| 50   | 80.3         | 80.3         |      |     |        | X      | X                    |               | 110      | 84.0         | 84.0         |      |     |        | X     |                      |               |
| 51   | /0.0<br>77 0 | /0.0<br>77 0 |      |     |        | X      | X                    |               | 110      | 02.2         | 02.2         |      |     |        | X     |                      |               |
| 52   | 75.0         | 75.0         |      |     |        | ×      | ×                    |               | 112      | 00.3<br>79.6 | 00.3<br>79.6 |      |     |        | ×     |                      |               |
| 53   | 75.9         | 75.9         |      |     |        | ~      |                      |               | 11/      | 10.0<br>77 0 | 77 つ         |      |     |        | ~     |                      |               |
| 55   | 74.7         | 74 7         |      |     |        | x      | ×                    |               | 115      | 75.0         | 75.0         |      |     |        | ×     |                      |               |
| 56   | 74.6         | 74.6         |      |     |        | x      | x                    |               | 116      | 73.8         | 73.8         |      |     |        | x     |                      |               |
| 57   | 74.7         | 74.7         |      |     |        | x      | x                    |               | 117      | 70.4         | 70.4         |      |     |        | X     |                      |               |
| 58   | 74.6         | 74.6         |      |     |        | x      | x                    |               | 118      | 65.7         | 65.7         |      |     |        | X     |                      |               |
| 59   | 74.4         | 74.4         |      |     |        | x      | x                    |               | 119      | 60.5         | 60.5         |      |     |        | х     |                      |               |
| 60   | 74.1         | 74.1         |      | x   |        |        | х                    |               | 120      | 55.9         | 55.9         |      |     |        | х     |                      |               |
### ECE/TRANS/180/Add.2 page 73 Annex 5

Table A5-12: Cycle part 3 for vehicle class 3, 121 to 240 s

|      |        |         | 1    | 1        |         |          | 1     | <u> </u> |      | <u></u> | jeie puie | 0 101 |          | 010 0100 | ,     |           |          |
|------|--------|---------|------|----------|---------|----------|-------|----------|------|---------|-----------|-------|----------|----------|-------|-----------|----------|
|      | roller | speed   |      |          |         |          |       |          |      | roller  | speed     |       |          |          |       |           |          |
|      |        | reduced |      |          | الم مرا |          | _     |          | 4    |         | reduced   |       |          | م الم ما |       |           |          |
| time | normai | speed   |      |          | inai    | cators   | 5     |          | time | normai  | speed     |       |          | inaic    | ators |           |          |
|      |        | Speca   |      |          |         |          | no    |          |      |         | Speca     |       |          |          |       | <b>no</b> |          |
|      |        |         |      |          |         |          | 110   | no 1.    |      |         |           |       |          |          |       | 110       | no 1.    |
| S    | km/h   | km/h    | stop | acc      | cruise  | dec      | gear- | noar     | S    | km/h    | km/h      | stop  | acc      | cruise   | dec   | gear-     | noar     |
|      |        |         |      |          |         |          | shift | year     |      |         |           |       |          |          |       | shift     | year     |
| 121  | 53.0   | 53.0    |      |          |         | x        |       |          | 181  | 50.2    | 50.2      |       |          |          | Y     |           |          |
| 122  | 51.6   | 51.6    |      |          |         | ×        |       |          | 107  | 40.7    | 40.2      |       |          |          | X     |           |          |
| 122  | 51.0   | 51.0    |      |          |         | X        |       |          | 102  | 40.7    | 40.7      |       |          |          | X     |           | l        |
| 123  | 50.9   | 50.9    |      |          |         | Х        |       |          | 183  | 47.2    | 47.2      |       |          |          | Х     |           |          |
| 124  | 50.5   | 50.5    |      |          |         | х        |       |          | 184  | 47.1    | 47.1      |       |          |          | х     |           | l        |
| 125  | 50.2   | 50.2    |      | x        |         |          |       |          | 185  | 47 0    | 47 0      |       |          |          | х     |           | [        |
| 126  | 50.2   | 50.2    |      | v        |         |          |       |          | 196  | 46.0    | 46.0      |       |          |          | v     |           |          |
| 120  | 50.2   | 50.2    |      | <u>^</u> |         |          |       |          | 100  | 40.9    | 40.9      |       |          |          | ^     |           | l        |
| 127  | 50.6   | 50.6    |      | X        |         |          |       |          | 187  | 46.6    | 46.6      |       |          |          | х     |           | ļ        |
| 128  | 51.2   | 51.2    |      | x        |         |          |       |          | 188  | 46.3    | 46.3      |       | Х        |          |       |           | ĺ        |
| 129  | 51.8   | 51.8    |      | x        |         |          |       |          | 189  | 46.1    | 46.1      |       | х        |          |       |           |          |
| 130  | 52.5   | 52.5    |      | v        |         |          |       |          | 100  | 46.1    | 46.1      |       | v        |          |       |           |          |
| 100  | 52.5   | 52.5    |      | ^        |         |          |       |          | 100  | 40.1    | 40.1      |       | ^        |          |       |           | l        |
| 131  | 53.4   | 53.4    |      | X        |         |          |       |          | 191  | 40.4    | 46.4      |       | X        |          |       |           | ļ        |
| 132  | 54.9   | 54.9    |      | X        |         |          |       |          | 192  | 47.1    | 47.1      |       | Х        |          |       |           | ĺ        |
| 133  | 57.0   | 57.0    |      | x        |         |          |       |          | 193  | 48.1    | 48.1      |       | х        |          |       |           |          |
| 134  | 59.4   | 59.4    |      | x        |         |          |       |          | 194  | 49.8    | 49.8      |       | x        |          |       |           |          |
| 405  | 00.4   | 00.4    |      |          |         |          |       |          | 104  |         | 50.0      |       | <u>.</u> |          |       |           | l        |
| 135  | 01.9   | 61.9    |      | X        |         |          |       |          | 195  | 5Z.Z    | 52.2      |       | X        |          |       |           | l        |
| 136  | 64.3   | 64.3    |      | X        |         |          |       |          | 196  | 54.8    | 54.8      |       | Х        |          |       |           |          |
| 137  | 66.4   | 66.4    |      | x        |         |          |       |          | 197  | 57.3    | 57.3      |       | Х        |          |       |           |          |
| 138  | 68.1   | 68.1    |      | x        |         |          |       |          | 198  | 59.5    | 59.5      |       | x        |          |       |           |          |
| 120  | 60.0   | 60.0    |      |          |         |          |       |          | 100  | 61 7    | 61 7      |       |          |          |       |           |          |
| 139  | 09.0   | 09.0    |      | X        |         |          |       |          | 199  | 01./    | 01./      |       | ×        |          |       |           | <b> </b> |
| 140  | 70.7   | 70.7    | L    | Х        |         |          |       |          | 200  | 64.3    | 64.3      |       | Х        |          |       |           | L        |
| 141  | 71.4   | 71.4    |      | x        |         |          |       |          | 201  | 67.7    | 67.7      |       | х        |          |       |           | ĺ        |
