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Executive Summary 

This study evaluates the use of seven time series methods to predict 

twelve monthly values of five Chilean energy variables ex post one 

year forward. The forecast errors of the best of these seven methods 

are compared to the errors of two naive forecasting models, a 

structural model, and a composite forecast model. The purpose of this 

exercise is to show Latin American energy forecasters the potential 

usefulness of time series methods as short-term energy forecasting 

vehicles. 

A naive forecasting model turned in the best predictive 

performance, a clear report that the complexity of a forecasting 

method does not provide any protection against predictive error. 

ARIMA models were also successful forecast vehicles. 

The study emphasizes the importance of analyzing the raw data on 

a variable before forecasting it and of approaching the forecasting 

exercise with caution, on the one hand, and with methodological rigor 

and a respect for the managerial requirements of a forecast, on the 

other. While the study stresses the attractiveness of the economic 

and financial gains from better forecasting, it also underscores the 

difficulty of achieving them. 

The study supports the conclusion that, in spite of the 

difficulties to be faced, a forecaster can make headway against 

predictive error. It demonstrates the use of many techniques that are 

available for this purpose in the time series category. The study 

also constitutes a clear warning to forecasters who would act as if 

there is some technique or mechanical way of turning in an accurate 

forecast: in fact, there is no such easy victory over the powerful 

forces always working to generate forecast error. 
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PREFACE 

One of the interesting aspects of the energy crisis was the atrocious 

record of forecasting that accompanied it. During most of the 

seventies, billions of dollars were invested in energy projects based 

on wildly erroneous forecast of oil and other energy prices. The 

results of these poor energy forecasts have been tragic, especially in 

Latin America. The debt crisis is, in part, one result of this 

widespread bumbling in energy forecasting. 

The present work should be read with this failure in mind. It is 

a case study exercise in short-term energy forecasting using time 

series techniques. This is a difficult and technically complex area, 

but one capable of generating big gains in forecast accuracy at low 

cost. It is, therefore, of interest to energy managers. 

This study will be followed by another which will compare time 

series models with structural and mixed econometric models as energy 

forecast vehicles over different time horizons. Together, these 

studies are seen by ECLAC as a contribution to improved energy 

forecasting in Latin America. 

The study is presented in simple language which, despite the 

technical difficulty of the subject matter, hopefully will make for 

easy reading. To achieve this, mathematical treatment has been kept 

to a minimum. Emphasis is on straightforward exposition of the basic 

concepts of time series forecasting and on their use in specific 

cases. 

Exposition posed a problem. Although the study is addressed to 

energy forecasters in Latin America, the degree of technical 

preparation of individuals in this group obviously vari.es widely. 

Additionally, the methodological scope of this study is broad. It 

includes seven distinct time series forecast methods, ranging in 

complexity from the mathematically simple technique of, say, classical 

decomposition to methods using sophisticated mathematical routines: 

for example, Harrison's harmonic smoothing employs Fourier analysis, 

and the ARIMA method uses the maximum likelihood method for 

calculating parameter values. 

http://vari.es
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The problem posed for exposition, therefore, is in what degree of 

detail should each of these seven time series methods be explained in 

the text. Full explanation of each method would mean writing a 

textbook. This option was rejected as unrealistic. At the other 

extreme, the complete absence of explanation would mean that many 

readers, inexperienced in statistical methods, would be unable to 

follow even the thread of the forecasting argument developed in the 

study. 

An option was chosen between these two extremes, and it will 

undoubtedly be a frustrating one for many readers. It was decided to 

give a thumbnail sketch of each method, referring the reader to two 

texts which explain, in lucid detail, each of the seven methods used 

in the study [1, 2 ]. The second book cited is also the guide for 

using the Sibyl-Runner time series program [3]. A glossary is included 

at the end of the study. 

Even the interested reader without a statistical background 

should understand the essentials of the overall approach to time 

series forecasting laid out here. However, if he wants to employ any 

of these methods in his own work, there is no alternative to the study 

of the materials discussed in the two basic references, at a minimum. 

In this regard, this analysis is intended to bring time series 

forecasting methods to the greater awareness of energy forecasters in 

Latin America, not of producing trained forecasters. 
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INTRODUCTION 

Obi ective 

This study is directed to energy forecasters in Latin America, a 

group under continuous pressure to forecast a host of variables over 

diverse time spans, typically with inadequate statistical information. 

The objective of the study is to help these forecasters improve their 

short-term energy predictions through increased familiarity with time 

series forecast methods. 

The study is an exercise in the application of time series 

methods to short-term energy forecasting, that is, for periods up to a 

year. Five Chilean energy variables are selected for forecasting: 

the apparent consumption of household kerosene, diesel oil, and low 

octane (81-grade) motorgasoline; and gross electricity production and 

peak electric power demand in Chile's interconnected power system. 

From the many time series forecast methods potentially available, 

seven are selected as candidate predictive vehicles for each one of 

the five Chilean energy variables. These seven methods are: 

exponential and harmonic smoothing; classical and Census 

decomposition; time series multiple regression; and two univariate 

autoregressive/moving average (ARIMA) techniques: sequential 

generalized adaptive filtering and the Box-Jenkins method. 

For each of the five Chilean energy variables, one of these seven 

time series methods is used to generate an ex post forecast for 1983. 

Then, the accuracy of each of these five forecasts is compared with 

the accuracy of two naive models and with a one-equation structural 

regression model. A composite forecast approach is also discussed. 

While this study presents five ex post forecasts, this is not 

its objective. There is no profit to be made in forecasting the 

value of energy variables for past periods. The five forecasts are 

developed strictly for a didactive purpose, that is, for making more 

intelligible to the reader the various tasks involved in time series 

forecasting. 



5 

Computational Support 

Two computer programs were used in the study: the Sibyl-Runner 

time series forecast program for personal computers and the SAS time 

series program [3,4]. The Sibyl-Runner program set the limit on the 

maximum number of monthly observations that could be handled: 144. 

In the case of one variable, the apparent consumption of diesel oil, 

only 84 consecutive observations were available. However, for each of 

the five energy variables, the number of observations used is 

sufficient to support the statistical generalizations tabled in the 

study. 

The SAS program was used to generate the ARIMA models evaluated 

in the experimentation. Sibyl-Runner was used to generate the 

forecasts based on the smoothing, decomposition, time series multiple 

regression, and sequential generalized adaptive filtering models. 

Special programs were also written to deal with particular statistical 

problems. 

An IBM 4341 was used to process the SAS program. An IBM PC/XT 

was used to process the Sybil-Runner program and a Digital PDP-11 was 

used to process the other, specially written, programs. 

Organization 

The study is developed around three key questions: 

First, why should any effort at all be spent on applying 

sophisticated time series or any other formal methods for predicting 

the five energy variables under study? Why not use a technically 

naive and low-cost forecast routine for this purpose, say, for 

example, predicting the value of a variable in one period as a 

function of its value in the immediately prior period? 

Second, why not use a little less naive predictive model, such as 

taking last period's seasonally adjusted value as the predictor of 

this period's seasonally adjusted value and deseasonalizing the latter 

to derive the forecast value? In other words, wouldn't it be better 

to limit the investment in improving forecast accuracy just to making 

a seasonal forecast, stopping short of investing in more complex and 

costly forecast methods? 
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Third, what is the best forecast that one could reasonably hope 

for in the case of each of the five energy variables? And, is the 

increase in the accuracy of that •optimum* forecast, over that of a 

naive model, worth the effort of making it? In other words, is the 

apparently best forecast possible really worth making? 

The study is organized in the following way. Chapter I provides 

a brief description of the three classes of forecasting models: time 

series, structural, and mixed models. The statistical characteristics 

of the five Chilean energy time series used in this study are 

identified. The implications of these characteristics for choosing a 

time series forecast model for each of them are discussed. The three 

questions raised above about forecast accuracy are treated initially 

at this point. The scope for improving forecast accuracy is assessed 

for each variable. 

Chapter II begins with a brief description of time series 

forecast methods in general. The essentials of each of the seven 

candidate time series methods used in this study are then described. 

Chapter III presents the experimentation. It begins with a 

statement of the statistical screening criteria used to evaluate the 

numerous candidate forecast equations generated in the 

experimentation. The results of the experimentation are presented. 

Five forecast equations are selected, and used to make twelve 

monthly ex post forecasts for 1983. The accuracy of each of these 

forecasts is compared with the accuracy of forecasts made using two 

naive models and a simple structural equation. A composite forecast 

approach is evaluated. The predictive accuracy of these time series 

forecasts methods is compared with that of an optimum forecast model. 

Chapter IV returns to the three questions initially posed about 

forecast accuracy, but with the results of the experimentation now in 

hand. 

The study ends with a summary of its key conclusions. 

Choice of Chilean Energy Data 

Initially, data were collected on a diversity of energy variables 

for several countries in the region. For three reasons, it was 

decided to use the Chilean energy variables as the basis of the study: 
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first, the Chilean data were available in sufficient quantity to 

support the research; second, the Chilean data are apparently of high 

reliability; and, third, if they were to arise, questions about the 

data for Chile could be resolved relatively easily since all the 

research would be undertaken in Santiago, Chile. 

The selection of Chilean data means, of course, that the 

empirical findings of the study will be Chile-specific. Nevertheless, 

the techniques used in the study are generally applicable to all 

energy forecasters. The usefulness of this study is really rooted in 

this latter point. 
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CHAPTER I 

FORECASTS: APPROACHES AND ACCURACY 

A. Forecast Approaches 

1. The Array 

Techniques for predicting economic and business variables fall 

into one of two groups: qualitative or quantitative. 

Qualitative techniques depart from expert opinion, processed in 

more or less quantitative ways, to arrive at a forecast. Qualitative 

forecasting techniques use either exploratory methods, such as the 

S-curve, which argue from past trends and the present situation to the 

future value of some variable; or normative methods, such as the 

Delphi method and scenario development, which work backward from some 

concept of an assumed future value of a variable to the implications 

for the value of that variable today. Obviously, these two methods 

have quantitative aspects. However, at root, they are subjective and, 

hence, qualitative. 

Quantitative forecast models are either naive or formal. The 

naive model employs a simple arithmetic rule for forecasting. An 

example of a naive forecast routing is using today's actual value as 

the predictor of tomorrow's value. Naive forecast models do not 

employ formal, probabilistic reasoning. They table 'point', not 

stochastically bounded, forecasts and, so, are widely criticized. In 

general, naive quantitative methods are declining in popularity among 

forecasters because they are often outperformed by formal, 

quantitative predictive routines, especially those incorporating 

stochastic processes. 

Formal forecast methods use rigorous statistical concepts and 

procedures for generating and evaluating a predictive model. They 

incorporate stochastic processes, and so, for planning purposes, their 

forecasts are more useful than the point forecasts of naive models. 

There are three types of formal, quantitative predictive models: 

first, the structural (or casual) model, as exemplified in the one-

equation and multiple equation regression models; second, time series 

models, which include smoothing, decomposition, time series multiple 

regression, and ARIMA models; and third, mixed models, such as the 
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multivariate ARIMA models, which combine the structural and time 

series approaches to forecasting. This study focuses on the use of 

time series models for short-term forecasting of energy variables. 

2. Structural Models 

Some comments are in order at this point on structural, time 

series, and mixed models. The structural model departs from a theory 

of the basic causes producing change in the variable to be forecast, 

the dependent variable. For example, growth in motorgasoline 

consumption might be taken as a function of several independent, or 

casual, variables, such as the stock of automobiles, the relative 

price of motorgasoline, and real family income. A single equation 

could be used to specify the causal forces at work. Economists often 

forecast demand using such single equations, preferring simplicity at 

the cost of reduced forecast accuracy. More defensible in this case, 

however, would be an elaborate model of the forces promoting 

motorgasoline consumption, owing to the complexity of the underlying 

causal processes and the inability of a one-equation model to deal 

adequately with them. 

Whichever the approach, however, the dependent and independent 

variables are scaled and fitted to a function selected by the 

forecaster. If the causal specification is perfect, the data are 

error-free, and the fitting method without bias, then the difference 

between any observation and its value on the fitted trend line will be 

a residual error that reports the impact of random, or stochastic, 

processes. In this case, the forecast error has been reduced to the 

minimum level as given by the random process, or chance. That error 

is unavoidable. It is not forecastable. 

In generating the structural forecast equation, only past values 

of the dependent and independent variables are required. The equation 

is potentially useful for policy evaluation and decision-making in 

general. However, to forecast using that equation, the forecaster 

must predict the value of each independent variable once for each 

forecast period. So, using a structural model to predict places the 

burden of the forecaster's ignorance on the independent variables. He 

must predict each of those variables to forecast. 
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For example, the forecaster could use the same one-equation 

structural model referred to earlier with four independent variables. 

To predict motorgasoline consumption using this equation, he would 

have to predict the value of those four independent variables, one 

prediction for each of the four variables and once for each forecast 

period. So, a forecaster might reject a structural model in this case 

as his forecast tool on the grounds that he is not confident of his 

ability to predict the values of these independent variables. He 

might prefer to predict motorgasoline consumption head-on or to find 

another forecast method that did not force him to predict a string of 

independent variables. Time series models offer precisely this 

option. 

The structural regression model is often used for policy 

analysis. For example, if the central government is considering a tax 

on electric power consumption, a structural model could be used to 

estimate the probable impacts of the tax on real output, employment, 

domestic savings, investment, and the distribution of income. In this 

case, forecasting is not the purpose of the model. An elaborate 

econometric model containing many equations would be specified, and a 

fitting method would be selected to determine each of the parameters 

of the structural policy model. In this case, the purpose is to 

facilitate policy analysis and decision-making. The structural model 

can, in fact, be a powerful forecasting device when the prior, 

theoretical knowledge bearing on economic causation is strong, and, of 

course, when the required data are available and trustworthy and the 

fitting method is sound. By way of comparison, a time series model 

would be inapplicable for assessing these kinds of complex economic 

impacts. 

3. Time Series Models 

Time series models are constructed for forecasting, not policy 

analysis. The only variable used in this case is the variable to be 

forecasted. There are no causal variables in the time series approach 

to forecasting. 

In time series methods, only the target variable and time are 

involved. The tine series model has no explicit logical content 
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beyond its mathematics. Therefore,it is inapplicable for exercises in 

economic or business policy evaluation. The time series model is 

oriented exclusively to forecasting. It is completely mechanical. 

Its greatest failing is that it provides no insight whatsoever as to 

why the forecast values might emerge. In the time series approach, 

the whole system generating changes in the target variable is treated 

as a black box. In the structural model, the way in which the 

dependent and the independent variables interact is treated as the 

black box. 

Both the time series and the structural approaches to forecasting 

are threatened by improper specification of a model and by the use of 

an incorrect fitting technique. Both approaches are weakened by 

inaccurate data and by the invalidation of the assumption underlying 

all mechanically generated forecasts: that past patterns of change 

in the data will repeat during the forecast period. 

The structural model suffers from two defects that time series 

models avoid. First, it is difficult to specify a structural model 

well in theoretical terms and to have that model remain well specified 

over time. In a sense, time series implicitly capture in their 

trend, cycle, and seasonal components many of the forces explicitly 

specified in the form of the causal economic variables in the 

structural model. Second, structural models often pose severe data 

problems, since every variable specified must be scaled and all 

variables included in the structural model must be scaled for the same 

period. The resulting information requirement is often prohibitive. 

