

## **Information on Global Warming Potentials**

**Technical Paper** 

#### Summary

Global Warming Potentials (GWPs) are used to estimate, compare and aggregate the relative climate effects of various greenhouse gases (GHGs). They are a measure of the relative radiative effect of a given substance compared to another, integrated over a chosen time horizon. This note provides basic information on GWPs and their use under the Convention and the Kyoto Protocol, in particular their use in guidelines for reporting GHG inventories and for preparation of national communications by Parties.

III.

#### CONTENTS

## Paragraphs Page

11

| I.   | INTRO                                                                                   | DDUCTION                                              | 1–2   | 3 |
|------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|-------|---|
| II.  | WHAT                                                                                    | TARE GLOBAL WARMING POTENTIALS?                       | 3–11  | 3 |
|      | A.                                                                                      | Definition                                            | 3     | 3 |
|      | B.                                                                                      | Characteristics                                       | 4–11  | 3 |
| III. | GLOB<br>UNDE                                                                            | AL WARMING POTENTIALS IN THE WORK<br>R THE CONVENTION | 12–20 | 5 |
|      | A.                                                                                      | Greenhouse gas inventories                            | 12–17 | 5 |
|      | B.                                                                                      | Kyoto Protocol provisions                             | 18–20 | 6 |
| IV.  | DISCU                                                                                   | JSSION                                                | 21–23 | 7 |
|      |                                                                                         | Annexes                                               |       |   |
| I.   | Calcula                                                                                 | ation of Global Warming Potentials                    |       | 8 |
| II.  | Global Warming Potentials published by the Intergovernmental Panel<br>on Climate Change |                                                       |       |   |

Greenhouse gas emissions reported by Parties .....

## I. Introduction

1. Decisions 2/CP.3, 17/CP.8 and 18/CP.8, as well as Article 5.3 of the Kyoto Protocol, state how Global Warming Potentials (GWPs) should be used in the context of the Convention and the Kyoto Protocol.

2. This document gives information on the definition, characteristics and use of GWPs in the work under of the Convention. It draws primarily on information in the Second Assessment Report (SAR) and the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC), and on emission data from the GHG inventories of Parties reported to the UNFCCC.

## **II.** What are Global Warming Potentials?

#### A. Definition

3. The TAR describes GWPs as "a measure of the relative radiative effect of a given substance compared to another, integrated over a chosen time horizon" (TAR, chapter 6.12.1). In the glossary of the TAR, GWPs are defined in more detail as "an index, describing the radiative characteristics of well mixed GHGs, that represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing infrared radiation. This index approximates the time-integrated warming effect of a unit mass of a given greenhouse gas in today's atmosphere, relative to that of carbon dioxide ( $CO_2$ )." Carbon dioxide, the so-called reference gas, is assigned a GWP value of 1, independent on the time horizon used or other parameters that can influence GWPs of other GHGs. Annex I to this note contains the mathematical definition of GWPs.

#### **B.** Characteristics

#### 1. Basic concept

4. The formulation of GWPs is based on the forcing concept, which relies on the relationship between radiative forcing and climate response. Recent studies have supported the view that various GHGs yield similar globally averaged climate responses per unit of forcing. Forcing values (with units of  $W/m^2$ ) can therefore be added and compared, which is not the case for emissions (with units of mass) of different GHGs. For example, the emission of 1 kg CO<sub>2</sub> causes a different effect on climate to the emission of 1 kg CH<sub>4</sub>, but a forcing of 1  $W/m^2$  is assumed to cause the same effect on climate, whichever gas is responsible for the forcing. Based on the forcing concept, GWPs are a metric that allows the climate effects of different GHGs to be compared and aggregated.

5. The greater the GWP of a GHG, the greater its ability to cause global warming. A GWP for  $CH_4$  of 21, for instance, means that 1 kg of  $CH_4$  causes 21 times more effect on global warming than 1 kg of  $CO_2$  (which has a GWP of 1).

#### 2. Parameters

- 6. A GWP value depends on two parameters:
  - (a) The ability of the GHG to trap heat in the atmosphere (described via its radiative forcing, or more explicitly its radiative efficiency
  - (b) The lifetime of the GHG (described via its decay in the atmosphere).
- 7. Annex I describes these parameters mathematically and lists values for some key GHGs.