| 142  | 71.8   | 71.8    |      | x        |         |          |       |          | 202  | 714     | 714       |       | x        |          |       |           |          |
| 1/3  | 72.8   | 72.8    |      | × ×      |         |          |       |          | 203  | 74.0    | 74.0      |       | v        |          |       |           |          |
| 143  | 72.0   | 72.0    |      | <b>^</b> |         |          |       |          | 203  | 74.9    | 74.9      |       | ^        |          |       |           |          |
| 144  | 75.0   | 75.0    |      | X        |         |          |       |          | 204  | 78.2    | 78.2      |       | х        |          |       |           |          |
| 145  | 77.8   | 77.8    |      | x        |         |          |       |          | 205  | 81.1    | 81.1      |       | Х        |          |       |           | ĺ        |
| 146  | 80.7   | 80.7    |      | x        |         |          |       |          | 206  | 83.9    | 83.9      |       | х        |          |       |           |          |
| 147  | 83.3   | 83.3    |      | v        |         |          |       |          | 207  | 86.5    | 86.5      |       | v        |          |       |           |          |
| 140  | 00.0   | 00.0    |      |          |         |          |       |          | 207  | 00.0    | 00.0      |       | ~        |          |       |           |          |
| 148  | 85.4   | 85.4    |      | X        |         |          |       |          | 208  | 89.1    | 89.1      |       | X        |          |       |           | l        |
| 149  | 87.3   | 87.3    |      | X        |         |          |       |          | 209  | 91.6    | 91.6      |       | Х        |          |       |           |          |
| 150  | 89.1   | 89.1    |      | x        |         |          |       |          | 210  | 94.0    | 94.0      |       | х        |          |       |           | ĺ        |
| 151  | 90.6   | 90.6    |      | x        |         |          |       |          | 211  | 96.3    | 96.3      |       | x        |          |       |           |          |
| 152  | 01.0   | 01.0    |      | X        |         |          |       |          | 212  | 00.0    | 00.0      |       | ×        |          |       |           |          |
| 152  | 91.9   | 91.9    |      | ×        |         |          |       |          | 212  | 90.4    | 90.4      |       | X        |          |       |           | l        |
| 153  | 93.2   | 93.2    |      | X        |         |          |       |          | 213  | 100.4   | 100.4     |       | Х        |          |       |           |          |
| 154  | 94.5   | 94.5    |      | x        |         |          |       |          | 214  | 102.1   | 102.1     |       | Х        |          |       |           | ĺ        |
| 155  | 96.0   | 96.0    |      | x        |         |          |       |          | 215  | 103.6   | 103.6     |       | х        |          |       |           |          |
| 156  | 97.5   | 97.5    |      | v        |         |          |       |          | 216  | 104.9   | 104.9     |       | v        |          |       |           |          |
| 457  | 01.0   | 01.0    |      | <u>.</u> |         |          |       |          | 210  | 104.0   | 104.0     |       | <u>.</u> |          |       |           |          |
| 157  | 98.9   | 98.9    |      | X        |         |          |       |          | 217  | 106.2   | 106.2     |       | X        |          |       |           | l        |
| 158  | 99.8   | 99.8    |      | X        |         |          |       |          | 218  | 107.4   | 106.4     |       | х        |          |       |           |          |
| 159  | 99.0   | 99.0    |      |          |         | х        |       |          | 219  | 108.5   | 106.5     |       | Х        |          |       |           |          |
| 160  | 96.6   | 96.6    |      |          |         | x        |       |          | 220  | 109.3   | 106.6     | l     | x        |          |       |           |          |
| 161  | 02.7   | 02.7    |      |          |         | v        |       |          | 221  | 100.0   | 106.6     |       | v        |          |       |           |          |
| 101  | 04.0   | 33.7    |      |          |         | <u>^</u> |       |          | 221  | 140 -   | 407.0     |       | <u>^</u> |          |       |           | 1        |
| 162  | 91.3   | 91.3    |      |          |         | X        |       |          | 222  | 110.5   | 107.0     |       | X        |          |       |           | <b> </b> |
| 163  | 90.4   | 90.4    |      |          |         | х        |       |          | 223  | 110.9   | 107.3     |       | Х        |          |       |           | L        |
| 164  | 90.6   | 90.6    |      |          |         | x        |       |          | 224  | 111.2   | 107.3     |       | х        |          |       |           | 1        |
| 165  | 91 1   | 91 1    |      |          |         | x        |       |          | 225  | 111 4   | 107 2     |       | х        |          |       |           | (        |
| 166  | 00.0   | 00.0    |      | <u> </u> |         | ~        |       |          | 226  | 111 7   | 107.2     |       | ~        |          |       |           |          |
| 100  | 90.9   | 90.9    |      | <u> </u> |         | ×        |       |          | 220  | 111./   | 107.2     |       | ×        |          |       |           | l        |
| 167  | 89.0   | 89.0    |      |          |         | X        |       |          | 227  | 111.9   | 107.2     |       | Х        |          |       |           | L        |
| 168  | 85.6   | 85.6    |      | L        |         | x        |       |          | 228  | 112.3   | 107.3     |       | X        |          |       |           | Ĺ        |
| 169  | 81.6   | 81.6    |      |          |         | х        |       |          | 229  | 113.0   | 107.5     |       | Х        |          |       |           | 1        |
| 170  | 77 6   | 77 6    |      |          |         | ¥        |       |          | 230  | 114 1   | 107 3     |       | Y        |          |       |           |          |
| 174  | 72 6   | 70.0    |      |          |         | ~        |       |          | 200  | 1157    | 107.0     |       |          |          |       |           |          |
|      | 13.0   | / 3.0   |      |          |         | ×        |       |          | 231  | 115./   | 107.3     |       | ×        |          |       |           | <b> </b> |
| 172  | 69.7   | 69.7    |      |          |         | х        |       |          | 232  | 117.5   | 107.3     |       | Х        |          |       |           | <u> </u> |
| 173  | 66.0   | 66.0    |      |          |         | x        |       |          | 233  | 119.3   | 107.3     |       | х        |          |       |           | 1        |
| 174  | 62 7   | 62 7    |      |          |         | x        |       |          | 234  | 121 0   | 108 0     | l     | x        |          |       |           |          |
| 175  | 60.0   | 60.0    |      |          |         | v        |       |          | 225  | 122.2   | 108.0     |       | v        |          |       |           |          |
| 175  | 50.0   | 50.0    |      |          |         | ^        |       |          | 200  | 122.2   | 100.2     |       | ^        |          |       |           | 1        |
| 176  | 58.0   | 58.0    | L    | L        |         | X        |       |          | 236  | 122.9   | 108.9     |       |          | Х        |       |           | L        |
| 177  | 56.4   | 56.4    |      |          |         | х        |       |          | 237  | 123.0   | 109.0     |       |          | Х        |       |           |          |
| 178  | 54.8   | 54.8    |      |          |         | х        |       |          | 238  | 122.9   | 108.9     |       |          | х        |       |           |          |
| 179  | 53.2   | 53.2    |      |          |         | x        |       |          | 239  | 122 7   | 108 7     |       |          | x        |       |           | [        |
| 100  | E4 7   | 55.Z    |      | <u> </u> |         |          |       |          | 200  | 100.0   | 400.0     |       |          | ~        |       |           | l        |
| 100  | 51./   | 51.7    | 1    | 1        | 1       | X        | 1     | 1        | ∠40  | 122.0   | 0.601     | 1     | 1        | X        |       |           | 1        |