Time series models do not suffer as seriously as structural 

models do on these two counts. With the possible exceptions of the 

Box-Jenkins and generalized adaptive filtering methods, model 

specification is not a serious problem in time series forecasting, 

and, even in these two cases, as will be discussed shortly, the 

problem of specification is one related to statistical theory, not 

economic theory. When the prior knowledge required to specify a 

structural model is absent, time series models become all the more 

attractive for short-term forecasting. Data requirements are often 

less restrictive with time series models than with causal models. From 

both points of view, time series models are potentially attractive 
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forecasting tools, particularly for Latin American energy 

forecasters working on short-run forecasting problems with data are 

often very limited in quantity and of questionable worth. These two 

advantages are won at a cost, however, since time series models are 

limited to forecasting applications and they are inapplicable for 

policy evaluation. 

4. Mixed Models 

Mixed models combine the causal and time series approaches to 

forecasting. Two kinds of mixed models are in widespread use today: 

MARMA models and joint causal/ARIMA regression models.1/ 

Multivariate autoregressive/moving average (MARMA) models combine 

the causal and time series approaches to forecasting by using aspects 

of both the univariate time series and multiple regression techniques. 

The idea of MARMA models is to specify quantitatively the relationship 

between a dependent variable and one or more causally related and 

negatively lagged independent variables. Changes in these independent 

variables will precede, or lead, changes in the dependent variable. 

Once these variables and their lead relationships have been 

determined, they can be used to forecast changes in the dependent 

variable. For example, changes in the price of motorgasoline and in 

real family income in immediately prior periods could be used to 

predict the volume of motorgasoline consumption in the current period. 

Or, changes in the money supply in prior periods, operating via total 

real output in the present period, might be used to predict change in 

an energy variable in the current period. By choosing independent 

variables that lead changes in the dependent variable, the forecaster 

using a MARMA model avoids the need to predict the value of 

independent variables to derive his forecast. He already knows the 

past values of these independent variables. To predict, he merely 

needs to insert them into his MARMA model. This makes MARMA models 

widely attractive as candidate forecast vehicles. 

The MARMA approach is a class of predictive routines that 

includes bivariate and multivariate MARMA models, intervention 

analysis, and Kalman filters. Generally speaking, MARMA models are of 

recent origin, technically complex, and costly to use. Moreover, they 
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are not necessarily superior to either the simpler and less costly 

time series models or to structural models. 

Joint causal/ARIMA models combine aspects of the structural and 

time series approaches to forecasting. In this mixed approach, a 

dependent variable, say, motorgasoline consumption, is first taken as 

a function of certain independent variables, say, the stock of 

automobiles and the relative price of motorgasoline. In this stage 

of model specification, it is known that other important variables, 

such as real family income, for example, are being omitted from the 

specification. For this reason, it is also known that the residual 

values of the equation corresponding to this stage in the approach 

will include a systematic error. Nevertheless, the equation is 

generated, and its residuals are calculated. Then, the critical 

assumption is made that these residuals are generated by a specific 

ARIMA process. Given the ARIMA model generating these residuals, the 

final forecast equation is constructed. It contains the structural 

component, with its independent variables, the ARIMA component, and 

the now normally distributed residuals, free of all pattern. 

MARMA models and joint casual/ARIMA models will not be examined 

in this forecast exercise. Here, the focus is on the use of 

univariate time series techniques for forecasting. 

B. Forecast Accuracy 

1. The Five Time Series: Basic Patterns 

The original monthly values of the five Chilean energy variables 

are presented and plotted in Exhibit 1. Appendix A presents the data 

in tabular form. The natural logarithms of these values are plotted 

in Exhibit 2. The five variables are: the apparent consumption of 

household kerosene, 81-grade motorgasoline, 2/ and diesel oil; and 

gross electricity generation and peak electricity demand in Chile's 

interconnected grid system. 

A comparison of the pattern of change in these five variables is 

revealing. There is no evidence of a business cycle impact in any of 

them. However, seasonality is strongly evident in each, although its 

degree varies widely. The two electric power variables show a steadily 
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repeating pattern of seasonal change of twelve month periodicity with 

a positive, relatively mild and steady trend. The diesel oil series 

is marked by a repeating and disordered pattern of twelve-month 

seasonality and by a mild and positive trend. The kerosene time 

series has a strong seasonal pattern and a weak negative trend. The 

81-grade motorgasoline variable shows a progressive disintegration, 

with a fading seasonal component and a negative trend. 

Exhibit 2 shows how the five variables have fluctuated in 

percentage terms over their sample periods. In the case of the two 

electric power variables, percentage changes appear stronger in more 

recent periods while they appear stronger in earlier periods in the 

case of the three refined oil products. Thus, a pattern of inequality 

of variance, or heteroskedasticity is suggested. The importance of 

heteroskedasticity and the need to test for its presence in forecast 

equations will be discussed later. 

The data presented in Exhibits 1 and 2 are monthly observations. 

Exhibit 3 presents the annual values of each of the five, time series. 

Summing has removed seasonality and, so, much of the volatility from 

each time series. The two electric power series show a clear and 

steady upward trend while the trends in the three refined oil product 

variables are more complex and less consistent over time. 

There are not any extreme, or outlier, observations in any of the 

five time series. This is statistically important since the presence 

of extreme values complicates the technical task of parameter 

estimation. 

All in all, the statistical diversity of these five Chilean 

energy variables makes them interesting as a set of cases for 

forecasting work. 

2. Components of Change 

What are the factors that have promoted change in the five energy 

variables over their sample periods, and how strongly have each of 

these factors operated? The figures in Exhibit 4 show the result of 

decomposing each time series into its seasonal, trend, cycle, and 

residual components using Sibyl-Runner1s CENSUS time series 

decomposition routine. These data underscore the dominance of 
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seasonality and the residual component in promoting change in each of 

the five Chilean energy variables during their sample periods. The 

data also report the virtual absence of the trend and cycle components 

as promoters of change in these five variables during that period. 

In the case of kerosene and the two electric power series, seasonality 

was the major component of change. In the case of the two road 

transport fuels, motorgasoline and diesel oil, seasonality was strong 

while trend and cycle were relatively weak with the residual component 

being, by far, the dominant source of change. In fact, in all five 

cases, the shares of the residual and seasonal components' 

contribution to change were very high. 

What lies behind the high share of the residual in each of these 

five energy variables? What is its significance for forecasting? 

The residual measures the contribution to change in each variable 

over its sample period that is not captured empirically in the 

estimations of the contributions of the seasonal, trend, and cycle 

components. Thus, it picks up the error in the empirical measurement 

of the seasonal, trend, and cycle factors. Additionally, the residual 

picks up random errors, the effect of errors in data reporting, and 

the net impact of all factors not contained in the trend, cycle, and 

seasonal measurements. 

Of these several factors, the error made in estimating the 

seasonal component is probably small. Estimating a seasonal component 

is a simple and generally reliable undertaking. Significant errors 

are more likely when estimating trend and the cycle components. In 

the decomposition routine used to derive the residual values, the 

trend was taken as a simple linear function (y=a+bx). Obviously, this 

assumption is simplistic and generates some error. Undoubtedly, the 

cycle component also contains error. It was derived by subtracting 

the estimated trend values from the smoothed series. This smoothed 

series was presumed to contain only trend and cycle values when, in 

fact, this is not the case. There is considerable error in these 

estimates of the trend and cycle components. 

Data errors probably make a minor contribution to residual error 

in all five energy variables. This is another way of saying that the 

original data on the five time series are probably fairly accurate, 
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but it not possible to confirm this. Also, it is unlikely that random 

errors explain these large residuals. It is inconceivable that the 

explanation for the large residuals in all five energy variables lies 

in the random error, for if this were true in the case of diesel oil 

(72%) and motorgasoline (61%), for example, it would imply that an 

outlandish process would be generating consumer demand for these 

fuels. 

These comments suggest the obvious: in order to explain the high 

share of the residual in all five energy variables, it is necessary to 

introduce economic reasoning, not just time series considerations. 

Total real output in the Chilean economy increased by only 0.8% on the 

average during 1971-1982. 3/ This is a pivotal point since increases 

in the volume of production are a prime force behind increases in 

energy consumption. The other two factors at work here were, on the 

one hand, the sharp rise in real domestic energy prices that occurred 

in Chile during the sample period owing to increased world energy 

prices; and, on the other hand, the falling domestic fuel subsidies 

that were being recorded during the sample period as a result of 

profound changes in economic policy favoring free market practices in 

general and in caiergy markets in particular. These three factors 

levelled the trend component and compressed the cycle component over 

the sample period, increasing the share of the residual to high 

levels. In this vein, the two fuels with the highest residual 

components, diesel oil (72%) and motorgasoline (61%), not only had 

small trend and cycle components but also little seasonal volatility 

(Exhibit 4). 

The implication of this analysis is clear. Time series 

forecasting of each of these five variables requires that the trend 

and cycle components continue to be of the minor consequence over the 

forecast period that they were over the sample period. If either the 

trend or the cycle component is expected to change markedly over the 

forecast period, then using a forecast equation based on earlier data 

will generate highly erroneous forecasts. This is an important 

consideration for forecasting each of these five energy variables. 
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3. Scope for Improved Accuracy 

What accuracy might one expect in predicting these five energy 

variables? How much improvement in forecast accuracy is possible 

beyond the level that is easily achieved using a naive model? How 

much effort should one spend to acquire that improvement in forecast 

accuracy? 

Exhibit 5 presents data that are helpful in approaching these 

questions. Column 1 shows the mean absolute monthly percentage change 

in each variable over its observation period. These data report the 

degree of volatility in these variables. NF 1 and NF 2 are naive 

forecasting models. Each uses last month's value to predict this 

month's value. The difference is that NF 1 uses the original data to 

do this while NF 2 uses a deseasonalized series. More specifically, 

in NF 2 a deseasonalized series for each variable is first calculated 

by smoothing the original data. Smoothing eliminates seasonality and 

randomness, leaving, in theory, only the trend and cycle components. 

This deseasonalized series is used to derive a normalized seasonal 

index. That index is used to deseasonalize the original data. These 

deseasonalized values are used to predict the deseasonalized forecast 

values. Finally, the deseasonalized values are seasonalized and 

compared with actual values to derive the average error of the NF 2 

method. 

The figures in columns 2 and 3 of Exhibit 4 are the mean absolute 

monthly percentage errors (MAPE) of NF 1 and NF 2. In the Exhibit, OF 

means the optimum forecast, or the error of what will be taken to be a 

commendable forecast effort. It serves as a referent for the best 

forecast realistically possible. OF is measured as the MAPE of the 

residual component of the CENSUS time series method as calculated by 

the Sibyl-Runner program. It is taken as a proxy for the error that is 

unavoidable and, therefore, it is used as the measure of the floor to 

forecast error. Using the MAPE of the residual error in this way 

implies, of course, that the decomposition technique generating that 

residual error is an accurate estimator of the known past. This is 

obviously not the case, so there is undoubtedly some error involved in 

its use in this way. Arithmetically, of course, a specific forecast 
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could have a MAPE below the OF of the predicted variable. The 

interpretation of this event would be that the forecast was even 

better than the reference level for a good forecast. In short, while 

the conceptual basis of the OF measure, as treated here, is 

theoretically weak, hopefully it will be practically useful as an 

empirical gauge of what is a good forecast. 

If an NF 1 model were used to forecast each variable, one would 

expect the average forecast error reported in column 2 (Exhibit 4). 

In this approach, yesterday's value is used to predict today's. Using 

NF 1 as a forecast vehicle is a minimum effort exercise, low cost, 

rapid, and easy, but weak from the point of view of statistical 

theory. It generates a point forecast, which is bound to be wrong in 

the specific case. While the lack of a stochastic component severely 

limits the usefulness of NF 1 as a predictive vehicle, it can be 

profitably employed, nevertheless, as a referent for gauging the 

degree of improvement in forecast accuracy achieved by other 

statistically more rigorous forecast techniques over and above the 

level achieved by this naive predictive routine. This will be its 

purpose in this study. 

As just explained, NF 2 links a seasonal forecast to the 

predictive mechanics of NF 1. Thus, NF 2 reduces forecast error below 

that of NF 1 by making a seasonal forecast, but nothing more. 

The gains from making a seasonal forecast can be substantial, 

even when tied to the predictive mechanics of such a simple technique 

as NF 1. As shown in Exhibit 5, just by making a seasonal forecast, 

predictive error was reduced by 72% and 60% with the two electric 

power series and by 64% with kerosene during their sample periods. 

These big gains in forecast accuracy stem from the fact that, as the 

data in Exhibit 5 show, the contribution of seasonality to changes in 

these three variables is high. By way of comparison, making a 

seasonal forecast reduces forecast error by 43% and 37% for diesel oil 

and motorgasoline, fuels the demands for which, while highly seasonal, 

were less so than in the cases of kerosene and the two electricity 

variables. For all five fuels, however, the error reduction from 

making a seasonal forecast is obviously worth securing, given the low 

cost and ease of making one. 
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How much more improvement in forecast accuracy is available 

beyond the levels shown for NF 2 in column 3 of Exhibit 5? The 

figures in column 4 suggest an answer. They are the MAPE of the 

residual errors for each of the five energy variables. As discussed 

earlier, the residual reports the forecast error that, it is being 

assumed here, will unavoidably confront the forecaster, on the 

average, over his forecast horizon. 

A comparison of the figures in columns 2 and 4 reveals the 

potential improvement in forecast accuracy by switching from NF 1 

method to a formal forecast method. The potential gain is impressive 

in the case of the 30 percentage point MAPE reduction for kerosene. 

The gain is in the 4-5 percentage point range for the other four 

energy variables. 

In shifting from NF 2 to a formal predictive model (columns 3-4, 

Exhibit 5), the gains are less, but still attractive. They are less 

because NF 2 has already secured a big share of the total potential 

error reduction just by making a seasonal forecast. The gains 

remaining are still attractive, however, since the residual errors 

(column 5) are relatively high even after NF 2's seasonal forecast has 

been made; that is, potential forecast error is still high enough for 

a prudent investor in an energy company to consider risking resources 

to reduce it further by good forecasting. 

By way of summary: 

First, NF 1 is a weak forecast vehicle, not only conceptually and 

statistically, but also in terms of the forecast accuracy it promises. 

The method generates high forecast error. In the case of all five 

energy variables, the MAPE of a forecast using NF 1 is close to the 

average rate of change in the series itself. Thus, NF 1 has little 

forecast power. 

Second, a seasonal forecast reduces MAPE sharply. In fact, 

shifting from NF 1 to NF 2 achieves a high fraction of the total 

improvement possible in forecast accuracy. This is because 

seasonality is an important determinant of change in each variable. 

Nevertheless, forecast error might be reduced further by switching 

from NF 2 to a formal predictive method, such as a formal time series 

technique. 
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Third, forecast error is directly related to both the volatility 

of the series and the share of the residual. Thus, as one would 

expect, higher volatility in a time series implies higher minimum 

forecast error, and the higher the forecaster's ignorance about what 

drives a variable, the greater is his error in predicting it. Using 

the MAPE as a measure of the minimum possible forecast error, one 

would expect the lowest forecast errors to be with the two electric 

power series and diesel oil, higher with gasoline, and the highest 

with kerosene. 

Fourth, a formal quantitative forecast technique that 

incorporates a seasonal forecast routine might deliver not only 

accurate forecasts but relatively more useful ones as well. By using 

stochastic processes, a formal forecast method makes it possible to 

assess the variability inherent in the forecast, an advantage not 

available with naive forecast routines. In fact, one might well 

prefer a formal forecast method over a possibly more accurate informal 

method just to have this advantage. For planning purposes, it is 

highly valuable. 

4. The Goal of Improved Forecast Accuracy 

The previous discussion focused on forecast error. The objective 

of forecasting was taken to be maximum predictive accuracy for given 

levels of cost, timeliness, and technical difficulty. That objective 

was relevant in evaluating two naive forecast methods and for 

assessing the desirability of shifting from a naive to a formal 

forecast method. 