FCCC/TP/2004/3 Page 4

8. The radiative efficiency of a gas in the atmosphere is not constant. For  $CO_2$ , in particular, it depends on the atmospheric concentration of the gas itself; the higher its atmospheric concentration the lower its radiative efficiency. Therefore, changes of the concentration of the reference gas  $CO_2$  impact on the GWPs of all other GHGs.<sup>1</sup> This means that GWPs are not constant over time and can only be calculated for given concentrations of GHGs. These natural changes of GWPs over time, as well as constantly improved and up-dated scientific knowledge, are the main reasons for the differences among GWP values given in various IPCC reports. GWP values published by the IPCC are listed in annex II.

9. The decay of key GHGs is illustrated in figure 1. Some gases, such as  $SF_6$  and  $CF_4$ , decay slowly and remain in the atmosphere for thousands of years (see also table 1 in annex I).



#### Figure 1: Decay of some greenhouse gases in the atmosphere

#### 3. Time horizon

10. A GWP can be calculated only for specified time horizons. The IPCC provides GWPs for time horizons of 20, 100 and 500 years (see table 1). The GWPs of GHGs with a lifetime longer than that of  $CO_2$  (e.g.  $CF_4$ ,  $SF_6$ ) increase with increasing time horizon; GHGs with a lifetime shorter than that of  $CO_2$  (e.g.  $CH_4$ ) show a decreasing GWP when the time horizon increases.<sup>2</sup>

11. Therefore, the choice of the time horizon has implications on the relative weight of different gases when applying the GWP metric. Short-lived gases get more weight when a short time horizon is chosen, long-lived gases when the choice is a long time horizon.

<sup>&</sup>lt;sup>1</sup> This does not influence a relative comparison, based on the GWP metric, among non-CO<sub>2</sub> gases.

<sup>&</sup>lt;sup>2</sup> The lifetime of  $CO_2$  is nominally about 150 years, but no single number can be given because of the various processes involved in the removal of  $CO_2$  from the atmosphere.

|                                 | GWP for time horizons of |           |           |  |  |  |
|---------------------------------|--------------------------|-----------|-----------|--|--|--|
| Gas                             | 20 years                 | 100 years | 500 years |  |  |  |
| CO <sub>2</sub> (reference gas) | 1                        | 1         | 1         |  |  |  |
| $CH_4$                          | 62                       | 23        | 7         |  |  |  |
| N <sub>2</sub> O                | 275                      | 296       | 156       |  |  |  |
| HFC-134a                        | 3 300                    | 1 300     | 400       |  |  |  |
| $CF_4$                          | 3 900                    | 5 700     | 8 900     |  |  |  |
| SF <sub>6</sub>                 | 15 100                   | 22 200    | 32 400    |  |  |  |

# Table 1: Global Warming Potentials of some key GHGs for time horizonsof 20, 100 and 500 years

Source: Third Assessment Report of the IPCC.

## III. Global Warming Potentials in the work under the Convention

#### A. Greenhouse gas inventories

12. The UNFCCC guidelines on reporting and review of GHG inventories<sup>3</sup> state that Annex I Parties should report aggregated emissions and removals of GHGs using GWP values provided by the IPCC in its SAR based on the effects of GHGs over a 100-year time horizon. Decision 17/CP.8 states that the same GWP values should be used by non-Annex I Parties wishing to report.

13. For reporting purposes, emission values in mass units are multiplied by the GWP of the relevant gas to yield emissions in  $CO_2$  equivalents. Hence, an emission of 1 gigagram (Gg) CH<sub>4</sub>, multiplied by its GWP of 21 gives a  $CO_2$  equivalent of 21 Gg. This indicates that the emission of 1 Gg CH<sub>4</sub> has the same effect on climate as the emission of 21 Gg CO<sub>2</sub>.

14. A practical example, using data from the UNFCCC Greenhouse Gas Inventory Database, is given in table 2. The table contains, for the years 1990 and 2000, emissions of some important GHGs, reported by the European Community,<sup>4</sup> and corresponding  $CO_2$  equivalents calculated by using the GWP values from the SAR over a 100-year time horizon.