### ECE/TRANS/180/Add.2 page 74 Annex 5

| Table A5-13: | Cycle p | oart 3 for | vehicle clas | s 3, | 241 | to 360 s |
|--------------|---------|------------|--------------|------|-----|----------|
|--------------|---------|------------|--------------|------|-----|----------|

|      | roller | speed   |      |     |        |        |                      |               |      | roller        | speed        |      |     |        |        |                      |               |
|------|--------|---------|------|-----|--------|--------|----------------------|---------------|------|---------------|--------------|------|-----|--------|--------|----------------------|---------------|
| timo | normal | reduced |      |     | indi   | cators |                      |               | timo | normal        | reduced      |      |     | indic  | ators  |                      |               |
| une  | normai | speed   |      |     | mai    | outor  | ,<br>                |               | unie | normai        | speed        |      |     | maio   | utors  |                      |               |
| s    | km/h   | km/h    | stop | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h          | km/h         | stop | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear |
| 241  | 122.4  | 108.4   |      |     | х      |        |                      |               | 301  | 109.8         | 95.8         |      |     | х      |        |                      |               |
| 242  | 122.3  | 108.3   |      |     | x      |        |                      |               | 302  | 109.9         | 95.9         |      |     | х      |        |                      |               |
| 243  | 122.2  | 108.2   |      |     | х      |        |                      |               | 303  | 110.2         | 96.2         |      |     | х      |        |                      |               |
| 244  | 122.2  | 108.2   |      |     | х      |        |                      |               | 304  | 110.4         | 96.4         |      |     | х      |        |                      |               |
| 245  | 122.2  | 108.2   |      |     | х      |        |                      |               | 305  | 110.7         | 96.7         |      |     | х      |        |                      |               |
| 246  | 122.2  | 108.2   |      |     | х      |        |                      |               | 306  | 110.7         | 96.7         |      |     |        | х      |                      |               |
| 247  | 122.3  | 108.3   |      |     | х      |        |                      |               | 307  | 110.3         | 96.3         |      |     |        | х      |                      |               |
| 248  | 122.4  | 108.4   |      |     | х      |        |                      |               | 308  | 109.3         | 95.3         |      |     |        | х      |                      |               |
| 249  | 122.4  | 108.4   |      |     | х      |        |                      |               | 309  | 108.0         | 94.0         |      |     |        | х      |                      |               |
| 250  | 122.5  | 108.5   |      |     | x      |        |                      |               | 310  | 106.5         | 92.5         |      |     |        | х      |                      | ļ             |
| 251  | 122.5  | 108.5   |      |     | X      |        |                      |               | 311  | 105.4         | 91.4         |      |     |        | Х      |                      | ļ             |
| 252  | 122.5  | 108.5   |      |     | X      |        |                      |               | 312  | 104.9         | 90.9         |      |     |        | Х      |                      | l             |
| 253  | 122.5  | 108.5   |      |     | X      |        |                      |               | 313  | 104.7         | 90.7         |      |     |        | Х      |                      | l             |
| 254  | 122.6  | 108.6   |      |     | X      |        |                      |               | 314  | 104.3         | 90.3         |      |     |        | Х      |                      |               |
| 255  | 122.8  | 108.8   |      |     | X      |        |                      |               | 315  | 103.6         | 89.6         |      |     |        | Х      | х                    | ļ             |
| 256  | 123.0  | 109.0   |      |     | X      |        |                      |               | 316  | 102.6         | 88.6         |      |     |        | X      | X                    | l             |
| 257  | 123.2  | 109.2   |      |     | X      |        |                      |               | 317  | 101.7         | 87.7         |      |     |        | X      | X                    | l             |
| 258  | 123.3  | 109.3   |      |     | X      |        |                      |               | 318  | 100.8         | 80.8         |      |     |        | X      | <u>X</u>             |               |
| 209  | 123.4  | 109.4   |      |     | X      |        |                      |               | 220  | 100.2         | 00.2         |      |     |        | X      | <u>×</u>             |               |
| 260  | 123.5  | 109.5   |      |     | X      |        |                      |               | 320  | 99.0          | 0.CO<br>95.7 |      |     |        | X      | <u>×</u>             |               |
| 201  | 123.0  | 109.0   |      |     | X      |        |                      |               | 321  | 99.7          | 00.7<br>85.7 |      |     |        | X      | ×                    |               |
| 202  | 123.0  | 109.0   |      |     | ×      |        |                      |               | 322  | 99.7<br>100.0 | 86.0         |      |     |        | ×      | X                    |               |
| 203  | 123.0  | 110.0   |      |     | × ×    |        |                      |               | 324  | 100.0         | 86.7         |      | v   |        | ^      | ~                    |               |
| 265  | 124.0  | 110.0   |      |     | ×      |        |                      |               | 325  | 100.7         | 87.8         |      | ×   |        |        | ×                    |               |
| 266  | 124.5  | 110.2   |      |     | ×      |        |                      |               | 326  | 101.0         | 89.2         |      | ×   |        |        | ×                    |               |
| 267  | 124.0  | 110.0   |      |     | x      |        |                      |               | 327  | 104.9         | 90.9         |      | x   |        |        | ×                    |               |
| 268  | 124.9  | 110.9   |      |     | x      |        |                      |               | 328  | 106.6         | 92.6         |      | x   |        |        | x                    |               |
| 269  | 125.1  | 111.1   |      |     | x      |        |                      |               | 329  | 108.3         | 94.3         |      | x   |        |        | x                    |               |
| 270  | 125.2  | 111.2   |      |     | x      |        |                      |               | 330  | 109.9         | 95.9         |      | х   |        |        | х                    |               |
| 271  | 125.3  | 111.3   |      |     | x      |        |                      |               | 331  | 111.4         | 97.4         |      | х   |        |        | х                    |               |
| 272  | 125.3  | 111.3   |      |     | x      |        |                      |               | 332  | 112.7         | 98.7         |      | х   |        |        | х                    |               |
| 273  | 125.3  | 111.3   |      |     | х      |        |                      |               | 333  | 113.7         | 99.7         |      | х   |        |        | х                    |               |
| 274  | 125.2  | 111.2   |      |     | х      |        |                      |               | 334  | 114.3         | 100.3        |      | х   |        |        | х                    |               |
| 275  | 125.0  | 111.0   |      |     | х      |        |                      |               | 335  | 114.6         | 100.6        |      | х   |        |        | х                    |               |
| 276  | 124.8  | 110.8   |      |     | х      |        |                      |               | 336  | 115.0         | 101.0        |      | х   |        |        | х                    |               |
| 277  | 124.6  | 110.6   |      |     | х      |        |                      |               | 337  | 115.4         | 101.4        |      | Х   |        |        | х                    |               |
| 278  | 124.4  | 110.4   |      |     | х      |        |                      |               | 338  | 115.8         | 101.8        |      | Х   |        |        | х                    |               |
| 279  | 124.3  | 110.3   |      |     |        | Х      |                      |               | 339  | 116.2         | 102.2        |      | Х   |        |        | х                    |               |
| 280  | 123.9  | 109.9   |      |     |        | Х      |                      |               | 340  | 116.5         | 102.5        |      | Х   |        |        | х                    |               |
| 281  | 123.3  | 109.3   |      |     |        | Х      |                      |               | 341  | 116.6         | 102.6        |      | Х   |        |        | х                    |               |
| 282  | 122.1  | 108.1   |      |     |        | Х      |                      |               | 342  | 116.7         | 102.7        |      | Х   |        |        | х                    | l             |
| 283  | 120.3  | 106.3   |      |     |        | Х      |                      |               | 343  | 116.8         | 102.8        |      | Х   |        |        | х                    |               |
| 284  | 118.0  | 104.0   |      |     |        | X      |                      |               | 344  |               | 103.0        |      | X   |        |        | X                    | <u> </u>      |
| 285  | 115.5  | 101.5   |      |     |        | X      |                      |               | 345  | 117.5         | 103.5        |      | X   |        |        | X                    |               |
| 286  | 113.2  | 99.2    |      |     |        | X      |                      |               | 340  | 110.3         | 104.3        |      | X   |        |        | X                    |               |
| 28/  | 111.2  | 97.2    |      |     |        | X      |                      |               | 341  | 119.2         | 105.2        |      | X   |        |        | X                    |               |
| 200  | 100.7  | 90.1    |      |     |        | ×      |                      |               | 348  | 120.1         | 100.1        |      | X   |        |        | X                    |               |
| 209  | 109.7  | 95.7    |      |     | ×      |        |                      |               | 349  | 120.0         | 100.0        |      | ×   |        | v      | ×                    |               |
| 290  | 110 1  | 90.0    |      |     | ×      |        |                      |               | 350  | 121.1         | 107.1        |      |     |        | ×<br>× | ×                    |               |
| 202  | 110.1  | 06.1    |      |     | × ×    |        |                      |               | 352  | 110.0         | 105.7        |      |     |        | ^<br>v | ~<br>V               |               |
| 292  | 110.4  | 96.4    |      |     | ×      |        |                      |               | 353  | 116.3         | 103.0        |      |     |        | ^<br>Y | ×                    |               |
| 294  | 110.7  | 96.0    |      |     | x      |        |                      |               | 354  | 113.1         | 00 1         |      |     |        | x      | x                    | -             |
| 295  | 110.9  | 96.9    |      |     | x      |        |                      |               | 355  | 110.3         | 96.3         |      |     |        | x      | X                    |               |
| 296  | 110.8  | 96.8    |      |     | x      |        |                      |               | 356  | 109.0         | 95.0         |      |     |        | x      | X                    | <u> </u>      |
| 297  | 110.6  | 96.6    |      |     | x      |        |                      |               | 357  | 109.4         | 95.4         |      |     |        | X      | X                    |               |
| 298  | 110.4  | 96.4    |      |     | x      |        |                      |               | 358  | 110.4         | 96.4         |      |     |        | X      | X                    |               |
| 299  | 110.1  | 96.1    |      |     | x      |        |                      |               | 359  | 111.3         | 97.3         |      |     |        | x      | х                    |               |
| 300  | 109.9  | 95.9    |      |     | x      |        |                      |               | 360  | 111.5         | 97.5         |      |     |        | х      | х                    | ĺ             |