However, is it always worth the effort to improve forecast 

accuracy? Is, say, another one percentage point gain in forecast 

accuracy always a worthwhile target? At what point does the quest for 

improvement in forecast accuracy become meaningless or contra-

productive? 

These questions focus the forecast effort. In energy companies, 

the uses of the short-term sales forecast are like those of any other 

manufacturing enterprise. With regard to production, it is the 

foundation for many actions: purchasing materials and transport 

services in spot and term markets, ordering equipment, scheduling 
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production, anticipating spare parts and maintenance requirements, 

contracting sales force, and inventory planning. In terms of 

financial considerations, the short-term sales forecast is critical in 

managing short-term assets and liabilities: anticipating accounts 

receivable and payable, financing planned inventory changes, planning 

for short-term bank financing, or for placing surplus cash at loan. 

The key use of short-term forecasts is to help assure that product 

demand can, in fact, be satisfied from planned facilities and 

inventories. 

A poor short-term sales forecast will have many consequences for 

an energy company, but certainly one of them will be unanticipated 

changes in its inventory. The cost of over-forecasting sales in the 

short-run is to make unnecessary investments in inventory and 

expenses for its maintenance that could have been used more profitably 

elsewhere. Under-forecasting sales means unanticipated inventory 

reduction and, possibly, lost sales. 

The gains to the private energy company from better short-term 

forecasting depends on a host of factors including the previously 

prevailing record of average error in the company's forecasting 

efforts and the scale of the investment required to improve forecast 

accuracy. A company with a highly accurate forecasting record stands 

to gain less from an increment in better forecasting than one with an 

historically poor record of forecast accuracy. In this context, it is 

important to note that the time series techniques being reviewed in 

this study all involve small investments, and each potentially can 

deliver big gains in forecast accuracy. 

What can one say about the economic value of reducing forecast 

error? For illustrative purposes, what would be the economic value, 

say, of reducing oil inventories in the Chilean economy by just one 

percent? 

The Chilean economy consumed about 1,500 million gallons of 

refined oil products in 1986. Oil inventories were held in three 

forms in support of that consumption: in crude oil, both in-transit 

on the sea and stored in oil tanks on land, and in the form of semi-

refined and refined oil products. Assume that, on average, the 

Chilean oil industry targets for an oil inventory, in all three forms, 
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an amount equal to three months consumption of refined oil products: 

one-third in the form of crude oil at sea, one-third crude oil on 

land, and one-third in semi-refined and refined oil products. 4/ 

The cost of this inventory is the sum of out-of-pocket expenses 

of generating and maintaining it plus the interest lost on the capital 

locked up in it. Taking crude oil (CIF, Chilean refinery) at, say, 

US$17/barrel, or US$.40/gal., of refined product, this would mean a 

weighted average lock-up roughly US$.50 per gallon of inventory. 5/ 

This estimate of US$.50 per gallon implies an investment in oil 

inventory nationally of about US$188 million at that level of sales 

(1.5 bn. gals x 3/12 mos x US$.50/gal). If better sales forecasting 

could reduce average national oil inventory levels by one percent, 

this would mean an average reduction in oil inventory nationally of 

about US$1.9 million (US$188 million x .01). If sustained, the 

economy would record a similar saving each year, changing in 

proportion to sales. 

It is impossible to make a detailed estimate of the costs of 

achieving this level of improved forecast accuracy for refined oil 

product consumption in the Chilean economy and for specific companies 

in it. In order to make some headway, however, assume that none of 

these companies had previously invested in computer facilities for 

energy forecasting; that, in effect, naive forecasting methods are 

being used with relatively low accuracy (this is surely not the case, 

and it is assumed here for illustrative purposes only). Assume 

further that, for the economy as a whole, twenty oil forecasting units 

would each require one microcomputer which, together with the required 

software, would cost US$20,000 each to equip, excluding taxes. Assume 

that this investment cost of US$400,000 (20xUS$20,000) is repeated ten 

years later. Also, assume that each of these twenty forecast units 

would include a skilled forecaster, two assistants, and a secretary, 

the cost of which, including all associated marginal costs, would run 

about US$25,000 per team, or US$500,000 (20xUS$25,000) in total. 

Double this estimate of US$500,000 to cover overhead and all other 

costs. Then, the cost of the forecast exercise nationally would be 

about US$1 million per year, excluding taxes. 
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Now, given this profile of expected costs and the estimated 

annual savings from improved forecasting nationally of US$1.9 million, 

the internal economic rate of return on the forecasting investment 

would be about 200%; and, using a 20% discount rate, the present value 

of savings over costs would be about US$4 million over a twenty year 

project life. These savings can be invested in a wide variety of 

projects. Compare the scale of these savings to the investment 

required for a basic rural hospital in Chile today, say, about 

US$100,000-$200,000; or to the annual cost of a rural teacher, about 

US$2,000-$3/000; or to the investment required to produce a basic 

urban low-cost house with infrastructure in Santiago, say, in the 

range of US$6,000. Clearly, the social gains from better energy 

forecasting are potentially very attractive. 

For the private corporation, the gains while less, would still be 

high. To the figures above, add 15% for import duties on the two-time 

investment in imported computer equipment (excluding IVA which, while 

a real expense, is quickly recovered). Assume a three-year write-off 

on the computer investment and an average corporate profit tax rate of 

20%. For the twenty companies assumed to be investing to achieve the 

one-percent reduction in oil inventories, the internal rate of return 

on their collective investment would be about 150%, and the net 

present value of savings over costs would be about $3 million. The 

payback period on the original investment would be about three weeks. 

Recall that this gain is captured by realizing a sustained reduction 

in the permanent component of oil inventories by better short-term 

sales forecasting. This one percent reduction in average inventory 

levels implies an improvement in accuracy in short-term oil 

forecasting nationally of only one-quarter of one percent (.01x.25) of 

sales. Obviously, managers of energy companies can set goals higher 

than this modest one, used here for strictly illustrative purposes. 

In any event, the prospectively high yields, both economically and 

financially, on investments in improved energy forecasting are 

powerful forces working to promote them. 

Consulting the figures in Exhibit 3 on motorgasoline, kerosene, 

and diesel oil, which, typically account for about one-half of Chile's 

refined oil consumption, the room for forecast improvement (Exhibit 5, 



24 

column 6) using formal predictive techniques is indeed substantial. 

Clearly, improved forecasting is potentially a lucrative field for 

investment for the economy's energy companies. While investments in 

improved forecasting methods is an attractive idea to contemplate, 

this study will also show that the gains of improved energy 

forecasting are, in fact, not easily achieved. 

C. Summary 

Forecasts using naive models are generated easily, rapidly, and at low 

cost. They may be accurate. Increasingly they are being abandoned 

for the formal forecast models [1]. Whatever their accuracy in a 

specific case, however, naive forecast models lack the statistical 

rigor of the formal forecasting models: time series, structural 

models, and mixed models. The accuracy of the naive forecast model 

does provide a useful bench-mark for gauging the accuracy of formal 

forecast methods and, then, for assessing the advisability of 

investing in these more sophisticated forecast techniques. 

The gains in forecast accuracy from making a seasonal forecast 

alone are significant for every one of the five Chilean energy 

variables under study. In each case, the seasonal forecast will 

probably capture a large share of the full potential for improvement 

in forecast accuracy. Formal forecast methods might improve forecast 

accuracy even further, above and beyond the level easily attainable by 

using informal predictive routines. Formal predictive routines are 

also desirable for planning purposes because of their stochastic 

properties. 

The savings from improved energy forecasting can be substantial. 

The costs of achieving them using time series techniques are 

typically low, making the investment in improved forecast accuracy an 

interesting prospect for individual energy companies and for the 

economy as a whole. 
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CHAPTER II 

Time Series Forecast Methods 

1. Introduction 

This chapter has two purposes: first, to indicate the principal 

features of the key time series forecast techniques in use today; 

and, second, to explain the basic mechanics of the seven methods that 

will be used in this study as candidates for predicting each of the 

five Chilean energy variables. 

2. Stationarity and Seasonality 

There are four classes of time series forecast methods : 

smoothing, decomposition, time series multiple regression, and ARIMA 

methods. Each one, in turn, includes a number of variant routines, so 

that the full range of time series forecast vehicles is indeed 

substantial. 

Many of these time series techniques cannot deal adequately with 

two characteristics evident in almost all energy time series: 

seasonality and trend. Thus, from the set of time series forecasting 

techniques potentially available, it is necessary to reject as 

candidate forecast methods those that cannot manage either a trend or 

a seasonality component, or both. This reduces considerably the 

number of potentially usable time series forecast routines. 

An example will help explain this point. The mean is a time 

series forecast vehicle in the smoothing category. However, the mean 

will not be a good predictor of a variable with a trend or a 

seasonality component. It will perform well as a time series forecast 

method only if the observations on the variable are stationary and 

randomly distributed; that is, only if the observations track out 

randomly along the variable * s time axis. Using the mean as a 

predictor of a series with a trend will generate a systematic forecast 

error, either positive or negative, depending on the trend. The error 

will also gyrate with changes in the seasonal component. This 

pattern of error would be the result of having used a forecast model 

the requirements of which are not satisfied by the data. Therefore, 
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those time series predictive routines that cannot manage either a 

trend or a seasonal component, or both, must be rejected as candidate 

predictors of the five Chilean energy variables under study. 

3. Smoothing Methods 

There are many smoothing methods. Simple smoothing methods 

generate forecasts by adding a percentage of previous forecasts errors 

to a percentage of previous forecast values. Exponential smoothing 

methods are different. They assign exponentially decreasing weights 

not to past forecast errors but, rather, to past forecast values. 

Both approaches, however, require stationary and non-seasonal data to 

be effective forecast routines. 

Simple averages and moving averages, single exponential 

smoothing, and adaptive-response rate single exponential smoothing are 

smoothing methods that cannot handle either a trend or a seasonality 

component. These methods require stationary data to be accurate 

predictors. So, they are not viable forecast candidates for present 

purposes [1,2]. 

Other smoothing methods can manage a linear trend but not a 

seasonal component and, so, they also are not defensible forecast 

routines for present purposes. These methods include linear moving 

averages, linear exponential smoothing, Brown's one-parameter adaptive 

method, Brown' one-parameter linear exponential smoothing method, 

Chow's adaptive control method, and the Box-Jenkins three parameter 

smoothing method [1,2]. 

Winter's linear and seasonal exponential smoothing method and 

Harrison's harmonic smoothing method are smoothing routines that can 

manage data containing both a trend and a seasonality component. They 

are, therefore, valid forecast vehicles for each of the five energy 

variables under consideration [1,2]. 

Winter's linear and seasonal exponential smoothing method 

smoothes, or weights, past observations in an exponentially decreasing 

manner [1,2]. It uses three equations for describing past data and a 

fourth equation for forecasting. The first three equations require 

the solution of three parameter values: the alpha parameter, which 
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smoothes for randomness; the beta parameter, which smoothes for 

seasonality; and the gamma parameter, which smoothes for trend. In 

effect, these three parameters cover the three parts of the pattern 

that are being treated in Winter's method: the stationary, linear, 

and seasonal parts. Given the value of these three parameters, the 

fourth equation is used to forecast. The Sybil-Runner program solves 

for the values of the alpha, beta, and gamma parameters using a trial 

and error method that minimizes the mean square error of the forecast 

equation. It also generates a forecast. 

Harrison's harmonic smoothing method rests on the assumption 

that a time series is a multiplicative combination of trend, cycle, 

seasonal, and random terms [1,2]. The method first removes the trend-

cycle term and derives a rough seasonal index. Then, Fourier analysis 

is used to smooth the estimated seasonal and trend-cycle terms. 

Extreme observations are removed. A refined seasonal index is 

generated. This index is used for forecasting in conjunction with the 

estimated value of the trend-cycle component. The Sibyl-Runner 

program generates a forecast equation using Harrison's harmonic 

smoothing method and then forecasts using that equation. 

4. Decomposition Methods 

Decomposition methods decompose the time series into its 

fundamental components: trend, cycle, seasonality, and randomness. 

The first three components comprise the pattern. Each is identified 

and then forecasted. These three individually forecasted components 

are summed to derive the overall forecast. It is impossible to 

forecast the random component, approximated period by period as the 

difference between the original data and the sum of the fitted, or 

estimated, trend, cycle, and seasonal components. In decomposition, 

any errors in the data or made in estimating the seasonal, cyclical, 

and trend components will turn up in the residual component. 

There are two major decomposition techniques in use today: the 

ratio-to-moving average, or classical, decomposition method and the 

Census method [1,2]. Both techniques usually are employed in a 

multiplicative model, so that a change in any one of the three 
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components impacts the target variable through the other two factors, 

which also will be changing. 

The classical and the Census techniques are arithmetically 

similar in construction. The Census technique has evolved over time 

and is now highly sophisticated in its procedures and outputs. The 

classical decomposition method is simpler. However, both methods are 

ad hoc and pragmatic, and they are both widely criticized for their 

lack of theoretical rigor. Both the classical and Census methods will 

be used as candidate predictors of the five Chilean energy variables. 

Sibyl-Runner provides the software for forecasting using these two 

decomposition methods. 

5. Time-Series Multiple Regression 

The time series multiple regression model is another approach to 

forecasting in the time series category. Basically, this approach 

assumes that time (i.e., a time-trend variable) and seasonality (i.e., 

the month of the year) are the two factors that produce change in the 

dependent variable. The difference between the time series multiple 

regression model and the one-equation structural multiple regression 

equation is that the former inputs a time trend variable and seasonal 

observations (coded in dummy form), while the later inputs causal 

variables [1,2].. Time series multiple regression can manage a series 

with both trend and seasonality. The Sibyl-Runner time series program 

will be used for forecasting with this method. 

6. ARIMA Models 

This set of time series techniques includes the Box-Jenkins 

autoregressive/moving average method and generalized adaptive 

filtering (GAF) [1,2,5,6]. The power of ARIMA models derives from the 

mathematically proven assertion that any discrete time series can be 

expressed either as an autoregressive, moving average, or combined 

autoregressive/moving average model. So, forecasters try to find the 

ARIMA process that is generating a given time series, and, once found, 

they model that process to predict with it. Until recently, the 

complex mathematics of ARIMA models restricted their use. Now, the 

computer has eliminated this obstacle. 
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In the Box-Jenkins and GAF models, the forecast is generated as a 

function of either past values (X¿) of a time series, an AR process; 

or, as a function of past forecast errors (e¿) generated in prior 

predictions of that series, an MA process; or, as a function of both 

past values and past forecast errors, a joint ARIMA process. The Box-

Jenkins and the GAF methods require stationary data. The expression 

for the general Box-Jenkins ARIMA (p, d, q) model operating on a 

stationary time series without a constant term is: 

xtŒ[<îlxt-l+<,2xt-2+---+*pxt-p+et] - [eiet-l"e2et-2-----*qet-q]-

The first bracketed expression is the general Box Jenkins AR(p) 

model, and the second is the general Box-Jenkins MA(q) model. Both 

expressions together constitute the general Box-Jenkins ARIMA (p,d,q,) 

model. The term (X^) indicates the original time series which is 

assumed to be stationary. The (e¿)-terms are the residual errors, 

calculated as the difference between an actual time-series value (X¿) 
A 

and its corresponding value (X¿) generated by fitting an AR(p) process 

to the data. 