<sup>&</sup>lt;sup>3</sup> "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC guidelines on annual inventories" (FCCC/CP/2002/8).

<sup>&</sup>lt;sup>4</sup> The European Community was chosen as one possible example to compare data of the years 1990 and 2000. For more detailed information on the reporting by individual Member States of the European Community, please refer to documents FCCC/SBSTA/2003/14 and FCCC/WEB/2003/3. The database contains comprehensive information on all reported data from Annex I and non-Annex I countries, currently for all years from 1990 to 2000. Therefore, comparable aggregations/comparisons can be made for other countries or groups of countries, and also for specific sources.

|        |                   | 1990                                   |                                 | 2000              |                                        |                                 |  |
|--------|-------------------|----------------------------------------|---------------------------------|-------------------|----------------------------------------|---------------------------------|--|
| Gas    | Emissions<br>(Gg) | CO <sub>2</sub><br>equivalents<br>(Gg) | Relative<br>contribution<br>(%) | Emissions<br>(Gg) | CO <sub>2</sub><br>equivalents<br>(Gg) | Relative<br>contribution<br>(%) |  |
| $CO_2$ | 3 341 804         | 3 341 804                              | 79.27                           | 3 324 800         | 3 324 800                              | 81.74                           |  |
| $CH_4$ | 20 310            | 426 506                                | 10.12                           | 16 275            | 341 771                                | 8.40                            |  |
| $N_2O$ | 1 293             | 400 948                                | 9.51                            | 1 091             | 338 111                                | 8.31                            |  |
| HFCs   |                   | 24 426                                 | 0.58                            |                   | 47 285                                 | 1.16                            |  |
| PFCs   |                   | 13 545                                 | 0.32                            |                   | 6 846                                  | 0.17                            |  |
| $SF_6$ |                   | 8 440                                  | 0.20                            |                   | 8 955                                  | 0.22                            |  |
| Total  |                   | 4 215 668                              | 100                             |                   | 4 067 767                              | 100                             |  |

| Table 2: Example for the aggregation and comparison of different GHG emissions via the |
|----------------------------------------------------------------------------------------|
| calculation of CO <sub>2</sub> equivalents using GWPs                                  |

*Source:* UNFCCC Greenhouse Gas Inventory Database, accessible via <a href="http://ghg.unfccc.int">http://ghg.unfccc.int</a>>. Shown are data reported to UNFCCC by the European Community for the years 1990 and 2000.

15. Conversions of GHG emissions into  $CO_2$  equivalents are used in many ways within the inventory work under the Convention. Some examples are included in document FCCC/SBSTA/2003/14, such as trends in aggregated GHG emissions for groups of Parties since 1990, total aggregated GHG emissions of individual Parties for certain time periods, and GHG emissions by sector.

16. Currently, emissions are converted into  $CO_2$  equivalents using GWP values from the SAR for a time horizon of 100 years. Table 3 contains an example showing the differences that occur when TAR values are used instead of SAR values. The  $CO_2$  equivalents change considerably.

|                 |                   | GWP<br>_(100-year time hor |     |           | 3         |                        |
|-----------------|-------------------|----------------------------|-----|-----------|-----------|------------------------|
| Gas             | Emissions<br>(Gg) | SAR                        | TAR | SAR       | TAR       | Change<br>SAR→TAR<br>% |
| CO <sub>2</sub> | 3 324 800         | 1                          | 1   | 3 324 800 | 3 324 800 | 0.0                    |
| $CH_4$          | 16 275            | 21                         | 23  | 341 771   | 374 321   | +9.5                   |
| $N_2O$          | 1 091             | 310                        | 296 | 338 111   | 322 841   | -4.5                   |
| Total:          |                   |                            |     | 4 004 682 | 4 021 962 | +0.4                   |

# Table 3: Differences when applying TAR vs. SAR GWPs. The example is for three importantGHGs using data reported by the European Community for the year 2000

17. Annex III shows the  $CO_2$  equivalents of emissions reported by all Annex I Parties for 1990 and 2001 calculated using SAR and TAR GWPs.