### ECE/TRANS/180/Add.2 page 75 Annex 5

Table A5-14: Cycle part 3 for vehicle class 3, 361 to 480 s

|      |               |         | 1    | 1         |          |        | 1        | <u> </u> |      |         | jeie puie |      |     | 010 0102 | ,.    | 01.00 |          |
|------|---------------|---------|------|-----------|----------|--------|----------|----------|------|---------|-----------|------|-----|----------|-------|-------|----------|
|      | roller        | speed   |      |           |          |        |          |          |      | roller  | speed     |      |     |          |       |       |          |
|      |               | reduced |      |           |          |        |          |          |      |         | reduced   |      |     |          |       |       |          |
| time | normal        | anaad   |      |           | indi     | cators | 5        |          | time | normal  | anad      |      |     | indic    | ators |       |          |
|      |               | speea   |      |           |          |        |          |          |      |         | speea     |      |     |          |       |       |          |
|      |               |         |      |           |          |        | no       |          |      |         |           |      |     |          |       | no    |          |
| e    | km/h          | km/h    | eton | 200       | cruiso   | doc    | aoar-    | no 1.    | e    | km/h    | km/h      | ston | 200 | cruiso   | doc   | aoar- | no 1.    |
| 3    | KIII/II       | KIIVII  | stop | acc       | ciuise   | uec    | year-    | gear     | 3    | KIII/II | KIII/II   | stop | acc | ciuise   | uec   | year- | gear     |
|      |               |         |      |           |          |        | shift    | U        |      |         |           |      |     |          |       | shift |          |
| 361  | 110.1         | 96.1    |      |           |          | x      | x        |          | 421  | 116.2   | 102.2     |      |     | х        |       |       |          |
| 362  | 107.4         | 03.4    |      |           |          | v      | v        |          | 122  | 116.4   | 102.4     |      |     | v        |       |       | <u> </u> |
| 302  | 107.4         | 93.4    |      |           |          | ^      | ~        |          | 422  | 110.4   | 102.4     |      |     | ~        |       |       |          |
| 363  | 104.4         | 90.4    |      |           |          | Х      | Х        |          | 423  | 116.6   | 102.6     |      |     | Х        |       |       |          |
| 364  | 101.8         | 87.8    |      |           |          | x      | x        |          | 424  | 116.8   | 102.8     |      |     | х        |       |       |          |
| 265  | 100.0         | 96.0    |      |           |          | ~      | ~        |          | 425  | 117.0   | 102.0     |      |     | , N      |       |       |          |
| 305  | 100.0         | 00.0    |      |           |          | X      | X        |          | 420  | 117.0   | 103.0     |      |     | X        |       |       |          |
| 366  | 99.1          | 85.1    |      |           |          | х      | Х        |          | 426  | 117.4   | 103.4     |      |     | Х        |       |       |          |
| 367  | 98.7          | 84 7    |      |           |          | Y      | Y        |          | 427  | 117 9   | 103.9     |      |     | Y        |       |       |          |
| 007  | 00.7          | 04.7    |      |           |          | ^      | ^        |          | 427  | 117.5   | 100.0     |      |     | ^        |       |       |          |
| 368  | 98.2          | 84.2    |      | X         |          |        | Х        |          | 428  | 118.4   | 104.4     |      |     | Х        |       |       |          |
| 369  | 99.0          | 85.0    |      | x         |          |        | x        |          | 429  | 118.8   | 104.8     |      |     | х        |       |       |          |
| 370  | 100 5         | 96.5    |      | v         |          |        | v        |          | 130  | 110.2   | 105.2     |      |     | v        |       |       |          |
| 370  | 100.5         | 00.5    |      | <b>^</b>  |          |        | ~        |          | 430  | 119.2   | 105.2     |      |     | ~        |       |       |          |
| 371  | 102.3         | 88.3    |      | X         |          |        | Х        |          | 431  | 119.5   | 105.5     |      |     | Х        |       |       |          |
| 372  | 103 9         | 89.9    |      | x         |          |        | x        |          | 432  | 1197    | 105 7     |      |     | x        |       |       |          |
| 0.70 | 105.0         | 01.0    |      |           |          |        | ~        |          | 400  | 110.0   | 105.0     |      |     | ~        |       |       |          |
| 313  | 105.0         | 91.0    |      | X         |          |        | X        |          | 433  | 119.9   | 105.9     |      |     | X        |       |       |          |
| 374  | 105.8         | 91.8    |      | X         |          |        | Х        |          | 434  | 120.1   | 106.1     |      |     | Х        |       |       |          |
| 375  | 106.4         | 92.4    |      | Y         |          |        | Y        |          | 435  | 120 3   | 106 3     |      |     | ¥        |       |       |          |
| 070  | 407.4         | 02.4    |      |           |          |        | ^<br>.:  |          | 400  | 400 -   | 100.5     |      |     | ^        |       |       |          |
| 376  | 107.1         | 93.1    |      | X         |          |        | Х        |          | 436  | 120.5   | 106.5     |      |     | Х        |       |       |          |
| 377  | 107.7         | 93.7    |      | x         |          |        | х        |          | 437  | 120.8   | 106.8     |      |     | х        |       |       |          |
| 279  | 109.2         | 01 2    |      | v         |          |        | v        |          | 120  | 121 1   | 107 1     |      |     | v        |       |       |          |
| 576  | 100.3         | 94.3    | I    | <b>⊢^</b> |          |        | <u>^</u> |          | +30  | 121.1   | 107.1     |      |     | ~        |       |       | I        |
| 379  | 109.0         | 95.0    |      | X         |          |        | Х        |          | 439  | 121.5   | 107.5     |      |     | X        |       |       |          |
| 380  | 109.6         | 95.6    |      | x         |          |        | x        |          | 440  | 122.0   | 108.0     |      |     | х        |       |       |          |
| 201  | 110.3         | 06.3    |      | v         |          |        | v        |          | 111  | 122.3   | 109.3     |      |     | v        |       |       |          |
| 301  | 110.5         | 30.5    |      | <u>^</u>  |          |        | ^        |          | 441  | 122.5   | 100.5     |      |     | ^        |       |       |          |
| 382  | 110.9         | 96.9    |      | X         |          |        | Х        |          | 442  | 122.6   | 108.6     |      |     | Х        |       |       |          |
| 383  | 111.5         | 97.5    |      | x         |          |        | х        |          | 443  | 122.9   | 108.9     |      |     | х        |       |       |          |
| 204  | 112.0         | 00.0    |      |           |          |        |          |          | 111  | 102.1   | 100.1     |      |     |          |       |       |          |
| 304  | 112.0         | 90.0    |      | X         |          |        | X        |          | 444  | 123.1   | 109.1     |      |     | X        |       |       |          |
| 385  | 112.3         | 98.3    |      | X         |          |        | Х        |          | 445  | 123.2   | 109.2     |      |     | Х        |       |       |          |
| 386  | 112 6         | 98.6    |      | x         |          |        | x        |          | 446  | 123 4   | 109 4     |      |     | х        |       |       |          |
| 207  | 112.0         | 00.0    |      | × ×       |          |        | ~        |          | 447  | 122.5   | 100.5     |      |     | ×        |       |       |          |
| 307  | 112.9         | 90.9    |      | ^         |          |        | ^        |          | 447  | 123.5   | 109.5     |      |     | ~        |       |       |          |
| 388  | 113.1         | 99.1    |      | X         |          |        | Х        |          | 448  | 123.7   | 109.7     |      |     | Х        |       |       |          |
| 389  | 113.3         | 99.3    |      | x         |          |        | х        |          | 449  | 123.9   | 109.9     |      |     | х        |       |       |          |
| 200  | 112.2         | 00.2    |      | ~         |          |        | ~        |          | 450  | 124.0   | 110.0     |      |     | , N      |       |       |          |
| 390  | 113.3         | 99.3    |      | X         |          |        | X        |          | 450  | 124.2   | 110.2     |      |     | X        |       |       |          |
| 391  | 113.2         | 99.2    |      | X         |          |        | х        |          | 451  | 124.4   | 110.4     |      |     | Х        |       |       |          |
| 392  | 113.2         | 99.2    |      | x         |          |        | x        |          | 452  | 124 7   | 110 7     |      |     | x        |       |       |          |
| 2002 | 110.2         | 00.2    |      |           |          |        | ~        |          | 450  | 105.0   | 110.1     |      |     | ~        |       |       |          |
| 393  | 113.3         | 99.3    |      | X         |          |        | X        |          | 453  | 125.0   | 111.0     |      |     | Х        |       |       |          |
| 394  | 113.5         | 99.5    |      | x         |          |        | х        |          | 454  | 125.2   | 111.2     |      |     | х        |       |       |          |
| 395  | 113.9         | 99.9    |      | x         |          |        | x        |          | 455  | 125.3   | 111.3     |      |     | x        |       |       |          |
| 000  | 110.0         | 400.0   |      |           |          |        | ~        |          | 450  | 120.0   | 111.0     |      |     | ~        |       |       |          |
| 396  | 114.3         | 100.3   |      | X         |          |        | X        |          | 456  | 125.1   | 111.1     |      |     | X        |       |       |          |
| 397  | 114.6         | 100.6   |      | X         |          |        | X        |          | 457  | 124.4   | 110.4     |      |     | Х        |       |       |          |
| 398  | 11 <u>4</u> 0 | 100 0   |      | Y         |          | ĺ      | Y        |          | 458  | 123.3   | 109 3     |      |     | ¥        |       |       |          |
| 200  | 1454          | 404.4   | I    | <u> </u>  |          |        | <u> </u> |          | 450  | 100.0   | 100.0     |      |     | л<br>У   |       |       | l        |
| 399  | 115.1         | 101.1   | L    |           | X        |        |          |          | 459  | 122.0   | 108.0     |      |     | Х        |       |       |          |
| 400  | 115.3         | 101.3   |      |           | х        |        |          |          | 460  | 120.8   | 106.8     |      |     | х        |       |       |          |
| 401  | 115.4         | 101 4   |      |           | X        |        |          |          | 461  | 119 5   | 105 5     |      |     | X        |       |       |          |
| 400  | 445 5         | 404 5   |      |           |          |        |          |          | 400  | 140.4   | 100.0     |      |     | ~        |       |       |          |
| 402  | 115.5         | 101.5   |      |           | X        |        |          |          | 462  | 118.4   | 104.4     |      |     | X        |       |       |          |
| 403  | 115.6         | 101.6   |      |           | х        |        |          |          | 463  | 117.8   | 103.8     |      |     | Х        |       |       |          |
| 404  | 115.8         | 101 8   |      | 1         | x        | ĺ      |          |          | 464  | 117 6   | 103.6     |      |     | ¥        |       |       |          |
| 405  | 140.0         | 404.0   |      |           | ~<br>    |        |          |          | 407  | 447 -   | 100.0     |      |     | л<br>У   |       |       |          |
| 405  | 115.9         | 101.9   | L    |           | X        |        |          |          | 465  | 117.5   | 103.5     |      |     | X        |       |       |          |
| 406  | 116.0         | 102.0   |      |           | х        |        |          |          | 466  | 117.5   | 103.5     |      |     | х        |       |       |          |
| 407  | 116.0         | 102.0   |      | 1         | x        |        |          |          | 467  | 117 4   | 103.4     |      |     | ¥        |       |       |          |
| 400  | 140.0         | 102.0   |      | -         | <u>^</u> |        |          |          | 400  | 447.0   | 100.4     |      |     | ~        |       |       |          |
| 408  | 116.0         | 102.0   |      |           | Х        |        |          |          | 468  | 117.3   | 103.3     |      |     | Х        |       |       |          |
| 409  | 116.0         | 102.0   |      |           | х        |        |          |          | 469  | 117.1   | 103.1     |      |     | х        |       |       |          |
| 410  | 115 0         | 101 0   |      | 1         | x        | 1      |          |          | 470  | 116 0   | 102 9     |      |     | ¥        |       |       |          |
| 444  | 140.0         | 404.0   |      |           | ~<br>    |        |          |          | 474  | 140.0   | 102.0     |      |     | л<br>У   |       |       |          |
| 411  | 115.9         | 101.9   |      |           | Х        |        |          |          | 4/1  | 116.6   | 102.6     |      |     | Х        |       |       |          |
| 412  | 115.9         | 101.9   |      |           | x        |        |          |          | 472  | 116.5   | 102.5     |      |     | х        |       |       |          |
| 412  | 115.8         | 101 8   |      |           | Y        |        |          |          | 473  | 116 /   | 102 /     |      |     | Y        |       |       |          |
| 13   | 445.0         | 101.0   |      | -         | ^        |        |          |          | 47.5 | 440.4   | 102.4     |      |     | ^        |       |       |          |
| 414  | 115.8         | 101.8   |      |           | Х        |        |          |          | 4/4  | 116.4   | 102.4     |      |     | Х        |       |       |          |
| 415  | 115.8         | 101.8   | I –  |           | x        |        |          |          | 475  | 116.5   | 102.5     |      |     | х        | 7     |       |          |
| 416  | 115.9         | 101 9   |      |           | v        |        |          |          | 476  | 116 7   | 102 7     |      |     | v        |       |       |          |
| 44   | 110.0         | 101.0   |      |           | ^        |        |          |          | 470  | 447.0   | 102.7     |      |     | ^        |       |       |          |
| 417  | 115.8         | 101.8   |      |           | Х        |        |          |          | 4//  | 117.0   | 103.0     |      |     | Х        |       |       |          |
| 418  | 115.8         | 101.8   |      |           | х        |        |          |          | 478  | 117.3   | 103.3     |      |     | х        |       |       |          |
| 410  | 115.0         | 101 0   |      |           | Y        |        |          |          | 470  | 117 7   | 103 7     |      |     | Y        |       |       |          |
| 400  | 110.0         | 101.5   |      | -         | ^        |        |          |          | 400  | 440.1   | 100.1     |      |     | ^        |       |       | <u> </u> |
| 420  | 116.0         | 102.0   | 1    | 1         | X        | 1      | 1        |          | 480  | 118.1   | 104.1     | 1    |     | Х        |       |       | 1        |