The general form of the GAF model is: 
xt=[«ltxt-l+«2txt-2+- • •+<)ptxt-p+«t]-[eitet-l-e2tet-2-- • --©qtet-q] • 

A comparison of the general form for the Box-Jenkins model and 

the generalized adaptive filtering model reveals the basic difference 

between them. In the Box-Jenkins approach, the parameters <}¿ and 9¿ 

are solved simultaneously using all the data. In the generalized 

adaptive filtering approach, the parameters #it and &$£ are solved 

using an iterative technique, a new set of parameter values emerging 

with each fresh observation. Hence, a subscript (̂ ) accompanies each 

parameter expression in the generalized adaptive filtering model, 

which is not so the case with the Box-Jenkins method because, in this 

case, the solution is simultaneous using all observations. 

In both the Box-Jenkins and the generalized adaptive filtering 

methods, there is no a priori commitment to a parameter weighting 

scheme as in the case with smoothing techniques, for example. This 

imparts a flexibility to ARIMA models that is absent from other time 

series methods. For example, in moving average forecast models, past 

values of a time series that are included in the average are all 

weighted equally in a fixed way; in exponential smoothing, past 
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values of a time series are weighted in an exponentially decreasing 

and fixed manner; and in a naive model, the last observation is given 

all the weight, with prior observations being ignored completely. In 

these three cases, a rigid scheme for generating parameter weights is 

strictly maintained, regardless of any changes in the pattern of the 

data. Approaches that assign parameter weights so inflexibly are 

typically not as accurate in their forecasting results as those that, 

like ARIMA models, assign parameter weights flexibly and in response 

to emerging patterns in the data. This flexibility is a clearly an 

important advantage in forecasting with ARIMA models. 

In the Box-Jenkins approach, the forecaster must specify the 

order (p) of the AR(p) process, the order (q) of the MA(q) process, 

and the order (d) of the differencing of the data required to achieve 

stationarity. Given this information, the ARIMA model is written: 

ARIMA (p,d,q). 

Additionally, if the data are seasonal, as in the case with each 

of the five energy variables under study, a separate seasonal model 

must be specified when using the Box-Jenkins ARIMA method. Hence, the 

full specification of the Box Jenkins ARIMA model in this case is: 

ARIMA (p,d,q) (P,D,Q) . 

where (P),(D),and (Q) indicate the parameters of the seasonal model. 

In the Box-Jenkins approach, the seasonal and non-seasonal components 

of the model are related multiplicatively. 

In the Box-Jenkins methodology, there is a specific technique for 

identifying the orders (p),(q), and (d) and their seasonal 

counterparts. This process of identification requires the study of 

the autocorrelation and partial autocorrelation coefficients of the 

original data. Personal judgement is important in this exercise 

because the theoretical rules used to choose an ARIMA model are 

developed in terms of expected values of these coefficients while only 

the actual values of these coefficients are available and these 

contain randomness. Hence, it is possible that two trained 

forecasters could choose different ARIMA models after studying the 

same patterns of autocorrelation and partial autocorrelation 

coefficients. The subjectivity inherent in the choice of an ARIMA 

model is its main weakness. 
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Once identified, the parameters of an ARIMA (p,d,q) (P,D,Q) model 

are calculated using a non-linear algorithm that minimizes the mean 

square error of the forecast equation. Algorithms used for this 

purpose include maximum likelihood, least-squares, and the Marquandt 

algorithm of constrained optimization. The method used in this study 

is the maximum likelihood method as executed by the SAS time-series 

program. 

Adaptive filtering may be applied to an AR(p) or MA(q) process. 

Generalized adaptive filtering is the term used when referring to the 

use of an adaptive filtering approach with an ARMA (p,q) model. The 

identification task for these models can be executed on the basis of a 

study of the autocorrelation and partial autocorrelation coefficients 

(as in the Box-Jenkins method), or by using a short-cut approach that 

reduces the identification task to fairly mechanical steps. 

Generalized adaptive filtering requires stationary data, and it can 

manage seasonal data. As a method, it has the advantages of 

simplicity and automatic self-adaptation to the data. It requires few 

data points, and there are few constraints involved in its operation. 

The Sibyl-Runner program is used in this study for applying the 

adaptive filtering seasonal model to the five Chilean energy 

variables. The specific variant of the generalized adaptive filtering 

model that is used in the Sibyl-Runner program is called the 

sequential ARIMA seasonal model. In this method, stationary data 

inputs are required. The number of parameters is initially set equal 

to the length of seasonality of the forecast variable (i. e., twelve, 

in all five cases), If this approach fails, the number of parameters 

is then set equal to the time lag of the absolutely highest 

autocorrelation coefficient of the forecast variable. Parameter 

values are determined using the iterative method of steepest descent 

wherein the algorithm minimizes the mean square error of the forecast 

equation. In executing this method, a filter is used to regulate the 

conversion of old parameter values into new ones. 
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CHAPTER III 

STATISTICAL SCREENING CONCEPTS, EXPERIMENTATION, AND THE 

FIVE FORECASTS 

A. Screening Concepts 

1. Introduction 

This chapter begins with a statement of the statistical criteria 

used to screen candidate forecast equations. Following this, the 

results of the experimentation are summarized. Five forecast 

equations are selected and discussed. 

2. Statistical Screening Criteria 

The objective of the statistical experimentation is to select a 

sound forecast equation for each of the five Chilean energy variables. 

The following statistical criteria are used to screen each 

candidate forecast equation, all tests being made at the 95% 

confidence level: 6/ 

a) The t-tests should indicate that the coefficients of the forecast 

equation are statistically significant [1]. 

b) The F-test should indicate significance of the equation, and its 

R2 should be reasonably high [1]. 

c) The forecast equation should be free of heteroskedasticity and 

autocorrelation; multicollinearity should not be a problem [1]. 

d) For Box-Jenkins models, the specification of the forecast 

equation should be consistent with the pattern of its 

autocorrelation and partial autocorrelation coefficients [1,2]. 

The ARIMA (p,d,q) (P,D,Q) model should have parameters that are 

constrained by the bounds of stationarity and invariability of 

these models 7/ [5,6]. Also, the Box-Jenkins equation should 

pass an overfitting test [9]. 

e) The residuals of a forecast equation should be normally 

distributed and relatively small [1]. 

f) The candidate equation should have acceptable forecast power. 

For judging this, four measures are used: Theil's U-coefficient 



33 

[1,7], the Janus coefficient [8], a second fit test [9], and the 

degree of success of the equation in predicting turning points 

and sign changes over its sample period [7]. 

g) A forecasting model should be parsimonious and simple; that is 

it should have few parameters, each of a low power. 

3. Heteroskedasticity 

Heteroskedasticity means inequality of variance. Variance is the 

sum of the squared differences between each observation and the mean 

of a time series divided by the number of observations in the series 

less one (an adjustment for degrees of freedom); as such, variance is 

a quantitative measure of dispersion in a time series about its mean. 

Heteroskedasticity is often found in business and economic time 

series. A heteroskedastic structure in an equation's residuals 

suggests that either the wrong function or the wrong variables, or 

both, have been selected. It should be removed from an equation prior 

to using it for forecasting because it implies biased parameter values 

and, probably, inaccurate forecasts. In this study, the original 

observations are transformed into logarithms, reciprocals, or power 

functions whenever a heteroskedastic structure is detected in an 

equation's residuals. Experimentation is then continued using these 

transformed values. 

A perfect test for the presence of heteroskedasticity does not 

exist. Given the seriousness of its threat to forecast accuracy, this 

study employs seven tests for its presence. 8/ If a candidate 

forecast equation passes all seven tests at a 95% confidence level, it 

is very likely free of heteroskedasticity. Failure on one or more of 

these tests invokes the need for judgement as to the acceptability of 

the forecast equation in the light of all of its statistical 

characteristics. 

4. Autocorrelation 

Autocorrelation means that the residuals of an equation are 

correlated. If the residuals of a forecast equation are 

autocorrelated, this implies either that the wrong function or the 

wrong variables have been selected or that there are strong trends in 
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the independent variables [1,8,14,15]. As was the case with 

heteroskedasticity, autocorrelation is also a violation of one of the 

conditions that must hold for the use of time series and regression 

techniques. An autocorrelated equation will probably generate poor 

forecasts because its parameters are biased. In theory, the 

systematic error can be removed from the residuals using a technique 

such as the Cochrane-Orcutt correction. In this study, the decision 

was made to reject an autocorrelated equation and to search for a 

defensible one without it. 

Two tests are conducted for autocorrelation, neither of which is 

perfect: the Box-Pierce (Q) test of residuals [1] and the Durbin-

Watson (d) test [1,8,14,15]. 

5. Mult icol1inearity 

Multicollinearity exists when changes in one of an equation's 

independent variables are too closely related to changes in another, 

resulting in biased parameter estimates [1,8]. In such cases, one of 

the correlated variables might well be dropped from the equation. 

Forecasting using an equation containing multicollinearity will 

probably generate high forecast error due to biased parameter values. 

The presence of multicollinearity is suggested when the correlation 

coefficient between two independent variables of an equation is higher 

than that equation's multiple correlation coefficient. The equations 

based on two of the seven time series methods used in this study will 

be evaluated for multicollinearity: time series multiple regression 

and the Box-Jenkins ARIMA method. 

6. Distribution and Scale of Residuals 

It would be indefensible to use a candidate equation as a 

predictor if its residuals were not normally distributed because that 

would mean that a systematic error process was at work generating 

those residuals. That systematic process should be removed and 

included in a respecified forecast equation which should have 

normally distributed residuals. Forecasting with an equation 

containing a systematic error will probably generate high error 

because its parameters are biased. 
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Tests for skewness and kurtosis are conducted to evaluate for the 

normality of the distribution of the residuals of each candidate 

equation [8, 16]. Kurtosis refers to the degree of peakedness in a 

distribution, and skewness refers to the degree of symmetry in it, 

both measured relative to the normal distribution. Pronounced 

departure from the pattern of a normal distribution on either, or 

both, grounds suggests that a systematic force is at work which is not 

specified in the forecast equation. In theory, this force should be 

captured explicitly in a respecified equation. In addition to tests 

for skewness and kurtosis, a variety of error statistics are provided 

on the scale of error of the fit of each forecast equation to the 

sample data. Each has its characteristic strengths and weaknesses. 

[1,2]. Finally, the autocorrelation function of residuals is 

inspected for the presence of unacceptable patterns. 

7. Overfittinq 

A test for overfitting is conducted on a candidate forecast 

equation generated using the Box-Jenkins method [9]. The purpose of 

this test is to assess whether that equation is properly identified. 

In the overfitting test, the Box-Jenkins equation under 

evaluation is refitted first with a (p) and then with a (q) value one 

degree higher than that used in the candidate equation and then with a 

(P) and a (Q) value similarly higher. Thus, with Box-Jenkins models, 

four refitting exercises are executed: one for the orders of p, P, q, 

and Q, respectively. A significance test is performed on the slope 

coefficients on each of these four refitted equations. If all of the 

slope coefficients on any of the four refitted equations tests 

significantly different from zero, at a 95% confidence level, then the 

acceptability of the candidate ARIMA forecast equation under 

evaluation is questionable. 

8. Apparent Forecast Power 

Four criteria are employed to judge an equation's apparent 

forecast power. The first test is the Theil U-coefficient [1,6]. 

This coefficient is defined as the square root of the ratio of the 

mean square error of the predicted change to the mean squared error 
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of the actual change. For an acceptable forecast equation, the value 

of Theil1s U-coefficient should be less than unity. 

A Theil coefficient less than unity means that the equation 

having that coefficient is a better predictor than a naive forecasting 

model. A Theil U-coefficient equal to unity means that the equation 

will probably forecast just as accurately as the naive forecasting 

model. A Theil U-coefficient above unity means that the naive model 

will probably be a better predictor than the equation under review. 

The second criteria of apparent forecast power is provided by the 

second fit test [7.9]. In this test, the actual values of the 

variables are regressed on the forecast values and a constant 

generated by the candidate equation. If the constant and slope of 

this linear equation test insignificantly different than zero and one, 

respectively, at the 95% confidence level, then the equation is taken 

as an attractive predictor, the idea being that actual and predicted 

values were closely related over the sample period and, hopefully, 

they will continue to be so over the forecast period as well. 

Accuracy in predicting turning points and sign changes over the 

sample period is a third criterion for asessing an equation's apparent 

forecast power [7]. An equation that predicted these well during its 

sample period is preferable to one that did not. 

Finally, the Janus coefficient is used for judging prospective 

forecast power [8]. This coefficient is defined as the ratio of the 

average squared error made in predictions outside the sample range to 

predictions made inside it. Since the five ex post forecasts tabled 

in this exercise are for 1983, the Janus coefficient was calculated 

for 1982 using an equation with the same specification as the 

candidate equation but fitted to the sample data for 1971-1981 (for 

diesel oil: 1976-1981). Thus, if there were no changes in 1982 in 

the conditions underlying the candidate forecast equation, the Janus 

coefficient would have a value of unity. The greater the departure 

from unity, the greater the change in the underlying conditions of the 

equation in 1982 vis-a-vis prior years and, hence, the more risky it 

might be to use the candidate equation as an ex post forecast vehicle 

for 1983. 
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B. The Results of the Experimentation 

Discussed below are the results of the statistical 

experimentation for each of the five Chilean energy variables. 

Exhibit 6 summarizes the principal statistical characteristics of each 

of the five models finally selected for forecasting. 

1. Diesel Oil 

•The 84 monthly observations on the apparent consumption of diesel 

oil in Chile were processed using the seven time series methods. Of 

the many equations generated, only three merited intensive evaluation: 

ARIMA (012) (111); ARIMA (111) (Oil) ; and ARIMA (Oil) (Oil) . 

Equations based on the two exponential smoothing models, the two 

decomposition models, and the time series multiple regression model 

were rejected for autocorrelated residuals and heteroskedasticity. 

The equation based on the time series multiple regression model was 

also rejected for multicollinearity and for insignificant t-values on 

several of its slope coefficients. The generalized adaptive 

filtering model was rejected for heteroskedasticity. 

A close study of the autocorrelation and partial autocorrelation 

coefficients of the three candidate ARIMA models led to the rejection 

of ARIMA (012)(Oil) and ARIMA (111)(Oil). 

The parameters of ARIMA (Oil) (Oil) are significant. The model's 

specification is consistent with the pattern of its autocorrelation 

and partial autocorrelation coefficients. The values of the 

equation's parameters meet the stability and invertibility conditions 

for ARIMA models. This model passed its overfitting test. 

The data in Exhibit 6 show the principal statistics for ARIMA 

(Oil)(Oil). Its R2 is 1.0 (rounded), adjusted for degrees of freedom 

and for the absence of a constant. The equation's F-value is 

significant. The model is apparently free of autocorrelation. 

Multicollinearity is not a problem. The equation's residual errors 

are small and appear normally distributed. There is no problem with 

either kurtosis or skewness. The Thiel U-statistic (0.71) of this 

equation means that it was a better predictor than the naive forecast 

model, NF2, over the sample period. The equation's Janus coefficient 
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(1.27) reports relative stability in the underlying conditions of the 

model in 1982 vis-a-vis 1976-1981, suggesting that it might not be too 

risky to use it as a predictive vehicle for 1983. The model passed 

its second fit test. ARIMA (Oil)(Oil) performed acceptably well in 

predicting both, turning points (40%) and sign changes (36%). The 

model is both parsimonious and simple: that is, it has few parameters 

(i.e., two) and each parameter is of low power (i.e., first power in 

both cases). 

ARIMA (Oil)(Oil) is selected as the time series forecast equation 

for diesel oil. The only reservation in using this forecast model is 

its failure on three of the seven tests for heteroskedasticity. 

Appendices C1-C4 presents the plots of the autocorrelation function, 

the partial autocorrelation function, the residuals, and the 

autocorrelation function of the residuals of ARIMA (Oil)(Oil). 