#### **B.** Kyoto Protocol provisions

18. The Kyoto Protocol, in its Article 5.3, states that the GWPs used to calculate  $CO_2$  equivalents shall be those accepted by the IPCC and agreed upon the Conference of the Parties (COP) at its third session. Article 5.3 further states that based on the work of, inter alia, the IPCC and advice provided by the Subsidiary Body for Scientific and Technological Advice, the Conference of the Parties serving as a

FCCC/TP/2004/3 Page 7

meeting of the Parties to the Kyoto Protocol shall regularly review and, as appropriate, revise the GWPs of the Kyoto GHGs. Any revision to a GWP shall apply only to commitments under Article 3 in respect of any commitment period adopted subsequent to that revision.

19. Decision 2/CP.3 on methodological issues relating to the Kyoto Protocol reaffirms that the GWPs used by Parties should be those provided by the IPCC in its SAR, based on the effects of GHGs over a 100-year time horizon, taking into account the inherent and complicated uncertainties involved in GWP estimates. For information purposes only, Parties may also use another time horizon, as provided in the SAR.

20. In addition, the use of the Kyoto Protocol mechanisms, i.e. the clean development mechanism (CDM, Article 12), Joint Implementation (JI, Article 6) and International Emissions Trading (IEM, Article 17), requires the application of GWP values (see decisions 16/CP.7, 17/CP.7, 18/CP.7 and 19/CP.7). For example, CH<sub>4</sub> emission reductions achieved through a CDM project have to be converted into  $CO_2$  equivalent units to yield certified emission reduction units.

## **IV. Discussion**

21. GWPs represent a metric that allows the relative climate effects of various GHGs to be estimated, compared and aggregated. They are presently used in the work under the Convention and the Kyoto Protocol. The GWP metric has advantages (e.g. simplicity in use) as well as uncertainties (radiative forcing and lifetime/decay estimates for GHGs). It also requests the choice of a time horizon.

22. As noted in chapter III, the COP, in its various decisions, has included the use of the GWP values provided by the IPCC in its SAR, based on the effects of GHGs over a 100-year time horizon. The IPCC has provide updated information on GWPs in its TAR; it is likely to do so in its Fourth Assessment Report. Also, as stated in the TAR, a number of studies have suggested modified or different indices (than GWP) for evaluating relative future climate effects.

- 23. Questions that may effect the use of GWPs in future work under the Convention, include:
  - (a) How and when should new GWP values be incorporated into the work of the Convention?
  - (b) How should the Convention apply updated, i.e. changing, GWP values in the future?
  - (c) Which time horizon(s) is (are) most appropriate to achieve the goals of the Convention?
  - (d) Could considering alternative metrics than GWP support the work under the Convention?

#### Annex I

## **Calculation of Global Warming Potentials**

1. Global Warming Potentials of given substances are calculated with the following equation (IPCC TAR, 2001):

$$GWP \quad (x) = \frac{AGWP}{AGWP} \quad (x) = \frac{\int_{0}^{TH} a_{x} \cdot [x(t)] dt}{\int_{0}^{TH} a_{r} \cdot [r(t)] dt}$$
(E.1)

where:

| x      | = | Substance in question (usually a GHG)                                           |
|--------|---|---------------------------------------------------------------------------------|
| r      | = | Reference gas (usually CO <sub>2</sub> )                                        |
| GWP    | = | Global Warming Potential                                                        |
| AGWP   | = | Absolute Global Warming Potential                                               |
| TH     | = | Time horizon                                                                    |
| a      | = | Radiative efficiency $(W/m^2/kg)$                                               |
| [x(t)] | = | Time-dependent decay in abundance of the instantaneous release of substance $x$ |
| [r(t)] | = | As above, but for the reference gas r                                           |

2. The numerator in equation E.1 expresses the integrated forcing of a pulse emission of substance x over the chosen time horizon *TH*, and is called Absolute Global Warming Potential of the substance. The denominator represents the same, but for the reference gas r, which is CO<sub>2</sub> in the context of this paper. A GWP therefore represents the integrated forcing of a pulse emission of a substance relative to that one of CO<sub>2</sub> over a chosen time period.