### ECE/TRANS/180/Add.2 page 76 Annex 5

| Table A5-15: | Cycle part 3 | 3 for vehicle | class 3, 481 | to 600 s |
|--------------|--------------|---------------|--------------|----------|
|--------------|--------------|---------------|--------------|----------|

|      | roller | speed   |          |     |        |        |                      |               |      | roller       | speed   |      |     |        |       |                      |               |
|------|--------|---------|----------|-----|--------|--------|----------------------|---------------|------|--------------|---------|------|-----|--------|-------|----------------------|---------------|
| timo | normal | reduced |          |     | indi   | cators |                      |               | timo | normal       | reduced |      |     | indic  | ators |                      |               |
| ume  | normai | speed   |          |     |        |        |                      |               | ume  | nonnai       | speed   |      |     | maic   |       |                      |               |
| s    | km/h   | km/h    | stop     | acc | cruise | dec    | no<br>gear-<br>shift | no 1.<br>gear | s    | km/h         | km/h    | stop | acc | cruise | dec   | no<br>gear-<br>shift | no 1.<br>gear |
| 481  | 118.5  | 104.5   |          |     | х      |        |                      |               | 541  | 115.0        | 101.0   |      |     | х      |       |                      |               |
| 482  | 118.8  | 104.8   |          |     | x      |        |                      |               | 542  | 115.3        | 101.3   |      |     | х      |       |                      |               |
| 483  | 118.9  | 104.9   |          |     | х      |        |                      |               | 543  | 116.0        | 102.0   |      |     | х      |       |                      |               |
| 484  | 119.1  | 105.1   |          |     | х      |        |                      |               | 544  | 116.7        | 102.7   |      |     | х      |       |                      |               |
| 485  | 119.1  | 105.1   |          |     | х      |        |                      |               | 545  | 117.5        | 103.5   |      |     | х      |       |                      |               |
| 486  | 119.1  | 105.1   |          |     | х      |        |                      |               | 546  | 118.2        | 104.2   |      |     | х      |       |                      |               |
| 487  | 119.2  | 105.2   |          |     | х      |        |                      |               | 547  | 118.6        | 104.6   |      |     | х      |       |                      |               |
| 488  | 119.2  | 105.2   |          |     | x      |        |                      |               | 548  | 118.7        | 104.7   |      |     | x      |       |                      |               |
| 489  | 119.3  | 105.3   |          |     | x      |        |                      |               | 549  | 118.8        | 104.8   |      |     | X      |       |                      |               |
| 490  | 119.3  | 105.3   |          |     | X      |        |                      |               | 550  | 118.8        | 104.8   |      |     | X      |       |                      |               |
| 491  | 119.4  | 105.4   |          |     | X      |        |                      |               | 551  | 118.9        | 104.9   |      |     | X      |       |                      |               |
| 492  | 119.5  | 105.5   |          |     | X      |        |                      |               | 552  | 119.1        | 105.1   |      |     | X      |       |                      |               |
| 493  | 119.0  | 105.5   |          |     | ×      |        |                      |               | 554  | 119.4        | 105.4   |      |     | ×      |       |                      |               |
| 494  | 119.5  | 105.5   |          |     | ×      |        |                      |               | 555  | 119.7        | 105.7   |      |     | ×      |       |                      |               |
| 496  | 118.6  | 103.0   |          |     | ×      |        |                      |               | 556  | 120.0        | 105.5   |      |     | ^      | v     |                      |               |
| 497  | 118.2  | 104.0   |          |     | ×      |        |                      |               | 557  | 119.6        | 105.6   |      |     |        | × ×   |                      |               |
| 498  | 117.8  | 103.8   |          |     | x      |        |                      |               | 558  | 118.4        | 105.0   |      |     |        | x     |                      |               |
| 499  | 117.6  | 103.6   |          |     | x      |        |                      |               | 559  | 115.9        | 103.9   |      |     |        | x     |                      |               |
| 500  | 117.5  | 103.5   |          |     | x      |        |                      |               | 560  | 113.2        | 102.2   |      |     |        | x     |                      |               |
| 501  | 117.4  | 103.4   |          |     | x      |        |                      |               | 561  | 110.5        | 100.5   |      |     |        | X     |                      |               |
| 502  | 117.4  | 103.4   |          |     | x      |        |                      |               | 562  | 107.2        | 99.2    |      |     |        | х     |                      |               |
| 503  | 117.3  | 103.3   |          |     | x      |        |                      |               | 563  | 104.0        | 98.0    |      |     |        | х     |                      |               |
| 504  | 117.0  | 103.0   |          |     | х      |        |                      |               | 564  | 100.4        | 96.4    |      |     |        | х     |                      |               |
| 505  | 116.7  | 102.7   |          |     | x      |        |                      |               | 565  | 96.8         | 94.8    |      |     |        | х     |                      |               |
| 506  | 116.4  | 102.4   |          |     | х      |        |                      |               | 566  | 92.8         | 92.8    |      |     |        | х     |                      |               |
| 507  | 116.1  | 102.1   |          |     | х      |        |                      |               | 567  | 88.9         | 88.9    |      |     |        | х     |                      |               |
| 508  | 115.9  | 101.9   |          |     | х      |        |                      |               | 568  | 84.9         | 84.9    |      |     |        | х     |                      |               |
| 509  | 115.7  | 101.7   |          |     | х      |        |                      |               | 569  | 80.6         | 80.6    |      |     |        | х     |                      |               |
| 510  | 115.5  | 101.5   |          |     | х      |        |                      |               | 570  | 76.3         | 76.3    |      |     |        | х     |                      |               |
| 511  | 115.3  | 101.3   |          |     | х      |        |                      |               | 571  | 72.3         | 72.3    |      |     |        | х     |                      |               |
| 512  | 115.2  | 101.2   |          |     | x      |        |                      |               | 572  | 68.7         | 68.7    |      |     |        | х     |                      |               |
| 513  | 115.0  | 101.0   |          |     | х      |        |                      |               | 573  | 65.5         | 65.5    |      |     |        | Х     |                      |               |
| 514  | 114.9  | 100.9   |          |     | X      |        |                      |               | 5/4  | 63.0         | 63.0    |      |     |        | X     |                      |               |
| 515  | 114.9  | 100.9   |          |     | X      |        |                      |               | 5/5  | 61.2         | 61.2    |      |     |        | X     |                      |               |
| 516  | 115.0  | 101.0   |          |     | X      |        |                      |               | 5/6  | 60.5         | 60.5    |      |     |        | X     |                      |               |
| 517  | 115.2  | 101.2   |          |     | X      |        |                      |               | 577  | 60.0<br>50.7 | 50.0    |      |     |        | X     |                      |               |
| 510  | 115.3  | 101.3   |          |     | X      |        |                      |               | 570  | 59.7         | 59.7    |      |     |        | X     |                      |               |
| 520  | 115.4  | 101.4   |          |     | X      |        |                      |               | 580  | 59.4         | 59.4    |      |     |        | X     |                      |               |
| 520  | 115.4  | 101.4   |          |     | ×      |        |                      |               | 581  | 58.0         | 58.0    |      |     |        | ×     |                      |               |
| 522  | 114.8  | 101.2   | <u> </u> |     | x      |        |                      |               | 582  | 55.0         | 55.0    |      |     |        | x     |                      |               |
| 523  | 114.4  | 100.4   |          |     | x      |        |                      |               | 583  | 51.0         | 51.0    |      |     |        | x     |                      |               |
| 524  | 113.9  | 99.9    |          |     | x      |        |                      |               | 584  | 46.0         | 46.0    |      |     |        | x     |                      |               |
| 525  | 113.6  | 99.6    |          |     | x      |        |                      |               | 585  | 38.8         | 38.8    |      |     |        | x     |                      |               |
| 526  | 113.5  | 99.5    | 1        |     | x      |        |                      |               | 586  | 31.6         | 31.6    |      |     |        | х     |                      |               |
| 527  | 113.5  | 99.5    |          |     | x      |        |                      |               | 587  | 24.4         | 24.4    |      |     |        | х     |                      |               |
| 528  | 113.6  | 99.6    |          |     | x      |        |                      |               | 588  | 17.2         | 17.2    |      |     |        | х     |                      |               |
| 529  | 113.7  | 99.7    |          |     | х      |        |                      |               | 589  | 10.0         | 10.0    |      |     |        | Х     |                      |               |
| 530  | 113.8  | 99.8    |          |     | х      |        |                      |               | 590  | 5.0          | 5.0     | х    |     |        |       |                      |               |
| 531  | 113.9  | 99.9    |          |     | х      |        |                      |               | 591  | 2.0          | 2.0     | х    |     |        |       |                      |               |
| 532  | 114.0  | 100.0   |          |     | x      |        |                      |               | 592  | 0.0          | 0.0     | Х    |     |        |       |                      |               |
| 533  | 114.0  | 100.0   |          |     | х      |        |                      |               | 593  | 0.0          | 0.0     | х    |     |        |       |                      |               |
| 534  | 114.1  | 100.1   |          |     | X      |        |                      |               | 594  | 0.0          | 0.0     | х    |     |        |       |                      |               |
| 535  | 114.2  | 100.2   |          |     | X      |        |                      |               | 595  | 0.0          | 0.0     | X    |     |        |       |                      |               |
| 536  | 114.4  | 100.4   |          |     | X      |        |                      |               | 596  | 0.0          | 0.0     | X    |     |        |       |                      |               |
| 537  | 114.5  | 100.5   |          |     | X      |        |                      |               | 597  | 0.0          | 0.0     | X    |     |        |       |                      |               |
| 538  | 114.6  | 100.6   |          |     | X      |        |                      |               | 598  | 0.0          | 0.0     | X    |     |        |       |                      |               |
| 539  | 114./  | 100.7   |          |     | X      |        |                      |               | 599  | 0.0          | 0.0     | X    |     |        |       |                      |               |
| 540  | 114.8  | 100.8   | 1        |     | X      |        |                      |               | 600  | 0.0          | 0.0     | Х    |     |        |       |                      |               |