2. Household Kerosene 

The original values of household kerosene were fitted using the 

seven time series methods. Not one of the resulting equations was 

statistically defensible. Each equation tested positively for 

heteroskedasticity and/or autocorrelation, and each equation contained 

at least one other major statistical flaw. 

The values of the original observations were transformed into 

natural logarithms. These were fitted using the same seven time 

series models. Two equations survived statistically: ARIMA 

(110)(Oil) and ARIMA (Oil)(Oil). Close study of the autocorrelation 

and partial autocorrelation coefficients of ARIMA (110)(Oil) led to 

its rejection. 

ARIMA (Oil)(Oil) was selected as the forecast equation. The 

patterns of its autocorrelation and partial autocorrelation 

coefficients are consistent with its specification. Parameter values 

are acceptable. The model is both parsimonious and simple. It passed 

its overfitting and F-tests. Its slope coefficients are statistically 

significant. The R2 (adjusted) of this equation is 1.0 (rounded). 

The equation appears free of autocorrelation. However, it failed two 

of the seven tests for heteroskedasticity. Multicollinearity is not 

a problem. The model's aggregate error statistics are low. While 
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skewness is not a problem, kurtosis is. The model's Theil coefficient 

(.47) is attractive, but its Janus coefficient (1.59) suggests 

underlying instability in the series in 1982. The model predicted 

turning points and sign changes well during its sample period: 46% 

accuracy in both cases.. 

ARIMA (Oil)(Oil) is chosen as the predictor for household 

kerosene consumption, despite its failure on the second fit test, its 

weakness in regard to kurtosis and heteroskedasticity, and the threat 

to forecast accuracy suggested by the value of its Janus coefficient 

in 1982. Appendices DI-D4 presents the various plots for this 

forecast model. 

3. Motorcrasol ine 

The 144 original values of this variable were fitted to the seven 

time series models. Each of the resulting equations was rejected for 

heteroskedasticity and autocorrelation and, in some cases, for other 

statistical failures. 

In view of these results, the natural logarithms of the original 

data were fitted to the same seven models. Again, each of the seven 

resulting equations had to be rejected. 

Experimentation was then undertaken using a series of 

transformations of the original data to deal with the problem of 

heteroskedasticity. Of the many equations generated using these 

transformations, only two survived: ARIMA (210)(Oil) and ARIMA 

(Oil)(Oil), data in both cases being scaled in the reciprocals of the 

original values. 

Detailed study of the autocorrelation and partial autocorrelation 

coefficients of these two surviving models led to the rejection of 

ARIMA (Oil)(Oil) and to the acceptance of ARIMA (210)(Oil). 

The statistical features of ARIMA (210)(Oil) are shown in 

Exhibit 6. This model is parsimonious and simple. Its parameters 

pass their respective t-tests, and they satisfy the stability and 

invertibility conditions. The equation appears free of 

autocorrelation and heteroskedasticity. Multicollinearity is not a 

problem. The equation's R2 (corrected) is high (.98). It passed its 

F-test and overfitting test. Its Theil U-coefficient (0.82) suggests 



40 

that it is a better predictor than the NF 2 model. It predicted 

turning points reasonably well (30%) and sign changes very well (71%) 

during its sample period. Kurtosis is a problem, but skewness is not. 

Residuals are small. 

ARIMA (210)(Oil) is a statistically acceptable equation. The 

only drawbacks to its use as a forecasting equation are: first, its 

failure on the second fit test; second, the problem with kurtosis; 

third, its failure on one of the seven tests for heteroskedasticity 

and, fourth, the very high value of the equation's Janus coefficient 

(23.9). This pronounced instability in this series in 1982 implies 

that it might generate a poor forecast in 1983. Despite its 

shortcomings, ARIMA (210) (Oil) is selected as the predictor for 81° 

motorgasoline consumption. The plots for this model are given in 

Appendices EI-E4. 

4. Gross Electricity Generation 

When the 144 original values of this variable were fitted using 

each of the seven time series methods, every equation showed serious 

statistical flaws. As a result, the original observations were scaled 

in natural logarithms, and these values were fitted to the same 

functions. When this was done, only one equation was statistically 

attractive: ARIMA (210)(Oil). 

The order of ARIMA (210) (011) is consistent with the pattern of 

its autocorrelation and partial autocorrelation coefficients. The 

equation's parameter values satisfy both the stability and 

invertibility conditions for ARIMA models. This ARIMA model is both 

parsimonious and simple. 

As shown in Exhibit 6, ARIMA (210) (011) is a statistically strong 

equation. The equation's R2 is 1.0 (rounded), after adjustment for 

degrees of freedom and for the equation's lack of a constant. This 

model passed its overfitting test. The t-values for each of its slope 

coefficients and the equation's F-test value are all significant. 

There is no problem with either autocorrelation or multicollinearity. 

The equation's residuals are small and without skewness. There is, 

however, a problean with kurtosis. The equation's U-coefficient (.40) 

and its 'second fit' test suggest attractive forecast power. The 
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model did very well in predicting turning point (64%) and sign changes 

(60%). 

ARIMA (210)(Oil) has one big weakness. As shown in Exhibit 6, it 

failed four of the seven tests for heteroskedasticity. In view of its 

generally excellent statistical properties, however, ARIMA (210)(Oil) 

will be used as the predictor for gross electricity production in 

1983. The risk on heteroskedasticity is simply judged to be worth 

taking. Appendices F1-F4 present the various plots on this variable. 

5. Peak Electricity Demand 

The 144 original values of this time series were fitted using the 

seven time series models. Every one of the resulting equations was 

rejected either for autocorrelation, heteroskedasticity, or some other 

serious statistical inadequacy. 

The exercise was repeated using the natural logarithms of the 

original values. Three ARIMA models emerged as potential forecast 

equations: ARIMA (Oil)(111), ARIMA (Oil)(Oil), and ARIMA (Oil)(110), 

all three scaled in natural logarithms. 

The parameters of ARIMA (Oil)(111) did not satisfy the stability 

and invertibility conditions for ARIMA models, and one of its MA 

parameters failed its t-test. So, this model was rejected. The non-

seasonal MA parameter of ARIMA (Oil)(Oil) failed its t-test, and it 

was rejected. ARIMA (Oil)(110) was retained for more intensive 

screening. 

ARIMA (011)(110) is a reasonably strong model. Its parameter 

values are significant. Its R2 (corrected) is 1.0 (rounded), and its 

F-value is significant. It passed its overfitting test. There is no 

problem with multicollinearity and apparently none with 

autocorrelation. The model passed four of its seven tests for 

heteroskedasticity. Residuals are small and free of skewness. 

Kurtosis, however, is a problem. Apparent forecasting power is high, 

judging from the values of this model's Theil coefficient (.38). The 

model predicted turning points and sign changes well (38% and 67%, 

respectively), and it passed its second fit test. 

The only two reservations in accepting ARIMA (011)(110) is that 

it failed three of its seven tests for heteroskedasticity and its 
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Janus coefficient is very high (4.98). Appendices G1-G4 presents the 

values of this model's autocorrelation and partial autocorrelation 

functions, its residuals, and the autocorrelation function of its 

residuals. 

C. The Five Forecast Equation 

A time series forecasting equation has been selected for each of 

the five Chilean energy variables. Seven time series methods were 

considered as forecast vehicles in each case. The surviving time 

series prediction method was an ARIMA model in all five cases. 

Each of the five ARIMA models chosen as forecast equations passed 

many rigorous statistical screening criteria. There were failures on 

some criteria. Generally speaking, however, the five surviving 

equations are good to excellent in quality. 

Several features of these five ARIMA models should be 

underscored. First, each model is both parsimonious and simple, 

making it attractive as a forecast vehicle from a methodological point 

of view. 

Second, all five equations have statistical defects, but in 

varying degree. Each one failed at least one of the seven tests 

conducted for heteroskedasticity, and three equations failed three or 

more of these tests. Four equations have kurtosis in their residuals. 

However, these failures should be read in the context of the overall 

statistical strength of these five forecast equations. 

Third, the failure on the heteroskedasticity criterion of all 

five Box-Jenkins equations prompted a review of their individual 

defensibility statistically with that of the smoothing, decomposition, 

time series multiple regression and GAF models generated earlier in 

the research and rejected. This review led to the conclusion that, 

with the exception of the GAF models, each of the five Box-Jenkins 

models was a statistically superior predictive vehicle; but that the 

five Box-Jenkins models and their counterpart GAF models were both 

basically defensible in all five cases. The evidence for this 

conclusion is presented in Exhibit 14. The data show that each of the 

Box-Jenkins and GAF models presented in the Exhibit failed at least 

two of the seven tests conducted for heteroskedasticity. Although 
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each of these equations is attractive on other statistical grounds, 

the problem of heteroskedasticity constitutes a serious flaw in all of 

them. In short, the problem of heteroskedasticity proved intractable, 

rendering suspect for forecast purposes every ARIMA model that emerged 

from the experimentation. In choosing between these two ARIMA models, 

the rest of this study will be based on the use of the five Box-

Jenkins models owing to the fact that they have highly valuable 

stochastic properties which the GAF models lack. Aside from the 

problem with heteroskedasticity, it should be underscored that, 

generally speaking, both the Box-Jenkins and the GAF ARIMA models are 

attractive predictors, a fact which reflects, in large part, the close 

similarity of the underlying methodology of these two ARIMA forecast 

methods. 

D. The Five Forecasts 

Exhibit 7-13 presents the results of the 1983 ex post forecast 

for each variable using the five Box-Jenkins ARIMA models. Four 

features of these forecast results are noteworthy. First, every one 

of the sixty actual values for 1983 fell within the 95% confidence 

limits of the standard error of each equation's respective forecast. 

Second, these error limits are all relatively narrow. Third, four out 

of five of these forecasts had relatively low errors, their MAPE's 

falling in the range of 0.8-6.6% (Exhibit 7). The exception here was 

the motorgasoline forecast which had a comparatively high MAPE: 

10.9%. Fourth, the scale of forecast error of all five variables was 

related fairly closely to the degree of volatility in their series 

during their sample periods (Exhibit 10), once again underscoring the 

importance of studying a time series closely before forecasting it. 

Given the high quality of the five Box-Jenkins equations, these 

relatively good forecast results are attributable, in significant 

degree, to the fact that the three factors that shaped the course of 

these five energy variables during their sample period remained more 

or less in operation during 1983: Chile's total real output continued 

to grow sluggishly in 1983 (0.7%) as it did, on the average, during 

1972-1983 (0.8%); and the cycle component of each variable remained 

weak and the seasonal component continued strong in 1983. 
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All in all, an energy planner who had used these five Box-Jenkins 

ARIMA models to forecast 1983 monthly values would not have been 

surprised as the actual values emerged in the market. He would have 

done a reasonable good forecasting job in all five cases in 1983. 

E. The ARIMA Models and Other Forecast Models 

Would it have been better to have avoided making the incremental 

investment required to predict with the Box-Jenkins ARIMA method over 

and above that required to predict with the other, technically 

simpler, forecast routines that were used? What would have been the 

change in predictive accuracy if a logical, or structural, model had 

been used instead of the Box-Jenkins ARIMA time series models? In 

this same vein, what would have been the change in predictive accuracy 

if, say, a completely unsophisticated predictive model, like NF 1, had 

been used to forecast each of these five Chilean energy variables 

instead of the five ARIMA models? 

Five structural equations were generated, one for each of the 

five Chilean energy variables. The data underlying these five 

equations are presented in Appendix B. The statistical 

characteristics of the equations are summarized in Exhibit 15. The 

data in this Exhibit show that each of these equations is 

statistically defensible. Each has a simple causal content, although 

lacking in economic sophistication. In this regard, many other 

structural equations were tested, but each failed on one or more 

statistical and/or theoretical grounds. These five one-equation 

structural equations were used to generate ex post forecasts of the 

five Chilean energy variables. 

Exhibit 16 presents the error statistics for predictions of the 

five Chilean energy variables using NF 1, NF 2, the five one-equation 

structural models, and the five ARIMA models. The errors of the OF 

are shown for each variable. Errors are also presented for a 

composite forecast model, an approach which will be discussed in the 

following section. 

A comparison of the results of these predictive approaches is 

instructive. The first point to note is that NF 2 predicted all five 

variables more accurately than NF 1. The superior performance of NF 2 
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is due to the simple fact that it made a seasonal forecast while NF 1 

did not, and all five variables have marked seasonality. 

The second point to note is that NF 2 was a better predictor 

than the structural model in all five cases. 

Third, NF 2 was more accurate than the ARIMA method in predicting 

three out of the five variables. 

Fourth, the ARIMA method generated more accurate forecasts than 

the structural model in three out of five cases. So, there is no 

basis in these results for asserting that the more costly and more 

complex Box-Jenkins ARIMA method is clearly a superior forecast 

vehicle to either the technically simple multiple regression 

technique, or, in fact, to naive models. 

Fifth, with the exception of the kerosene forecast, the average 

error (MAPE) of the NF 2 forecasts were relatively low: they fell 

within a 3-5% range. Sixth, the MAPE of all five forecasts using NF 2 

were far above the MAPE of the OF, the optimum or best attainable 

forecast. Mathematical sophistication failed to bring forecast error 

down close to minimum attainable levels. 

Finally, the ARIMA models did bring down average forecast error 

to these minimum levels in two out of five cases (kerosene and 

electrical generation), a fact which points to the potential strength 

of the ARIMA forecasting approach. 

Why did NF 2 perform relatively well as a predictor? What are 

the implications of its success? 

The reasons for the relative success of NF 2 are straightforward. 

Each of the five Chilean energy variables had strong seasonality, a 

big residual, and weak trend and cycle components. Since the 

residual isn't predictable, forecast accuracy, in every case, turned 

basically on the accuracy of its seasonal forecast. Given its 

predictive mechanics, NF 2 can compete well in such cases. ARIMA 

models can also do well under such circumstances, but structural 

models are at a disadvantage. 

There are two basic implications of NF 2's comparative success in 

forecasting. First, it shows that there is no relation between the 

mathematical sophistication of a forecast method and its predictive 

accuracy. NF 2 is a simple predictive routine. Yet, it turned in a 
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far better forecast performance than the more complex structural and 

ARIMA models. From a managerial point of view, this suggests that, 

while the gains from more accurate energy forecasting may be 

impressive, so are the difficulties of capturing them. Second, the 

superior results of NF 2 underscore the critical importance of 

studying a time series closely before choosing a forecast method. 

There were clear signs in the data for all five variables that a 

simple method such as NF 2 might, in fact, be a superior vehicle. In 

fact, it was. Second, NF 2's relative success shows that there is no 

relation between the mathematical sophistication of forecast method 

and its predictive accuracy. NF 2 is a simple predictive routine. 

Yet, it turned in a far better forecast performance than the more 

complex structural and ARIMA models. From managerial point of view, 

this suggests that, while the gains from more accurate energy 

forecasting may be impressive, so are the difficulties of capturing 

them. Third, the predictive success of NF 2 in 1983 should not be 

taken as an indicator of its success in future periods. 

Summing up: the unsophisticated and low-cost NF 2 method 

predicted more accurately than the other candidate forecast methods. 

A forecaster would have done well using this simple routine to predict 

the twelve monthly values of each of these five Chilean energy 

variables in 1983. His forecast would have been reasonably accurate, 

low cost, and rapid. But, all five NF 2 forecasts had average errors 

far higher than an optimum, or best attainable, forecast. Managers of 

energy forecast groups in Latin America, where budgets are tight and 

reliable data are scarce, should reflect on these results. 