3. If the GWP is to be calculated for a GHG and the reference gas and the time horizon are chosen to be  $CO_2$  and 100 years, respectively, the equation to calculate the GWP is a specific case of equation E.1 and reads as follows:

$$GWP(GHG) = \frac{AGWP(GHG)}{AGWP(CO_2)} = \frac{\int_{0}^{100 \text{ years}} a_{GHG} \cdot [GHG(t)]dt}{\int_{0}^{100 \text{ years}} a_{CO_2} \cdot [CO_2(t)]dt}$$
(E.2)

4. The table below lists values of the radiative efficiency  $a_{GHG}$  and the lifetime for key GHGs, which can be derived from the time-dependent decay [GHG(t)] of these GHGs.

| Gas                                          | Radiative efficiency<br>(W/m²/ppmv) | Lifetime<br>(years) |
|----------------------------------------------|-------------------------------------|---------------------|
| CO <sub>2</sub> at 278 ppmv (pre-industrial) | 0.0192                              | no single number    |
| CO <sub>2</sub> at 364 ppmv                  | 0.01548                             | no single number    |
| CH <sub>4</sub>                              | 0.37                                | 12                  |
| N <sub>2</sub> O                             | 3.1                                 | 114                 |
| HFC-134a                                     | 150                                 | 13.8                |
| $CF_4$                                       | 80                                  | 50 000              |
| SF <sub>6</sub>                              | 520                                 | 3 200               |

#### Annex II

## Global Warming Potentials published by the Intergovernmental Panel on Climate Change

1. The table below summarizes Global Warning Potentials (GWPs) for a choice of greenhouse gases (GHGs) as published in the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). The values correspond to a chosen time horizon of 100 years and to the use of  $CO_2$  as reference gas (see equation E.2 in annex I).

|                                 |           |           | IPCC 1995 | IPCC 2001 |
|---------------------------------|-----------|-----------|-----------|-----------|
| Gas                             | IPCC 1992 | IPCC 1994 | (SAR)     | (TAR)     |
| CO <sub>2</sub> (reference gas) | 1         | 1         | 1         | 1         |
| CH <sub>4</sub>                 | 11        | 24.5      | 21        | 23        |
| N <sub>2</sub> O                | 270       | 320       | 310       | 296       |
| HFC-23                          | -         | 12 100    | 11 700    | 12 000    |
| HFC-32                          | -         | 580       | 650       | 550       |
| HFC-41                          | -         | -         | 150       | 97        |
| HFC-125                         | 3 400     | 3 200     | 2 800     | 3 400     |
| HFC-134                         | -         | 1 200     | 1 000     | 1 100     |
| HFC-134a                        | 1 200     | 1 300     | 1 300     | 1 300     |
| HFC-143                         | -         | 290       | 300       | 330       |
| HFC-143a                        | 3 800     | 4 400     | 3 800     | 4 300     |
| HFC-152                         | -         | -         | -         | 43        |
| HFC-152a                        | 150       | 140       | 140       | 120       |
| HFC-161                         | -         | -         | -         | 12        |
| HFC-227ea                       | -         | 3 300     | 2 900     | 3 500     |
| HFC-236cb                       | -         | -         | -         | 1 300     |
| HFC-236ea                       | -         | -         | -         | 1 200     |
| HFC-236fa                       | -         | 8 000     | 6 300     | 9 400     |
| HFC-245ca                       | -         | 610       | 560       | 640       |
| HFC-245fa                       | -         | -         | -         | 950       |
| HFC-365mfc                      | -         | -         | -         | 890       |
| HFC-43-10mee                    | -         | 1 600     | 1 300     | 1 500     |
| CF <sub>4</sub>                 | -         | 6 300     | 6 500     | 5 700     |
| $C_2F_6$                        | -         | 12 500    | 9 200     | 11 900    |
| C <sub>3</sub> F <sub>8</sub>   | -         | -         | 7 000     | 8 600     |
| $C_4F_{10}$                     | -         | -         | 7 000     | 8 600     |
| c-C <sub>4</sub> F <sub>8</sub> | -         | 9 100     | 8 700     | 10 000    |
| C <sub>5</sub> F <sub>12</sub>  | -         | -         | 7 500     | 8 900     |
| C <sub>6</sub> F <sub>14</sub>  | -         | 6 800     | 7 400     | 9 000     |
| SF <sub>6</sub>                 | -         | 24 900    | 23 900    | 22 200    |

#### Global Warming Potentials for a 100-year time horizon from various IPCC sources

Source: Climate Change, 1992; Climate Change, 1994; Second Assessment Report, 1995; Third Assessment Report, 2001.