### CHASSIS DYNAMOMETER AND INSTRUMENTS DESCRIPTION

# Chassis Dynamometer

| Trade name (-mark) and model:                                   |      |
|-----------------------------------------------------------------|------|
| Diameter of roller:                                             | m    |
| Chassis dynamometer type: DC/ED                                 |      |
| Capacity of power absorbing unit (pau):                         | kW   |
| Speed range                                                     | km/h |
| Power absorption system: polygonal function/coefficient control |      |
| Resolution:                                                     | N    |
| Type of inertia simulation system: mechanical /electrical       |      |
| Inertia equivalent mass:                                        | kg,  |
| in steps of                                                     | kg   |
| Coast down timer: digital/analogue/stop-watch                   |      |

# Speed sensor

| Frade name (-mark) and model: |  |
|-------------------------------|--|
| Principle:                    |  |
| Range                         |  |
| Position of installed sensor: |  |
| Resolution:                   |  |
| Dutput:                       |  |
| -                             |  |

### Coast down meter

| Trade name (-mark) and model:                           |
|---------------------------------------------------------|
| v <sub>1</sub> , v <sub>2</sub> speed: — Speed setting: |
| — Accuracy:                                             |
| — Resolution:                                           |
| — Speed acquisition time:                               |
| Coast down time: — Range:                               |
| — Accuracy:                                             |
| — Resolution:                                           |
| — Display output:                                       |
| — Number of channels:                                   |

### ROAD TESTS FOR THE DETERMINATION OF TEST BENCH SETTINGS

#### 1. <u>Requirements for the rider</u>

- 1.1. The rider shall wear a well-fitting suit (one-piece) or similar clothing, and a protective helmet, eye protection, boots and gloves.
- 1.2. The rider in the conditions given in paragraph 1.1. above shall have a mass of 75 kg  $\pm$  5 kg and be 1.75 m  $\pm$  0.05 m tall.
- 1.3. The rider shall be seated on the seat provided, with his feet on the footrests and his arms normally extended. This position shall allow the rider at all times to have proper control of the motorcycle during the tests.
- 2. <u>Requirement for the road and ambient conditions</u>
- 2.1. The test road shall be flat, level, straight and smoothly paved. The road surface shall be dry and free of obstacles or wind barriers that might impede the measurement of the running resistance. The slope of the surface shall not exceed 0.5 per cent between any two points at least 2 m apart.
- 2.2. During data collecting periods, the wind shall be steady. The wind speed and the direction of the wind shall be measured continuously or with adequate frequency at a location where the wind force during coast down is representative.
- 2.3. The ambient conditions shall be within the following limits:
  - maximum wind speed: 3 m/s
  - maximum wind speed for gusts: 5 m/s
  - average wind speed, parallel: 3 m/s
  - average wind speed, perpendicular: 2 m/s
  - maximum relative humidity: 95 per cent
  - air temperature: 278 K to 308 K
- 2.4. Standard ambient conditions shall be as follows:
  - pressure, P0: 100 kPa
  - temperature, T<sub>0</sub>: 293 K
  - relative air density, d0: 0.9197
  - air volumetric mass,  $\rho_0$ : 1.189 kg/m<sup>3</sup>
- 2.5. The relative air density when the vehicle (motorcycle) is tested, calculated in accordance with the formula below, shall not differ by more than 7.5 per cent from the air density under the standard conditions.

ECE/TRANS/180/Add.2 page 79 Annex 7

2.6. The relative air density,  $d_{T}$ , shall be calculated by the following formula:

$$\mathbf{d}_{T} = \mathbf{d}_{0} \times \frac{\mathbf{P}_{T}}{\rho_{0}} \times \frac{\mathbf{T}_{0}}{\mathbf{T}_{T}}$$
Equation A7-1

where:

pT is the mean ambient pressure during test, in kPa TT is the mean ambient temperature during test, in K.

- 3. <u>Condition of the test vehicle (motorcycle)</u>
- 3.1. The test vehicle shall comply with the conditions described in paragraph 6.2.
- 3.2. When installing the measuring instruments on the test motorcycle, care shall be taken to minimise their effects on the distribution of the load between the wheels. When installing the speed sensor outside the motorcycle, care shall be taken to minimise the additional aerodynamic loss.
- 4. Specified coast down speeds
- 4.1. The coast down times have to be measured between  $v_1$  and  $v_2$  as specified in table A7-1 depending on the vehicle class as defined in paragraph 6.3.

| Motorcycle Class | vj in km/h     | v1 in km/h | v2 in km/h |
|------------------|----------------|------------|------------|
|                  | 50             | 55         | 45         |
| 1                | 40             | 45         | 35         |
| 1                | 30             | 35         | 25         |
|                  | 20             | 25         | 15         |
|                  | 100            | 110        | 90         |
|                  | 80 <u>*</u> /  | 90         | 70         |
| 2                | 60 <u>*</u> /  | 70         | 50         |
|                  | 40 <u>*</u> /  | 45         | 35         |
|                  | 20 <u>*</u> /  | 25         | 15         |
|                  | 120            | 130        | 110        |
|                  | 100 <u>*</u> / | 110        | 90         |
| 2                | 80 <u>*</u> /  | 90         | 70         |
| 3                | 60 <u>*</u> /  | 70         | 50         |
|                  | 40 <u>*</u> /  | 45         | 35         |
|                  | 20 */          | 25         | 15         |

<u>Table A7-1</u>: Coast down time measurement beginning speed and ending speed.

\*/ Specified coast down speeds for motorcycles that have to drive the part in the "reduced speed" version

(For reduced speed version specifications see paragraph 6.5.4.)

4.2. When the running resistance is verified in accordance with paragraph 7.2.2.3.2., the test can be executed at  $vj \pm 5$  km/h, provided that the coast down time accuracy according to paragraph 6.5.7. in this regulation is ensured.

### 5. Measurement of coast down time

- 5.1. After a warm-up period, the motorcycle shall be accelerated to the coast down starting speed, at which point the coast down measurement procedure shall be started.
- 5.2. Since it can be dangerous and difficult from the viewpoint of its construction to have the transmission shifted to neutral, the coasting may be performed solely with the clutch disengaged. For those motorcycles that have no way of cutting the transmitted engine power off prior to coasting, the motorcycle may be towed until it reaches the coast down starting speed. When the coast down test is reproduced on the chassis dynamometer, the transmission and clutch shall be in the same condition as during the road test.
- 5.3. The motorcycle steering shall be altered as little as possible and the brakes shall not be operated until the end of the coast down measurement period.
- 5.4. The first coast down time  $\Delta T_{ai}$  corresponding to the specified speed  $v_j$  shall be measured as the elapsed time from the motorcycle speed  $v_j + \Delta v$  to  $v_j \Delta v$ .
- 5.5. The above procedure shall be repeated in the opposite direction to measure the second coast down time  $\Delta T_{bi}$ .
- 5.6. The average  $\Delta T_i$  of the two coast down times  $\Delta T_{ai}$  and  $\Delta T_{bi}$  shall be calculated by the following equation:

$$\Delta T_{i} = \frac{\Delta T_{a} + \Delta T_{b}}{2}$$
 Equation A7-2

5.7. At least four tests shall be performed and the average coast down time  $\Delta T_j$  calculated by the following equation:

$$\Delta T_{j} = \frac{1}{n} \times \sum_{i=1}^{n} \Delta T_{i}$$
 Equation A7-3

5.8. Tests shall be performed until the statistical accuracy P is equal to or less than 3 per cent  $(P \le 3 \text{ per cent})$ .

The statistical accuracy P as a percentage, is calculated by the following equation:

$$P = \frac{t \times s}{\sqrt{n}} \times \frac{100}{\Delta T_{i}}$$
 Equation A7-4

where:

- t is the coefficient given in table A7-2;
- s is the standard deviation given by the following formula:

ECE/TRANS/180/Add.2 page 81 Annex 7

$$\mathbf{s} = \sqrt{\sum_{i=1}^{n} \frac{(\Delta \mathbf{T}_i - \Delta \mathbf{T}_j)^2}{n-1}}$$

Equation A7-5

where:

n is the number of tests.

Table A7-2: Coefficients for the statistical accuracy

| n  | t   | $\frac{t}{\sqrt{n}}$ |
|----|-----|----------------------|
| 4  | 3.2 | 1.60                 |
| 5  | 2.8 | 1.25                 |
| 6  | 2.6 | 1.06                 |
| 7  | 2.5 | 0.94                 |
| 8  | 2.4 | 0.85                 |
| 9  | 2.3 | 0.77                 |
| 10 | 2.3 | 0.73                 |
| 11 | 2.2 | 0.66                 |
| 12 | 2.2 | 0.64                 |
| 13 | 2.2 | 0.61                 |
| 14 | 2.2 | 0.59                 |
| 15 | 2.2 | 0.57                 |

- 5.9. In repeating the test, care shall be taken to start the coast down after observing the same warm-up procedure and at the same coast down starting speed.
- 5.10. The measurement of the coast down times for multiple specified speeds may be made by a continuous coast down. In this case, the coast down shall be repeated after observing the same warm-up procedure and at the same coast down starting speed.
- 5.11. The coast down time shall be recorded. The example of the record form is given in Annex 8.