F. A Composite Forecast Approach 

The superior predictive performance of NF 2 was for one year, 1983, 

These results are anecdotal. They have only an illustrative value, 

nothing more. Forecasts for other years would have different 

outcomes. What the forecaster needs to know, but never will, a 

priori, is what is the predictive method that will have the most 

accurate results on the average over the time periods that he must 

forecast. In this lies the attractiveness of the stochastically 

conditioned forecast because it responds to the idea that a prediction 

of fact must be couched in probabilistic terms to be meaningful. 
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Viewed in this context, an alternative and potentially attractive 

approach to short-run energy forecasting is suggested: weight, in 

some objective way, the forecast values for each of several methods, 

each of which has a feature worth capturing, and generate a composite 

forecast. 

For example, NF 2 was superior to NF 1 because it made a 

seasonal forecast while NF 1 did not. NF 2 is really an extreme case 

of a moving average in which only one observation, the last one, is 

included in the average. A moving average, such as NF 2, performs 

best either when there is a systematic pattern and little randomness 

in the data or when the forecaster expects an abrupt turning point. 

While each of the five variables show a systematic pattern and 

frequent turning points, they have high, not low, randomness, as 

evidenced by their high residual values (Exhibit 4). 

High randomness argues for the inclusion of an ARIMA model in a 

composite forecast routine. The ARIMA approach focuses on the 

separation of the pattern from the random process with a purpose of 

using the pattern for forecasting. Each of the five ARIMA models that 

survived was statistically strong, suggesting that it probably 

identified the pattern fairly well. Also, in straining out 

randomness, the ARIMA model uses all past information available on the 

variable. NF 2 does not strain out randomness. ARIMA models tend to 

be fairly good seasonal predictors. In short, there are good reasons 

for including the ARIMA model in the construction of a composite 

forecast vehicle, given the inclusion of NF 2. 

ARIMA models and NF 2 lack an associative, or causal, content. 

Also, after a relatively few forecast periods, predictions generated 

by an ARIMA model gravitate toward the mean of the stationary series. 

This is not the case with the one-equation structural models used in 

this study, which have a simple, although economically strained, 

causal content. The structural equation would take account of such 

causal forces and, to this extent, might also be helpful in predicting 

turning points. On the other hand, the structural model is a weak 

seasonal predictor. The decision was made to construct a composite 

forecast model using NF 2, ARIMA, and the one-equation structural 

model. 
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Exhibit 16 shows the results of predicting the 1983 values of the 

five Chilean energy variables with the composite method. The error of 

the OF is also shown to give an idea of the accuracy of a good 

forecasting effort. The errors of the composite forecasts are least-

squares weighted, so they fall within the error limits of the 

component forecast method. In effect, the composite forecast 

approach lets the forecaster hedge his bet against uncertainty by 

employing the advantages of each component method while simultaneously 

retaining the advantage of having a stochastic prediction routine for 

his planning needs. 

Exhibit 16 shows that the composite forecast method was 

reasonably accurate with the two electric power series and diesel oil. 

These three variables evolved more or less normally in 1983. On the 

other hand, the composite forecast method generated high forecast 

error with motorgasoline and kerosene, both of which experienced 

unusually strong change in 1983 (Appendix B). In both cases, the high 

error of the structural model explains the high forecast error of the 

composite model. In general, the errors of the composite forecasts 

were higher than those of the optimum forecasts, reflecting the fact 

that the component forecast models fared poorly against the OF, the 

two exceptions being the ARIMA forecasts of kerosene and electricity 

generation. The results suggest that if a forecaster expects 

unusual change in a variable, he might better forecast it using a 

single technique, such as NF 2 or an ARIMA model. However, if he 

expects a regular pattern of evolution in the variable over the 

forecast horizon, the composite method does let him combine the 

advantages of several methods and hedge his bet against any one of 

them being wrong. 

G. Summary 

Seven time series forecast methods were reviewed for use in 

predicting five Chilean energy variables. Stringent statistical 

screening criteria were employed. In all five cases, the result was 

the same: an ARIMA forecast equations was selected. Additionally, in 

each case a GAF model was highly competitive and might well have been 

selected as the forecast equation instead of the Box-Jenkins model 

actually selected. Each Box-Jenkins model was both parsimonious and 
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simple. Each has its characteristic weaknesses. On the whole the five 

Box-Jenkins ARIMA models are statistically strong. 

The five ARIMA equations were used to forecast, ex post, the 

twelve monthly values of 1983. In all sixty cases, the actual values 

for 1983 fell within the consistently narrow 95% confidence limits of 

the respective equation's standard error of the forecast. 

The forecast accuracy of these five ARIMA models was compared 

with that of a one-equation structural model and two naive models, NF 

1 and NF 2. The results were that NF 2 outperformed the ARIMA model 

four out of five times, and it forecasted more accurately than the 

structural model and NF 1 in all five cases. 

These results show that the technically simple, low-cost, and 

rapid forecast method of NF 2 turned in the best forecast record. 

Methodological complexity provided no protection against forecast 

error in 1983. On the other hand, as just noted, the five ARIMA 

models also turned in good forecast results. Given its stochastic 

character, an ARIMA model is a highly competitive forecast vehicle for 

short-term forecasting on a continuous basis. While NF 2 and the 

ARIMA models turned in reasonably good forecast results, both methods 

were far less accurate than an optimum forecast. There were two 

exceptions: the ARIMA model turned in a forecast on a par with an 

optimum forecast in the cases of kerosene and electricity generation. 

Finally, an ex post forecast for 1983 was made with a composite 

method. This method combines the desirable properties of its 

component methods and, under certain circumstances, it might offer the 

forecaster protection against uncertainty while retaining the 

advantages of a stochastic method. Given the weighting scheme of the 

composite forecast method, the pattern of its predictive errors will 

fall within the limits of the errors of its component methods. 
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CHAPTER IV 

Summary and Conclusions 

This study began with three questions. The first two questions asked 

why any effort should be made at statistical sophistication in energy 

forecasting work. The study has shown that the small investment 

required to move from NF 1 to NF 2 was well rewarded. In fact, NF 2 

turned out to be the most accurate predictive routine of those 

reviewed. Little investment was required to use it, and it gave the 

most accurate forecast results for 1983. 

The third question asked if it would have been worthwhile to 

invest in more sophisticated forecast technology, having already 

achieved the predictive accuracy of NF 2. That method delivered the 

best forecast results in 1983 with four out of five variables. So, an 

investment in any of the other time series method reviewed in this 

study would have been wasted in forecasting those four variables in 

that year. 

However, the study argued that it would be misguided to assume 

that NF 2's predictive success in one year, 1983, should be 

extrapolated into the future. The research demonstrated that Box-

Jenkins (and GAF) models were also solid forecasting vehicles in 1983, 

and that they were preferable to NF 2 model for repeated forecast 

exercises because of their superior statistical strength, on the one 

hand, and, in the case of Box-Jenkins but not GAF models, because of 

the stochastic properties of the forecasts that they generate, on the 

other. 

Several fundamental points should be drawn from this case study. 

First, before forecasting, study the data well. Second, avoid 

complexity. Third, do not underestimate the difficulty of achieving 

increased forecast accuracy on a sustained basis over and above levels 

that simple methods might readily deliver. It is all well and good to 

know that big savings are available in the abstract from :Lmproved 

forecast accuracy. It is quite another matter to achieve that 

increased accuracy. Forecast error is a formidable enemy and costly 

mistakes lie ahead for those who act as if an increment in 

mathematical complexity of forecast technology will always reduce it. 
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Fourth, apply rigorous criteria when screening candidate forecasting 

equations. It is much easier to generate a bad equation than to find 

a good one. NF 2 might have predicted best in 1983, but, as just 

noted, this does not mean that it would do so in the future on a 

continuous basis. For this purpose, statistically strong, stochastic 

models such as the five Box-Jenkins ARIMA models developed in the 

study are attractive predictors. Finally, these models, by their 

probabilistic nature, are more useful devices for planning in an 

energy company than the simple point forecasts generated by naive and 

other time series models. Nevertheless, a shortcoming of ARIMA models 

in some energy companies might be their mathematical complexity. 

Experience has suggested that managers should feel comfortable with 

the predictive routines employed in their organizations if their 

forecast efforts are to be successful in the broad sense [1]. In this 

regard, the study points to the importance of managing the forecast 

effort well in an overall administrative sense, rather than conceiving 

of it simply as the mechanical processing of quantitative methods by 

technicians. 
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EXHIBIT 3 

CHILE: 1971-1983 

ANNUAL VALUES OF THE NONTHLT 

DATA PRESENTED IN EXHIBIT 1 

(in units as indicated) 

Household 81 -grade Peak 
Kerosene Motorgasoline Diesel Oil Electricity Electricity 

(Thsd. cubic (Thsd. cubic (Thsd. cubic Production Demand 
Year meters) meters) meters) (mm.kwh/yr) (000KU) a/ 

1971 517 1412 n.a. 5471 583 

1972 617 1363 n.a. 5918 626 

1973 621 1266 n.a. 5914 651 

1974 517 1226 n.a. 6262 657 

1975 399 1012 n.a. 6052 606 

1976 456 982 1015 6443 639 

1977 444 983 1021 6741 700 

1978 395 939 1217 7133 740 

1979 322 942 1300 7789 822 

1980 294 899 1429 8377 864 

1981 266 754 1503 8745 903 

1982 243 526 1414 8759 892 

1983 191 382 I486 9359 953 

Source: Calculated from the original monthly data for each of the five variables presented in 

Exhibit 1. 

a/ The figures in this column report the highest monthly peak electricity demand recorded during the 

indicated year. 

n.a. : Not available. 
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Exhibit 4 

CHILE: JANUARY, 1971-DECEMBER, 1982 

MEAN ABSOLUTE PERCENTAGE CHANGE OF FIVE 

ENERGY VARIABLES: TOTALS AND COMPONENTS 

(In X as indicated) 

Peak Gross 

Household 81-grade Electricity Electricity 

Kerosene: Diesel Oil a/: Motoroasoline: Demand: Production: 

Ave. Percentage: Avg. Percentage: Avg. Percentage: Avg. Percentage: Avg. Percentage: 

Change Contrib. Change Contrib. Change Contrib. Change Contrib. Change Contrib. 

100 8.8 100 7.6 100 4.5 100 5.8 100 

5 0.7 7 0.9 11 0.5 10 0.5 8 

'- 0.6 - 0.6 - 0.3 - 0.4 • 

- 0.6 - 0.8 - 0.4 - 0.3 • 

56 2.0 21 2.3 27 2-9 59 3.9 62 

39 6.7 72 5.2 61 1.5 31 1.9 30 

Total 28.7 

Trend-cycle 1.4 

Trend 0.7 

Cycle 1.3 

Seasonality 17.2 

Residual 11.9 

Sources 

and 

Notes: The figures in this Exhibit were generated by the Census decomposition routine of the 

Sibyl-Runner times series program. For each variable, the figures in the left-hand column 

report the average monthly absolute rate of change over the period indicated. The figures 

in the right-hand column under each variable are the average absolute monthly 

contributions of each component to the total absolute monthly rate of change, each summed 

over the period indicated. A dash means less than 0.1 rounded. 

a/ January, 1976 to December, 1982 
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EXHIBIT 5 

CHUE: 1971-1982 
FIVE ENERGY VARIABLES, HISTORICAL ACCURACY 
OF VARIOUS TIME SERIES FORECAST TECHNIQUES 

(In percentages, as indicated) 

Original Data: 
Mean Absolute Improvement 
Monthly % Change Mean Absolute Percentage Error Potential of 

Variable 1971-1972 (MAPE) for 1971-1982 usiner: Forecast: 

Household 
Kerosene 
Consumption 

Diesel Oil 
Consumption a/ 

81-grade Motor-
Gasoline 
Consumption 

ill 

28.7 

8.8 

7.6 

NF1 NF2 
JZL. (3) 

37.6 

5.6 

7.6 

13.4 

3.2 

4.8 

OF 
_C4j_ 

7.7 

1.4 

2.3 

(2-4) 
(5) 

29.9 

4.2 

5.3 

(3-4) 
(6) 

5.6 

1.8 

2.5 

Gross 
Electricity 
Generation 5.8 4.5 1.8 1.0 3.5 0.8 

Peak 
Electricity 
Demand 4.5 4.6 1.3 0.6 4.0 0.7 

Sources and Notes: 

The figures in Col. (1) are from Exhibit 4. The figures in Cols. (2), (3) and (4) 
were calculated using the Sibyl component of the Sibyl-Runner time series program. 
In calculating the figures in Col. (4), Sibyl uses the Census decomposition method. 
(NF1) means Naive Forecast Model (1), which uses last period's actual observation 
to forecast this period's value. (NF2) means Naive Forecast Model (2), which uses 
last period's seasonally adjusted value to predict this period's seasonally 
adjusted value. The latter is then converted to a seasonally unadjusted value 
using the seasonal index generated by Census. (OF) means the "Optimum Forecast,, and 
the figures in column (4) report the (MAPE) of the forecast, which is the MAPE of 
its residual errors, isolated using the CENSUS decomposition method. As used 
here, MAPE reports the error imposed by the residual, which includes the effect of 
randomness. The MAPE is the sum of the absolute percentage errors (between actual 
and forecast for a given period) divided by the number of errors. 

a/ January, 1976 to December, 1982. 
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EXHIBIT 6 

CHILE: SELECTED STATISTICS FOR FIVE BOX-JENKINS FORECAST 

EQUATION OVER THEIR RESPECTIVE SAMPLE PERIODS 

Concept: 

Apparent Consumption of: 

Diesel Oil Household 

Kerosene 

81°-grade 

Motorgasoline 

Electricity 

Generation 

Peak 

Demand 

A. Data and Equation: 

Sample Period 1/76-12/82 1/71-12/82 1/71-12/82 1/71-12/82 1/71-12/82 

Box-Jenkins Model (011)(011) (011)(011) (210X011 ) (210X011 > (011X110) 

Scaling of Variables Originals Loge Reciprocals Loge Originals 

No. Observations 84 144 144 144 144 

No. Residuals 71 131 131 131 131 

No. Parameters 2 2 3 3 2 

Q-Data (lag=24) 51.7* 145.7* 85. U * 71.7* 59.2* 

R2 1.0 1.0 .97 1.0 1.0 

Rfc (Corrected) 1.0 1.0 .93 1.0 1.0 

F -5740 -30550 874 -34833 -30346 

AR I/LAG 1 -.4K-4.93) -.33(4-17) 

ARI/LAG 2 -.27(-3.23) -.26(3.22) 

MA I/LAG 1 .69(7.85) .61(8.77) .18(2.10) 

MAI/LAG 2 

ARI/LAG 12 -.37(-4.21 

MAI/LAG 12 .46(3.73) .51(5.55) .76(7.03) .89(6.44) 

Overfitting test Pass Pass Pass Pass Pass 

B. Autocorrelation: 

Durbin-Watson 2.31 1.70 2.08 1.86 1.96 

Q-Residuals (df) 20.8(22) 48.0(22) 23.9(21) 21.8(21) 16.0(22) 

Q-Residuals (df) 33.6(68) 82.8(128) 56.9(127) 61.2(127) 59.0(128) 
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Exhibit 6 (continued) 

Concept: 

Apparent Consumption of: 

Diesel Oil Household 81°-grade 

Kerosene Motorgasoline 

Electricity 

Generation 

Peak 

Demand 

C. Mult i col linearity; 

R 

Correlation Matrix: 

MAO) - HAK12) 

ARK12) - MAl<1) 

ARK2) - MAK12) 

ARK12) • MAK12) 

ARK2) - MAK12) 

ARK2) - ARK1) 

1.0 

.05 

1.0 

-.14 

.98 

.15 

.08 

.33 

1.0 

.02 

.05 

.27 

1.0 

.17 

D. Heteroskedasticitv: 

Goldfeld-Quandt: 