2. Differences between GWPs from different IPCC reports are due to both natural reasons, such as the dependence of GWPs on the changing  $CO_2$  concentration level (see section II.2) and adjustments due to improved scientific knowledge.

3. Difference also occur as a result of decisions made on including certain indirect effects in the GWPs. The large change between the GWPs of  $CH_4$  published in the 1992 and 1994 IPCC reports, for instance, is a result of including the indirect effects of tropospheric ozone production and stratospheric water vapour production in the GWP calculation. More detailed information is to be found in the respective IPCC reports.

4. IPCC SAR and TAR estimate an accuracy for GWP values of  $\pm 35$  per cent.

#### Annex III

## Greenhouse gas emissions reported by Parties

1. The table below compares emissions reported by Parties included in Annex I of the Convention calculated using SAR or TAR GWP values.<sup>1</sup> The values given in the table summarize emissions of  $CO_2$  (excluding land-use change and forestry),  $CH_4$  and  $N_2O$  and are given in gigagram  $CO_2$ -equivalent. These three key GHGs included in the table account, on average, for about 98 per cent of the total emissions reported by Parties. Emissions of SF<sub>6</sub>, hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) were omitted from the table because not all Parties have reported consistently on these substances.

|                | Emissions of the year 1990 |                            |                       | Emissions of the year 2001 |                                 |                       |  |
|----------------|----------------------------|----------------------------|-----------------------|----------------------------|---------------------------------|-----------------------|--|
|                | (G                         | g CO <sub>2</sub> equivale | nt)                   | (G                         | (Gg CO <sub>2</sub> equivalent) |                       |  |
| Party          | SAR                        | TAR                        | SAR→TAR<br>change (%) | SAR                        | TAR                             | SAR→TAR<br>change (%) |  |
| Australia      | 419 912                    | 430 185                    | +2.4                  | year 2000:<br>499 966      | 510 054                         | +2.0                  |  |
| Austria        | 76 588                     | 77 343                     | +1.0                  | 84 145                     | 84 740                          | +0.7                  |  |
| Belarus        | 133 555                    | 135 062                    | +1.1                  | year 2000:<br>71 343       | 72 273                          | +1.3                  |  |
| Belgium        | 141 125                    | 141 644                    | +0.4                  | 149 184                    | 149 633                         | +0.3                  |  |
| Bulgaria       | year 1988:<br>144 397      | 145 966                    | +1.1                  | 65 775                     | 66 340                          | +0.9                  |  |
| Canada         | 598 744                    | 603 326                    | +0.8                  | 711 026                    | 717 606                         | +0.9                  |  |
| Croatia        | 31 006                     | 31 193                     | +0.6                  | year 1995:<br>22 252       | 22 416                          | +0.7                  |  |
| Czech Republic | 192 019                    | 193 107                    | +0.6                  | 146 773                    | 147 397                         | +0.4                  |  |
| Denmark        | 69 174                     | 69 224                     | +0.1                  | 68 710                     | 68 849                          | +0.2                  |  |
| Estonia        | 43 494                     | 43 863                     | +0.8                  | 19 416                     | 19 587                          | +0.9                  |  |
| Finland        | 77 138                     | 77 365                     | +0.3                  | 80 156                     | 80 347                          | +0.2                  |  |
| France         | 560 513                    | 562 913                    | +0.4                  | 556 368                    | 558 906                         | +0.5                  |  |
| Germany        | 1 203 413                  | 1 209 069                  | +0.5                  | 983 154                    | 985 402                         | +0.2                  |  |
| Greece         | 103 702                    | 104 055                    | +0.3                  | 127 742                    | 128 317                         | +0.4                  |  |
| Hungary        | years 1985-87:<br>101 633  | 102 781                    | +1.1                  | 77 996                     | 78 588                          | +0.8                  |  |
| Iceland        | 2 529                      | 2 551                      | +0.9                  | 2 583                      | 2 604                           | +0.8                  |  |
| Ireland        | 53 241                     | 53 943                     | +1.3                  | 69 423                     | 70 150                          | +1.0                  |  |
| Italy          | 507 707                    | 509 543                    | +0.4                  | 541 531                    | 542 997                         | +0.3                  |  |
| Japan          | 1 187 108                  | 1 187 654                  | +0.0                  | 1 269 382                  | 1 269 721                       | +0.0                  |  |
| Latvia         | 29 181                     | 29 402                     | +0.8                  | 11 497                     | 11 685                          | +1.6                  |  |
| Liechtenstein  | 218                        | 219                        | +0.6                  | year 1999:<br>218          | 220                             | +0.5                  |  |