ECE/TRANS/180/Add.2 page 82 Annex 7

#### 6. Data processing

- 6.1. Calculation of running resistance force
- 6.1.1 The running resistance force F<sub>j</sub>, in Newton, at the specified speed v<sub>j</sub> shall be calculated by the following equation:

$$F_{j} = \frac{1}{3.6} \times (m + m_{r}) \times \frac{2\Delta v}{\Delta T_{j}}$$
Equation A7-6

where:

 $m_r$  should be measured or calculated as appropriate. As an alternative,  $m_r$  may be estimated as 7 per cent of the unladen motorcycle mass.

- 6.1.2. The running resistance force F<sub>i</sub> shall be corrected in accordance with paragraph 6.2. below.
- 6.2. Running resistance curve fitting

The running resistance force, F, shall be calculated as follows:

6.2.1. This following equation shall be fitted to the data set of F<sub>j</sub> and v<sub>j</sub> obtained above by linear regression to determine the coefficients f<sub>0</sub> and f<sub>2</sub>,

$$\mathbf{F} = \mathbf{f}_0 + \mathbf{f}_2 \times \mathbf{v}^2$$
 Equation A7-7

6.2.2. The coefficients f<sub>0</sub> and f<sub>2</sub> determined shall be corrected to the standard ambient conditions by the following equations:

$$f_{0}^{*} = f_{0} [1 + K_{0} (T_{T} - T_{0})]$$
Equation A7-8  
$$f_{2}^{*} = f_{2} \times \frac{T_{T}}{T_{0}} \times \frac{p_{0}}{p_{T}}$$
Equation A7-9

where:

K0 should be determined based on the empirical data for the particular motorcycle and tyre tests, or should be assumed as follows, if the information is not available:  $K_0 = 6 \times 10^{-3} \text{ K}^{-1}$ .

ECE/TRANS/180/Add.2 page 83 Annex 7

# 6.3. Target running resistance force $F^*$ for chassis dynamometer setting

The target running resistance force  $F^*(v_0)$  on the chassis dynamometer at the reference motorcycle speed  $v_0$ , in Newton, is determined by the following equation:

$$F^{*}(v_{0}) = f^{*}_{0} + f^{*}_{2} \times v_{0}^{2}$$
 Equation A7-10

## FORM FOR THE RECORD OF COAST DOWN TIME

| Trade name: | Production number (Body) | ):                        |
|-------------|--------------------------|---------------------------|
| Date: / /   | Place of the test:       | Name of recorder          |
| Climate:    | Atmospheric pressure:kPa | Atmospheric temperature:K |

Wind speed (parallel/perpendicular): / m/s

Rider height: \_\_\_\_\_m

| Motorcycle<br>speed<br>km/h | Coast down time(s)<br>in s |  |  | Statistical<br>accuracy<br>in per cent | Average<br>coast down<br>time<br>in s | Running<br>resistance<br>in N | Target running<br>resistance<br>in N | Note |  |
|-----------------------------|----------------------------|--|--|----------------------------------------|---------------------------------------|-------------------------------|--------------------------------------|------|--|
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |
|                             | First                      |  |  |                                        |                                       |                               |                                      |      |  |
|                             | Second                     |  |  |                                        |                                       |                               |                                      |      |  |

Curve fitting:  $F^* = v^2$ 

# RECORD OF CHASSIS DYNAMOMETER SETTING (BY COAST DOWN METHOD)

Trade name:

Production number (body):

 Date // /
 Place of the test:
 Name of recorder:

| Motorcycle<br>speed<br>in km/h |        | Coast de | own time(<br>in s | s)      | Running in    | resistance<br>N | Setting<br>error,<br>in per cent | Note |
|--------------------------------|--------|----------|-------------------|---------|---------------|-----------------|----------------------------------|------|
|                                | Test 1 | Test 2   | Test 3            | Average | Setting value | Target value    | %                                |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |
|                                |        |          |                   |         |               |                 |                                  |      |

Curve fitting:  $F^* = + v^2$ 

# RECORD OF CHASSIS DYNAMOMETER SETTING (BY TABLE METHOD)

 Trade name:
 Production number (Body):

Place of the test: \_\_\_\_\_ Name of recorder: \_\_\_\_\_ Date / /

| Motorcycle<br>speed<br>in km/h | Coast down time(s)<br>in s |        |        |         | Running 1<br>in | resistance<br>N | Setting error<br>in per cent | Note |
|--------------------------------|----------------------------|--------|--------|---------|-----------------|-----------------|------------------------------|------|
|                                | Test 1                     | Test 2 | Test 3 | Average | Setting value   | Target value    | %                            |      |
|                                |                            |        |        | U       |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |
|                                |                            |        |        |         |                 |                 |                              |      |

Curve fitting:  $F^* = + v^2$ 

ECE/TRANS/180/Add.2 page 87 Annex 11

### Annex 11

# RECORD OF TYPE I TEST RESULTS

| Trade name: | Production number (Body): |
|-------------|---------------------------|
|             |                           |

Climate: \_\_\_\_\_ kPa Atmospheric temperature: \_\_\_\_\_K

| Motorcycle | Reduced         | Cycle | Starting Test Distance |         |                 | Emission in g |    |     |                 | Fuel     |
|------------|-----------------|-------|------------------------|---------|-----------------|---------------|----|-----|-----------------|----------|
| Class      | speed<br>Yes/No | part  | cond.                  | number  | driven<br>in km | НС            | CO | NOX | CO <sub>2</sub> | in litre |
|            |                 |       |                        | 1       |                 |               |    |     |                 |          |
| 1.2  or  3 |                 | 1     | Cold                   | 2       |                 |               |    |     |                 |          |
| 1, 2 01 5  |                 | 1     | Colu                   | 3       |                 |               |    |     |                 |          |
|            |                 |       |                        | Average |                 |               |    |     |                 |          |
|            |                 |       |                        | 1       |                 |               |    |     |                 |          |
| 1          |                 | 1     | Hot                    | 2       |                 |               |    |     |                 |          |
| 1          |                 | 1     |                        | 3       |                 |               |    |     |                 |          |
|            |                 |       |                        | Average |                 |               |    |     |                 |          |
|            |                 |       |                        | 1       |                 |               |    |     |                 |          |
| 2 or 3     |                 | 2     | Hot                    | 2       |                 |               |    |     |                 |          |
| 2 01 5     |                 |       | 1101                   | 3       |                 |               |    |     |                 |          |
|            |                 |       |                        | Average |                 |               |    |     |                 |          |
| 3          |                 |       |                        | 1       |                 |               |    |     |                 |          |
|            |                 | 3     | Hot                    | 2       |                 |               |    |     |                 |          |
|            |                 | 5     |                        | 3       |                 |               |    |     |                 |          |
|            |                 |       |                        | Average |                 |               |    |     |                 |          |

| Motorcycle | Reduced         | Cycle | Starting  | Weighting in | Avera | ge Em | ission | in g/km         | Fuel cons.         |
|------------|-----------------|-------|-----------|--------------|-------|-------|--------|-----------------|--------------------|
| Class      | speed<br>Yes/No | part  | condition | per cent     | НС    | CO    | NOX    | CO <sub>2</sub> | in<br>litre/100 km |
|            |                 | 1     | Cold      | 50           |       |       |        |                 |                    |
| 1          |                 | 1     | Hot       | 50           |       |       |        |                 |                    |
|            | -               | -     | -         | Final Result |       |       |        |                 |                    |
|            |                 | 1     | Cold      | 30           |       |       |        |                 |                    |
| 2          |                 | 2     | Hot       | 70           |       |       |        |                 |                    |
|            | -               | -     | -         | Final Result |       |       |        |                 |                    |
|            |                 | 1     | Cold      | 25           |       |       |        |                 |                    |
| 3          |                 | 2     | Hot       | 50           |       |       |        |                 |                    |
| 5          |                 | 3     | Hot       | 25           |       |       |        |                 |                    |
|            | -               | -     | -         | Final Result |       |       |        |                 |                    |

ECE/TRANS/180/Add.2 page 88 Annex 12

### Annex 12

### RECORD OF TYPE II TEST RESULTS

 Trade name:
 Production number (Body):

 Date:
 /
 Place of the test:
 Name of recorder

Climate: \_\_\_\_\_ Atmospheric pressure: \_\_\_\_\_ kPa Atmospheric temperature: \_\_\_\_\_ K

| Idlir   | ng speed in m | in-1    | Engine oil           | CO content          | CO <sub>2</sub> content | Corrected           |
|---------|---------------|---------|----------------------|---------------------|-------------------------|---------------------|
| Minimum | Average       | Maximum | temperature<br>in °C | in per cent<br>vol. | in per cent<br>vol.     | in per cent<br>vol. |
|         |               |         |                      |                     |                         |                     |

| High io | dling speed ir | n min <sup>-1</sup> | Engine oil           | CO content          | CO <sub>2</sub> content | Corrected           |
|---------|----------------|---------------------|----------------------|---------------------|-------------------------|---------------------|
| Minimum | Average        | Maximum             | temperature<br>in °C | in per cent<br>vol. | in per cent<br>vol.     | in per cent<br>vol. |
|         |                |                     |                      |                     |                         |                     |

ECE/TRANS/180/Add.2 page 89 Annex 13

#### Annex 13

#### EXPLANATORY NOTE ON GEARSHIFT PROCEDURE

This explanatory note is not a part of the standard, but explains matters specified or described in the standard or appendix, and matters related thereto.