50/50 0.73 0.26 1.15 

37.5/25/37.5 0.76 0.20 1.16 

F-test 2.11 1.13* 1.53 

Bartlett 2.08 0.11 1.25 

Cochran 0.68* 0.53 0.60 

Hartley 2.11* 1.13 1.53 

Spearman's R 0.91* 0.95* 0.96* 

0.09 

.05 

2.29 

4.73* 

0.70* 

2.29* 

0.95* 

6.40* 

5.00* 

0-.64 

1.40 

0.61 

1.56 

0.95* 
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Concept: 

Apparent Consumption of: 

Diesel Oil Household 81°-grade 

Kerosene Hotorgesoline 

Electricity 

Generation 

Peak 

Demand 

E. Normality & Scale of 

Errors: 

Kurtosis -1.72 4.25* 16.46* 

Skewness -0.01 -0.27 1.61 

Max. Error 19.4 -0.6 -

Quadratic Measures: 

MSE 63.6 -

RMSE 8.0 0.2 

RMSPE 7.6 5.3 8.2 

SSE 4516 3.4 

SDE 8.0 0.2 

Linear Measures: 

MAPE 6.2 3.9 

ME -0.1 -

MPE -0.2 -0.7 

MAO 6.6 0.1 

5.5 

0.7 

17.27* 5.18 

-0.14 -1.06 

0.1 -57.7 

0.5 

0.1 

0.4 

-0.1 

206.1 

14.4 

2.2 

26,995 

14.4 

1.7 

-0.7 

-0.1 

11.4 

SE 1.0 

F. Forecast Power: 

Theil Coefficient 0.71 

Janus Coefficient 1.27 

Second Fit Test Pass 

% Correctly Predicted: 

Turning Points 40 

S i gns 36 

0.47 0.82 

1.59 23.88* 

Fail Fail 

46 

46 

30 

71 

0.40 

â/ 

Pass 

64 

60 

1.3 

0.38 

4.98* 

Pass 

38 

67 
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Exhibit 6 (continued) 

Apparent Consumption of: 

Concept: Diesel Oil Household 81°-grade 

Kerosene Hotorgasoline 

Electricity 

Generation 

Peak 

Demand 

G. Predictive Accuracy 

Over Sample Period of: 

N1 

N2 

SM 

BJ 

Memo: OF 

5.6 44.2 5.7 

3.3 25.3 5.3 

3.6 112.2 42.5 

5.0 6.6 10.9 

1.4 7.7 2.3 

4.0 

2.5 

6.4 

0.8 

1.0 

5.7 

2.6 

3.6 

3.9 

0.6 

Source: SAS and CEPAL programs using data as indicated below. 

Notes: 

A. Pata and Equation: 

The scaling of variables was either in original values (Appendices A (1-5)), in the natural 

logarithms of these values (Exhibit 2), or in the reciprocals of the original values, these latter 

two transformations being introduced to deal with the problem of heteroskedasticity. The Q-

statistic is the Box-Pierce (chi-squared) statistic for gauging the degree of pattern (or 

randomness) in a series. It is shown here for a calculation based on 24 lags to gauge the degree of 

pattern in the original data; also, it is shown for all the lags [5,6]. The value of R' 

(corrected) includes an adjustment, first, for degrees of freedom and, second, for the fact that 

there is no constant term in any of the five Box-Jenkins forecast models presented here. When R is 

adjusted for the absence of a constant, its value can rise above 1.0 and the value of the respective 

equation's F-statistîc can be negative t9], results which occurred in four out of the five cases 

shown here. When it occurred, R2 (corrected) is reported as 1.0, and the negative F-value is shown 

directly. The slope coefficients are the parameters of the model. For each, its t-value is shown 

in parenthesis alongside the coefficient. ARI/LAG 1 and ARI/LAG 12 mean the first AR term in the 

non-seasonal (lag1) «nd seasonal (lag 12) components of the model, respectively. AR2/Lag1 means the 

second AR term in the non-seasonal (lagD part of the model. HA means the moving average term. The 

overfitting test is described in the text and in [9]. "Pass" and "Fail" mean that the model either 

passed or failed the indicated test. 

B. Autocorrelation: 

The Durbin-watson test is the "d" test for first-order serial autocorrelation [1,8,14]. The Q-test 

noted here is the Box Pierce (chi-squared) test of residuals for each of the two sample sizes (N) 

shown 11]. Comparison of this Q-statistic with the one in (A) above provides a comment on the 

degree to which the underlying pattern has been wrung from the original data. The absence of an 

asterik in all three cases means that the model passed its test for the absence of autocorrelation 

at the 95X confidence level. 



- 61 -

Exhibit 6 (conclusion) 

C. Mult icol I i near ity; 
2 

R is the square root of R (corrected) shown above. The correlation matrix shows the R value for 

each set of two independent variables as indicated. 

D. Heteroskedasticity: 

Seven tests are conducted for the presence of heteroskedasticity [1,2,8,10,11,12,13]. An asterik 

indicates the presence of heteroskedasticity at the 95% confidence level. 

E. Normality and Scale of Errors; 

Tests are conducted for kurtosis and skewness in the distribution of residuals at the 95% confidence 

level [10,161. Failure of either of these two tests is indicated by an asterisk. Maximum error 

means the highest single residual error; HSE: the mean square error; RMSE: the root mean square 

error; RNSPE: the root mean square percentage error; SSE: the sum of squared errors; SDE: the 

standard deviation of error; MAPE: the mean percentage error; HAD: the mean absolute deviation; 

SE: the standard error of estimate. These various error measurements are discussed in [1] and [2]. 

F. Forecast Power: 

Theil's coefficient is discussed in [1], the Janus coefficient in 18], and the second fit test in 

[9]. "% correctly predicted" refers to the fraction of times that the forecast model correctly 

predicted turning points and the sign of change in the time series over its sample period. 

G. Predictive Accuracy Over Sample Period: 

Shown here for each variable over its sample period is the mean absolute percentage error (MAPE) of 

four forecast routines: N1, N2, the structural model (SM), and the Box-Jenkins model (BJ). Also 

shown is the error of the optimum forecast, OF, over the variable's sample period. As explained in 

the text, OF is the NAPE of the residuals generated by the Census decomposition technique. The 

MAPE of the four forecasting routines and OF are those shown in Exhibits 4-6. When the MAPE of a 

forecast technique is below that of OF, it means that the average error of the former was below the 

average of the residual errors generated by the CENSUS decomposition technique, the reference level 

for a very good forecasting job. 

A blank space means that the concept is irrelevant. A dash means that the value of the statistic is 

less than the reporting unit after rounding. As noted, an asterisk means failure of the test 

statistic at the 95% confidence level. Pass and fail are used in the obvious sense with respect to 

the results of two tests that have multiple features; a failure on any one of these multiple tests 

is reported as "fail" for the test as a whole. 

a/ This test statistic could not be calculated due to the emergence of a Jacobian singular, terminating 

the maximum likelihood estimation of parameter values of this ARIMA model by the SAS program. 

Without these parameter values, the Janus coefficient could not be calculated for this model. 
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EXHIBIT 7 

CHILE: 1983 
SELECTED ERROR MEASUREMENTS OF A 1983 EX POST FORECAST OF FIVE ENERGY 
VARIABLES USING THE FIVE SURVIVING BOX-JENKINS FORECAST EQUATIONS 

(In percentages) 

Apparent Consumption of; 

81-grade Electric Peak 
Error Household Motor- Power Electricity 

Measurement Kerosene Gasoline Diesel Oil Generation Demand 

RMSPE 10.5 12.0 6.0 0.9 4.3 

MAPE 6.6 10.9 5.0 0.8 3.9 

MPE -2.6 10.3 5.0 0.8 2.1 

Source:CEPAL computer printouts. 

Notes: RMSP is the root mean square percentage error, the square root 
of the average percentage error squared. MAPE is the mean 
absolute percentage error, the average of the absolute 
percentage errors. MPE is the mean percentage error, the 
average of the percentage errors. 
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EXHIBIT 8 

CHUE: 1983 
VAIDES OF AN EX POST FORECAST FCR 1983 OF THE APPARENT CONSOMPTION 

OF DIESEL OIL USING BOX-JENKINS MODEL (OU) (OU) WITH INPUT 
VALDÊS SCALED IN ORIGINAL FQRC 

Forecast Range; 

Forecast 
1983 Valt» lower 95% Upper 95% Nano: Standard 

Error 

JAN 110.0 94.6 125.5 7.9 

FEB 108.9 92.7 125.1 8.3 

MAR 131.0 114.1 147.9 8.6 

APR 117.1 99.5 134.7 9.0 

MAY 115.2 96.9 133.4 9.3 

JUN 112.4 93.5 131.2 9.6 

JUL 120.5 101.0 139.9 9.9 

AUG 122.9 102.9 143.0 10.2 

SEP U7.4 96.8 138.6 10.5 

OCT 121.2 100.0 142.4 10.8 

NOV 115.3 93.6 137.1 11.7 

DEC 117.2 94.9 139.4 11.4 

Source: SAS printout. 
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EXHTBCT 9 

CHILE: 1983 

Values of An Ex Past Forecast for 1983 of Gross Electricity 
Generation using Bcoc-Jenkins Model (210) (Oil) with 

Input Values Scaled in Natural logarithms 
of Original Observations 

Forecast 
1983 Value lower 95% Upper 95% Meno: Standard 

Error 

JAN 6.5013 6.4476 6.5550 0.0274 

FEB 6.4196 6.3549 6.4842 0.0330 

MAR 6.5831 6.5127 6.6534 0.0359 

AH* 6.5813 6.5026 6.6599 0.0401 

MAY 6.6626 6.5766 6.7486 0.0439 

JEN 6.6886 6.5965 6.7807 0.0470 

JUL 6.7223 6.6242 6.8204 0.0501 

AUG 6.6908 6.5870 6.7946 0.0530 

SEP 6.6044 6.4953 6.7136 0.0557 

OCT 6.6167 6.5025 6.7310 0.0583 

NOV 6.5586 6.4395 6.6777 0.0608 

DEC 6.5793 6.4555 6.7031 0.0632 

Source: SAS printout.. 
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EXHIBIT 10 

CHILE: 1983 
VALUES OF AN EX POST FORECAST FOR 1983 OF PEAK ELECTRICAL 

DEMAND USING BOX JENKINS MODEL (Oil)(110) WITH INPUT 
VALUES SCALED IN ORIGINAL VALUES 

Forecast Range: 

Memo: 
Forecast Standard 

1983 Value Lower 95% Upper 95% Error 

JAN 679 651 707 14.4 

FEB 692 655 728 18.6 

MAR 775 732 818 22.0 

APR 828 779 877 25.0 

MAY 880 826 935 27.6 

JUN 903 842 960 30.0 

JUL 885 822 948 32.2 

AUG 883 815 950 343 

SEP 857 786 929 36.3 

OCT 806 731 880 38.1 

NOV 732 654 811 39.9 

DEC 708 627 790 41.6 

Source: SAS printout. 
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EXHIBIT 11 

CHILE: 1983 
VALUES OF AN EX POST FORECAST FOR 1983 OF THE APPARENT CONSUMPTION OF 
MOTOHGASOLINE (81°) USING A BOX JENKINS MODEL (210) (Oil) WITH INPUT 

VALUES SCALED IN THE RECIPROCALS OF THE ORIGINAL OBSERVATIONS 

Forecast Range: 

Forecast 
1983 Value Lower 95% Upper 95% Memo: Standard 

Error 

JAN 0.0261 0.0242 0.0280 0.0010 

FEB 0.0270 0.0248 0.0292 0.0011 

MAR 0.0261 0.0237 0.0285 0.0012 

APR 0.0273 0.0246 0.0300 0.0014 

MAY 0.0286 0.0256 0.0315 0.0015 

JUN 0.0296 0.0265 0.0327 0.0016 

JUL 0.0286 0.0253 0.0319 0.0017 

AUG 0.0293 0.0258 0.0328 0.0018 

SEP 0.0294 0.0257 0.0331 0.0019 

OCT 0.0294 0.0255 0.0332 0.0020 

NOV 0.0304 0.0263 0.0344 0.0021 

DEC 0.0285 0.0243 0.0327 0.0021 

Source: SAS printout. 
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EXHIBIT 12 

CHILE: 1983 
VALUES OF AN EX POST FORECAST FOR 1983 OF THE APPARENT CONSUMPTION 
OF HOUSEHOLD KEROSENE USING A BOX JENKINS MODEL (Oil) (Oil) WITH 

INPUT VALUES SCALED IN THE NATURAL LOGARITHMS OF 
THE ORIGINAL OBSERVATIONS 

Forecast Range: 

Forecast 
1983 Value Lower 95% Upper 95% Memo: Standard 

Error 

JAN 1.7285 1.4129 2.0440 0.1610 

FEB 1.6818 1.3436 2.0201 0.1726 

MAR 2.0363 1.6768 2.3959 0.1834 

APR 2.4472 2.0675 2.8268 0.1937 

MAY 3.1765 2.7778 3.5752 0.2034 

JUN 3.5493 3.1324 3.9663 0.2127 

JUL 3.5509 3.1166 3.9853 0.2216 

AUG 3.2083 2.7572 3.6594 0.2302 

SEP 2.7070 2.2397 3.1742 0.2384 

OCT 2.2136 1.7307 2.6965 0.2464 

NOV 1.6673 1.1692 2.1653 0.2541 

DEC 1.5460 1.0333 2.0587 0.2616 

Source: SAS printout. 
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Exhibit 13 

CHILE: FIVE ENERGY VARIABLES 
COMPARISON OF THE AVERAGE FORECAST ERRORS OVER 

THE SAMPLE PERIODS AND THE AVERAGE ERRORS OF THE TWELVE 
MONTHLY FORECASTS FOR 1983 

(In percentage error as indicated) 

Variable: 

Forecast Error (MAPE): 

Sample Period Average Monthly 
1971-1982 : for 1983: 

Apparent Consumption of: 

Household Kerosene 
Diesel Oil a/ 
81-grade Motorgasoline 

Electricity: 

Generation 
Peak Demand 

Memo: Spearman's Rank Correlation Coefficient:-. 

2 8 . 7 6 . 6 
8 . 8 5 . 0 
7 . 6 1 0 . 9 

5 . 8 0 . 8 
4 . 5 3 . 9 

t t : - 0. .60 -

a/ 

Sources 
and 
Notes: 

January, 1976-December, 1982. 

Exhibit 4, row(l), for sample period data. Exhibit 7 for 
1983 average monthly forecast data. MAPE is the mean 
absolute percentage error, the sum of the absolute 
percentage errors (between actual and forecast for a given 
period) divided by the number of such errors. 



- 69 -

Exhibit 14 

CHILE: SELECTED STATISTICS FOR SIXTEEN CANDIDATE 

FORECAST EQUATIONS FOR FIVE ENERGY VARIABLES 

Diesel OiI : 

GAF(I) GAF(2) Box-Jenki ns 

Data and Equation: 

Sample Period 

Model 

Scaling of variables 

N* Observations 

N£ Residuals 

N« Parameters 

Q-Data (lag=24) 

1/76-12/82 1/76- 12/82 1/76-12/82 

- - (011X011) 

Originals Log .Nat. Originals 

84 84 84 
60 60 71 
12 12 2 

179.5* 90.2* 51.7 

B. Autocorrelation: 

Durbin-Watson 

Q-Residuals (df) 

1.88 

21.4(47) 

1.94 

23.3(47) 

2.31 

20.8(22) 

Heteroskedasticitv 

Goldfeld-Quandt 

50/50 

37.5/25/37.5 

F-test 

Bartlet 

Cochran 

Hart ley 

Spearman's R 

.57 

.35 

1 .22* 

.12 

.55 

1 .22 

.90* 

.32 

.22 

1 .63* 

.75 

.62 

1.63 

.91* 

0.73 

0.76 

2.11 

2.08 

0 .68* 
2.11* 

0.91-

Forecast Power: 

TheiI's Coefficient 

Janus Coefficient 

Second Fit Test 

% Correctly Predicted: 

Turning Points 

Signs 

.62 

2.28 

Fai I 

53 

13 

.65 

1.21 

Fai I 

51 

13 

0.71 

1 .27 

Pass 

40 

36 
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Household Kerosene: 

GAF(1) 

Data and Equation: 

Sample Period 

Node I 

Scaling of variables 

N* Observations 

N* Residuals 

N* Parameters 

Q-Data (lag=24) 

1/71- 12/82 

Orig linals 

144 
120 

- 12 
96.9* 

MLLUL 

1 / 7 1 - 1 2 / 8 2 

L o g . N a t . 