## Total emissions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O calculated using GWP values from the SAR or the TAR for the years 1990 and 2001 (years used in lieu of those are explicitly listed)

<sup>&</sup>lt;sup>1</sup> The status of reporting used for drawing up this table is consistent with the information contained in documents FCCC/SBSTA/2003/14 and FCCC/WEB/2003/3 (web document with tables), published on 17 October 2003. A comparable table, possibly for other reporting years, can also be prepared for non-Annex I Parties once the initial national communications are complete.

|                          | Emis                   | sions of the year           | r 1990                | Emissions of the year 2001<br>(Gg CO <sub>2</sub> equivalent) |           |                       |
|--------------------------|------------------------|-----------------------------|-----------------------|---------------------------------------------------------------|-----------|-----------------------|
| Party                    | (0                     | Gg CO <sub>2</sub> equivale | nt)                   |                                                               |           |                       |
|                          | SAR                    | TAR                         | SAR→TAR<br>change (%) | SAR                                                           | TAR       | SAR→TAR<br>change (%) |
| Lithuania                | 50 933                 | 51 505                      | +1.1                  | year 1998:<br>22 520                                          | 22 718    | +0.9                  |
| Luxembourg               | 13 448                 | 13 487                      | +0.3                  | 6 052                                                         | 6 093     | +0.7                  |
| Monaco                   | 100                    | 100                         | 0.0                   | 140                                                           | 140       | 0.0                   |
| New Zealand              | 61 149                 | 63 123                      | +3.2                  | 72 072                                                        | 74 082    | +2.8                  |
| Norway                   | 46 795                 | 47 159                      | +0.8                  | 54 141                                                        | 54 555    | +0.8                  |
| Poland                   | year 1988:<br>564 419  | 569 714                     | +0.9                  | 380 610                                                       | 383 226   | +0.7                  |
| Portugal                 | 61 441                 | 62 066                      | +1.0                  | 83 754                                                        | 84 417    | +0.8                  |
| Romania                  | year: 1989:<br>264 280 | 268 019                     | +1.4                  | 147 583                                                       | 149 960   | +1.6                  |
| Russian Federation       | 2 998 767              | 3 048 607                   | +1.7                  | year 1999:<br>1 834 717                                       | 1 860 827 | +1.4                  |
| Slovakia                 | 71 909                 | 72 274                      | +0.5                  | 49 918                                                        | 50 190    | +0.5                  |
| Slovenia                 | year 1986:<br>19 817   | 19 976                      | +0.8                  | year 1996:<br>19 688                                          | 19 838    | +0.8                  |
| Spain                    | 284 321                | 286 003                     | +0.6                  | 377 060                                                       | 379 570   | +0.7                  |
| Sweden                   | 72 229                 | 72 449                      | +0.3                  | 69 745                                                        | 69 912    | +0.2                  |
| Switzerland              | 52 828                 | 53 144                      | +0.6                  | 52 747                                                        | 53 000    | +0.5                  |
| Ukraine                  | 919 220                | 937 213                     | +2.0                  | year 1998:<br>454 934                                         | 467 626   | +2.8                  |
| United Kingdom           | 729 760                | 734 018                     | +0.6                  | 646 086                                                       | 648 564   | +0.4                  |
| United States of America | 6 045 271              | 6 088 649                   | +0.7                  | 6 825 250                                                     | 6 863 779 | +0.6                  |
| European Community       | 4 152 231              | 4 173 204                   | +0.5                  | 4 057 639                                                     | 4 073 470 | +0.4                  |

# Total emissions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O calculated using GWP values from the SAR and the TAR (continued)

- - - - -