#### 1. <u>Approach</u>

- 1.1. The development of the gearshift procedure was based on an analysis of the gearshift points in the in-use data. In order to get generalised relations between technical specifications of the vehicles and gearshift speeds the engine speeds were normalised to the utilisable band between rated speed and idling speed.
- 1.2. In a second step the end speeds (vehicle speed as well as normalised engine speed) for upshifts and downshifts were determined and collected in a separate table. The averages of these speeds for each gear and vehicle were calculated and correlated with technical specifications of the vehicles.
- 1.3. The results of these analyses and calculations can be summarised as follows:
  - The gearshift behaviour is engine speed related rather than vehicle speed related.
  - The best correlation between gearshift speeds and technical data was found for normalised engine speeds and the power to mass ratio (rated power/(unladen mass + 75 kg).
  - The residual variations cannot be explained by other technical data or by different transmission ratios. They are most probably assigned to differences in traffic conditions and individual driver behaviour.
  - The best approximation between gearshift speeds and power to mass ratio was found for exponential functions.
  - The gearshift function for the first gear is significantly lower than for all other gears.
  - The gearshift speeds for all other gears can be approximated by one common function.
  - No differences were found between five-speed and six-speed gearboxes.
  - The gearshift behaviour in Japan is significantly different from the equal-type gearshift behaviour in the Europe Union (EU) and in the United States of America (USA).
- 1.4. In order to find a balanced compromise between the three regions a new approximation function for normalised upshift speeds versus power to mass ratio was calculated as weighted average of the EU/USA curve (with 2/3 weighting) and the Japanese curve (with 1/3 weighting).

#### 2. Gearshift criteria, additional requirements

- 2.1. Based on this, the gearshift prescriptions can be summarised as follows:
- 2.2. For acceleration phases manual transmissions shall be shifted from first to second gear when the engine speed reaches a value according to the following formula:

ECE/TRANS/180/Add.2 page 90 Annex 13

$$n_{max}_{acc}(1) = (0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})} - 0.1) \times (s - n_{idle}) + n_{idle}$$
 Equation A13-1

2.3. Upshifts for higher gears have to be carried out during acceleration phases when the engine speed reaches a value according to the following formula:

$$n_{max_{acc}}(i) = (0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})}) \times (s - n_{idle}) + n_{idle}$$
 Equation A13-2

where:

| i                 | is the gear number ( $\geq 2$ ),               |
|-------------------|------------------------------------------------|
| P <sub>n</sub>    | is the rated power in kW,                      |
| $m_k$             | is the unladen mass in kg,                     |
| n                 | is the engine speed in min <sup>-1</sup> ,     |
| n <sub>idle</sub> | is the idling speed in min <sup>-1</sup> ,     |
| S                 | is the rated engine speed in min <sup>-1</sup> |

2.4. The minimum engine speeds for acceleration phases in the second gear or higher gears are accordingly defined by the following formula:

$$n_{min_{acc}(i) = n_{max_{acc}(i-1) \times \frac{r(i)}{r(i-1)}}$$
Equation A13-3

where:

r(i) is the ratio of gear i

2.5. The minimum engine speeds for deceleration phases or cruising phases in the second gear or higher gears are defined by the following formula:

$$n_{min\_dec}(i) = n_{min\_dec}(i-1) \times \frac{r(i)}{r(i-1)}$$
 Equation A13-4

where:

r(i) is the ratio of gear i

- 2.6. When reaching these values during deceleration phases the manual transmission has to be shifted to the next lower gear (see figure A13-1). The engine speed values resulting from the formulas above can be rounded to multiples of 100 min<sup>-1</sup> for practical applications.
- 2.7. Figure A13-1 shows an example for a gearshift sketch for a small vehicle. The solid lines demonstrate the gear use for acceleration phases; the dotted lines show the downshift points for deceleration phases. During cruising phases the whole speed range between downshift speed and upshift speed may be used.

- 2.8. In order to avoid driveability problems these prescriptions had to be supplemented by the following additional requirements, (some of them are general, some are assigned to particular cycle phases):
  - There are fixed allocations for acceleration, cruising and deceleration phases (see Annex 5).
  - Gearshifts are prohibited for indicated cycle sections (see Annex 5).
  - No gearshift if a deceleration phase follows immediately after an acceleration phase.
  - Idle modes shall be run with manual transmissions in the first gear with the clutch disengaged.
  - Downshifts to the first gear are prohibited for those modes, which require the vehicle to decelerate to zero.
  - Manual transmissions gearshifts shall be accomplished with minimum time with the operator closing the throttle during each shift.
  - The first gear should only be used when starting from standstill.
  - For those modes that require the vehicle to decelerate to zero, manual transmission clutches shall be disengaged when the speed drops below 10 km/h, when the engine speed drops below  $n_{idle} + 0.03*(s n_{idle})$ , when engine roughness is evident, or when engine stalling is imminent.
  - While the clutch is disengaged the vehicle shall be shifted to the appropriate gear for starting the next mode.
  - The minimum time span for a gear sequence is 2 seconds.
- 2.9. To give the test engineer more flexibility and to assure driveability the gearshift regression functions should be treated as lower limits. Higher engine speeds are permitted in any cycle phase.



Figure A13-1: Example of a gearshift sketch for a small vehicle

#### 3. <u>Calculation example</u>

- 3.1. An example of input data necessary for the calculation of shift speeds is shown in table A13-1. The upshift speeds for acceleration phases for the first gear and higher gears are calculated using equation A13-1 and equation A13-2. The denormalisation of engine speeds can be executed by using the equation  $n = n_n \text{ orm } * (s n_{idle}) + n_{idle}$ .
- 3.2. The downshift speeds for deceleration phases can be calculated with equation A13-4. The ndv values in table A13-1 can be used as gear ratios. These values can also be used to calculate the affiliated vehicle speeds (vehicle shift speed in gear  $i = engine shift speed in gear i / ndv_i$ ). The corresponding results are shown in table A13-2 and table A13-3.
- 3.3. In a further step the possibility of a simplification of the above-described gearshift algorithms was examined by additional analyses and calculations. It should especially be checked whether engine shift speeds could be replaced by vehicle shift speeds. The analysis showed that vehicle speeds could not be brought in line with the gearshift behaviour of the in-use data.

| Item                                   | Input Data |
|----------------------------------------|------------|
| Engine capacity in cm <sup>3</sup>     | 600        |
| P <sub>n</sub> in kW                   | 72         |
| m <sub>k</sub> in kg                   | 199        |
| s in min <sup>-1</sup>                 | 11,800     |
| n <sub>idle</sub> in min <sup>-1</sup> | 1,150      |
| ndv1 <u>*</u> /                        | 133.66     |
| ndv2                                   | 94.91      |
| ndv3                                   | 76.16      |
| ndv4                                   | 65.69      |
| ndv5                                   | 58.85      |
| ndv6                                   | 54.04      |
| pmr <u>**</u> / in kW/t                | 262.8      |
|                                        |            |

\*/ ndv means the ratio between engine speed in min<sup>-1</sup> and vehicle speed in km/h

<u>\*\*/</u> pmr means the power to mass ratio calculated by  $P_n / (m_k+75) \times 1,000$ ;  $P_n$  in kW,  $m_k$  in kg

| Table A13-2:  | Shift speeds | for | acceleration | phases | for | the | first | gear | and | for | higher | gears |
|---------------|--------------|-----|--------------|--------|-----|-----|-------|------|-----|-----|--------|-------|
| (according to | table A13-1) |     |              |        |     |     |       |      |     |     |        |       |

|                   |                      | EU/USA/Japan driving behaviour |               |  |  |  |
|-------------------|----------------------|--------------------------------|---------------|--|--|--|
|                   |                      | $n_{acc_{max}}(1)$             | n_acc_max (i) |  |  |  |
| n_norm <u>*</u> / | in per cent          | 24.8 per cent                  | 34.8 per cent |  |  |  |
| n                 | in min <sup>-1</sup> | 3,804                          | 4,869         |  |  |  |

 $\frac{*}{}$  n\_norm means the calculated value by equation A13-1 and equation A13-2.

|           |                 | EU/USA/Japan driving behaviour |                           |                        |  |  |  |
|-----------|-----------------|--------------------------------|---------------------------|------------------------|--|--|--|
| Gearshif  | t               | v in km/h                      | n_norm (i)<br>in per cent | n in min <sup>-1</sup> |  |  |  |
|           | 1→2             | 28.5                           | 2.49                      | 3,804                  |  |  |  |
|           | 2→3             | 51.3                           | 34.9                      | 4,869                  |  |  |  |
| Upshift   | 3→4             | 63.9                           | 34.9                      | 4,869                  |  |  |  |
|           | 4→5             | 74.1                           | 34.9                      | 4,869                  |  |  |  |
|           | 5→6             | 82.7                           | 34.9                      | 4,869                  |  |  |  |
|           | 2→cl <u>*</u> / | 15.5                           | 3.0                       | 1,470                  |  |  |  |
|           | 3→2             | 28.5                           | 9.6                       | 2,167                  |  |  |  |
| Downshift | 4→3             | 51.3                           | 20.8                      | 3,370                  |  |  |  |
|           | 5→4             | 63.9                           | 24.5                      | 3,762                  |  |  |  |
|           | 6 <b>→</b> 5    | 74.1                           | 26.8                      | 4,005                  |  |  |  |

Table A13-3: Engine and vehicle shift speeds according to table A13-2

<u>\*/</u> "cl" means "Clutch-Off" timing.

-----