144 

120 
12 

6 8 . 2 * 

Box-Jenkins 

1 / 7 1 - 1 2 / 8 2 

( 0 1 1 X 0 1 1 ) 

L o g . N a t . 

144 

131 

2 

145 .7* 

Autocorrelation: 

Durbin-Watson 

Q-Residuals (df) 

1.75 
37.86(107) 

2.10 
50.76(107) 

1.70 

48.0(22) 

Heteroskedasticitv 

Goldfeld-Quandt 

50/50 

37.5/25/37.5 

F-test 

Bartlet 

Cochran 

Hartley 

Spearman's R 

30.68* 

68.14* 

5.47 

16.77* 

.85* 

5.47* 

.95* 

11.04* 

.26 

94 

18* 

75* 

94* 

95* 

0.26 

0.20 

1.13* 

0.11 

0.53 

1.13 

0.95* 

Forecast Power: 

Theil's Coefficient 

Janus Coefficient 

Second Fit Test 

X Correctly Predicted: 

Turning Points 

Signs 

.51 

.49 

Pass 

32 

78 

.55 

1.71 

Pass 

16 

77 

0.47 

1.59 

Fail 

46 

46 
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Exhibit 14 (continued) 

81"Hotorgasoli ne 

CAF(1? 

Data and Eauation: 

Sample Period 1/71-12/82 

Model -
Scaling of variables Originals 

N* Observations 144 
N* Residuals 120 
N1 Parameters 12 
Q-Data (lag=24) 142.6' 

GAFC2) GAFC3) Box- Jenkins 

1/71-12/82 1/71-12/82 1/71-12/82 

(210X011) 

Log.Nat. Reciprocals Reciprocals 

144 144 144 

120 120 133 

12 
156.0* 

12 

155.1* 85.1' 

Autocorrelation; 

Durbin-Uatson 

Q-Residuals (df) 

1.83 2.01 .74 2.08 

37.09(107) 43.40(107) 47.68(107) 23.9(21) 

Heteroskedastici t-v 

Goldfeld-Quandt 

50/50 

37.5/25/37.5 

F-test 

Bartlet 

Cochran 

Hartley 

Spearman's R 

.99 1.63* 1.44 1.15 
1.00 1.63 1.49 1.16 
5.88 3.47 1.75 1.53 
18.08* 9.42* 1.99 1.25 

.85* .78 .64 0.60 
5.88* 3.47 1.75 1.53 
.95* .95* 0.95* 0.96 

Forecast Power; 

Thail's Coefficient 

Janus Coefficient 

Second Fit Test 

X Correctly Predicted: 

Turning Points 

Signs 

.85 .86 .90 0.82 

.22 .56 11.27 23.88 
Fail Fail Fail Fai I 

39 37 65 30 
37 42 49 71 
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Exhibit 14 (continued) 

Electricity Generation 

Data and Equation: 

Sample Period 

Model 

Scaling of variables 

N* Observations 

N» Residuals 

M1 Parameters 

Q-Data (lag=24) 

GAFM) GAF{2> Box-Jenkins 

1/71-12/82 1/71-12/82 1/71-12/82 
- - (210)(011) 

Originals Log.Nat. Log.Nat. 
144 144 144 
120 120 131 
12 12 3 

548.1* 543.9* 71. 7* 

B. Autocorrelation: 

Durbin-Watson 

Q-Res i dual s (df) 
1.75 

52.87(107) 

1.91 

75.64(107) 
1.86 

21.8(21) 

Heteroskedasticitv 

Goldfeld-Ouandt 

50/50 

37.5/25/37.5 

F-test 

Bartlet 

Cochran 

Hartley-

Spearman's R 

1.19 

1.08 

.99* 

.36 

.50 

1.01 

.95* 

.14 

.10 

.17 

.79 

.68* 

.17* 

.96* 

09 

05 

29 

73* 

70* 

29* 

95* 

D. Forecast Power: 

Theil's Coefficient 

Janus Coefficient 

Second Fit Test 

.41 

4.21 

Pass 

.46 

3.89 

Pass 

0.40 

a/ 

Pass 

X Correctly Predicted: 
Turning Points 

Signs 

53 
67 

49 

66 

64 

80 
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Exhibit 14 (continued) 

Electricity Peak Demand 

CAF(1? CAF(2) Box-Jenkins 

Data and Equation: 

Sample Period 

Model 

Scaling of variables 

N* Observations 

N1 Residuals 

M* Parameters 

Q-Data (lag=24) 

1/71-12/82 1/71- 12/82 1/71-12/82 

- - (011)010) 

Originals Log I.Nat. Originals 

144 144 144 
120 120 131 
12 12 2 

194.5* 194.4* 59.2 

Autocorrelation; 

Durbin-Uatson 

O-Residuals (df) 
1.93 

41.35(107) 

2.U 

48.87(107) 

1.96 

16.0(22) 

Heteroskedastici ty 

Goldfeld-Quandt 

50/50 

37.5/25/37.5 

F-test 

Bart let 

Cochran 

Hartley 

Spearman's R 

1.80* 

2.16* 

.77* 

.44 

.57 

1.30 

.95* 

.81 

.40 

1.33* 

.52 

.57 

1.33 

.96* 

,40* 

.00* 

,64 

.40 

.61 

.56 

.95* 

Forecast Power: 

Theil's Coefficient 

Janus Coefficient 

Second Fit Test 

.42 

5.63 

Pass 

.46 

8.53 

Pass 

0.38 

4.98* 

Pass 

X Correctly Predicted: 

Turning Points 

Signs 

48 

82 

41 

77 

38 

67 
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4 (conclusion) 

Exhibit 6 and CEPAL printouts using the Sibyl-Runner time series program and 

specially written programs. 

All the data shown for the five ARIHA models presented here are taken from 

Exhibit 6. The footnotes to that Exhibit are generally relevant to this 

one. Since the sequential generalized adaptive filtering seasonal model 

has parameter values calculated by using an iterative technique, classical 

tests of confidence do not apply. This is the reason for the omission of 

many test statistics in this Exhibit that are presented in Exhibit 6. 

G A F O ) , G A F ( 2 ) , and GAF(3) refer to the three GAF models based on the use of 

the original data used on the logarithms and reciprocal transformations of 

the raw data, respectively. An asterisk means that this test statistic 

failed the indicated test of confidence at the 95% confidence level. A dash 

means 'not applicable 1. BJ/ARIHA means the Box-Jenkins/integrated 

autoregressi ve moving average model. GAF means the sequential generalized 

adaptive filtering seasonal model. 

It was not possible to calculate an F-statistic for the Janus coefficients 

of the various GAF models presented in this Exhibit because the number of 

degrees of freedom in the numerator of that statistic was insufficient in 

every case. 

a./ This test statistic could not be calculated due to the emergence of a 

Jacobian singular, terminating the maximum likelihood estimation of 

parameter values of this ARIHA model by the SAS program. Without these 

parameter values, the Janus coefficient could not be calculated for this 

model. 



EXHIBIT 15 

CHUE: 1983 

STATISTICAL CHARACTERISTICS OF FIVE REGRESSION EQUATIONS FOR PREDICTING 

£& POST THE 1983 MONTHLY VALUES OF FIVE CHILEAN ENERGY VARIABLES 

Dependent Variable: 

£SQ$££DJL LAÍ1IK1 LLSt 

1983 

Predicted 

Values SSE R/R2 _S1L 

La (81-grade 
Motorgasoline) 

1.6T 0.56 -0.09 

(3.4) (-10.5) 

542 67.6 0.08 0.97/0.94 1.82 

Le (Diesel Oil) 

Household 

Kerosene 

Electricity 

Generation 

Peak Power Demand 

0.13 

616.3 

2488.8 

-65.5 

U(Y/P> (Time) 
0.04 0.60 

(3,1) (2.2) 

(RPKer) 
•2.65 

(4.71) 

i l l (Time) 

3.08 254.1 
(6.7) (17.4) 

¿fJJE&l (VP? 

0.095 0.001 

1440 33.7 0.05 

320 22.2 75.1 

8773 

907 

399.3 

375.6 

137.1 

14.1 

0.96/0.93 

0.99/0.99 

0.99/0.99 

1.74 

0.83/0.69 1.82 

1.37 

-N3 
<Jl 

1.95 

Source: CEPAL printouts. 

Notes: (LE) means the 'natural los o f . <STK): the stock of 81-grade motorgasoline-consuming vehicles, for 
which stock of motorcycles and motonetas served as a proxy. (Time): a time trend variable. (Y/P): 
Chile's real gross domestic product per capita (in US$ 1980). (RPKer): the index of real household 
kerosene prices; (Y): Chile's real gross domestic product (in US$ 1980). (ELGEN): the time series 
on Chile's gross electricity generation. Parameter fitting was executed using either (y = a + bx) or 
(y « ax"), with n»12 (1971-1982) in all five cases, t-values are shown in Darentheses under their 

coefficients. Each equation was derived using the ordinary least squares regression technique. 
DW refers to the Ourbin-Watson test statistic for first-order serial correlation. 

These five equations were used to generate the 1983 annual values of each variable. In turn, these 
values were translated into the respective twelve monthly values of 1983 using the seasonal index of the 
classical decomposition method. 
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Exhibit 16 

CHILE: 1983 
ERRORS OF THE 1983 EX POST FORECASTS OF THE FIVE CHILEAN 
ENERGY VARIABLES USING FOUR DIFFERENT PREDICTIVE ROUTINES 

(In percentages) 

Variable and 
Forecast 
Method: Forecast Error (%) 

Peak Demand 

Nl 5.7 
N2 2.6 
BJ 3.9 
SM 3.6 
CM 2.6 
OF 0.6 

Electricity 
Generation 

Nl 4.0 
N2 2.5 
BJ 0.8 
SM 6.4 
CM 3.5 
OF 1.0 

Diesel Oil 

Nl 5.6 
N2 3.3 
BJ 5.0 
SM 3.6 
CM 4.7 
OF I-4 

Motorqasoline 

Nl 5.7 
N2 5.3 
BJ 10.9 
SM 42.5 
CM 17.6 
OF 2.3 

7.4 
3.5 
4.3 
4.2 
3.1 

6.2 
3.0 
0.9 
6.7 
4.0 

7.6 
3.9 
6.0 
4.1 
5.7 

8.0 
6.7 
12.0 
43.2 
18.6 

0.1 
0.3 
2.1 
0.5 
0.6 

0.8 
1.0 
0.8 
6.4 
3.5 

0.5 
0.7 
5.0 
3.0 
4.7 

-2.3 
-2.2 
-10.3 
-42.5 
-17.6 
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Variable and 
Forecast 
Method: Forecast Error (%) 

Household Kerosene 

Nl 44.2 76.4 -16.9 
N2 25.3 44.8 -6.9 
BJ 6.6 10.5 -2.6 
SM 112.2 129.9 -112.2 
CM 29.5 46.9 -26.0 
OF 7.7 

Sources 
and Notes: CEPAL computer printouts. MAPE: the mean absolute 

percentage error; RMSPE: the root mean square percentage 
error; MPE: the mean percentage error. Nl and N2 refer 
to naive models 1 and 2 as defined in the text and in 
Exhibit 5. BJ means the Box-Jenkins model shown in 
Exhibit 6. SM means the structural model shown in 
Exhibit 15. CM means the composite forecast model as 
discussed in the text. OF is the MAPE of the optimum 
forecast as defined in Exhibit 5; by definition, there 
is no RMSPE or MPE measures for this concept. 
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APPENDIX A(1) 

CHILE: 1965-1984 

MONTHLY VALUES OF PEAK ELECTRICITY DEMAND 

IN CHILE'S INTERCONNECTED POWER SYSTEM 

(in Megawatt Hours/Hour) 

YEAR 

MONTHS 

M J 

1965 329.7 348.3 366.3 378.9 408.4 408.5 415.3 406.0 404.8 390.9 369.3 367.5 

1966 346.1 356.9 385.0 402.3 417.5 430.8 434.7 443.1 422.2 405.6 395.2 389.9 

1967 365.1 367.6 394.1 418.0 455.2 468.9 476.9 408.1 464.3 432.1 422.3 409.2 

1968 395.3 400.6 440.6 462.1 475.9 485.6 465.7 452.1 444.5 426.2 402.4 391.6 

1969 378.1 395.9 418.8 430.8 488.6 500.8 502.6 488.4 466.1 460.6 454.5 419.9 

1970 402.0 405.4 457.3 487.7 520.9 548.3 532.9 518.2 496.4 481.2 441.2 440.0 

1971 429.8 436.5 494.5 530.0 556.8 582.9 581.9 579.8 550.2 545.2 504.3 510.8 

1972 486.3 494.4 554.9 581.3 600.8 617.2 619.7 625.9 591.7 573.3 549.7 545.5 

1973 509.3 523.7 567.3 587.8 621.5 645.1 650.5 621.0 603.4 578.7 542.1 541.2 

1974 516.5 517.5 574.5 599.3 647.8 657.3 638.4 616.8 600.2 567.2 544.4 522.5 

1975 506.0 511.8 564.2 573.9 596.3 602.7 605.7 561.8 553.5 540.5 507.6 512.9 

1976 495.8 493.9 568.6 588.8 629.9 639.3 630.5 622.3 619.3 584.5 560.1 540.0 

1977 522.3 518.3 590.9 624.1 655.0 699.5 683.2 675.9 656.2 612.6 572.5 562.6 

1978 544.7 560.8 636.6 679.7 720.0 739.7 737.6 735.3 710.7 645.8 612.8 599.8 

1979 570.1 607.7 676.2 721.8 776.4 821.7 821.7 793.9 797.9 767.3 668.3 643.9 

1980 614.5 643.8 719.1 781.9 839.7 857.8 864.3 833.7 847.5 799.0 716.5 692.8 

1981 670.4 691.4 776.9 823.4 868.6 903.2 899.0 887.3 881.1 824.4 732.9 699.9 

1982 676.2 683.8 766.1 822.8 879.2 892.0 868.6 871.8 835.6 786.7 723.9 705.3 

1983 659.6 663.9 770.6 840.3 924.5 952.6 953.3 931.3 895.7 781.6 758.7 739.6 

1984 713.4 745.0 830.5 897.0 969.1 991.0 1015 978.1 894.1 

Source: CHILECTRA, "Informe Estadístico Anual*. 

Note: The data are for peak demand recorded within Chile's interconnected grid system. 
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APPENDIX A(2) 

CHILE: 1965-1983 

MONTHLY GROSS ELECTRICITY PRODUCTION 

IN CHILE'S INTERCONNECTED POWER SYSTEM 

(Gigawett Hours) 

YEAR 

MONTHS 

J J 

1965 265.1 242.4 282.5 281.7 314.6 314.5 336.5 314.9 311.1 305.4 295.9 294.3 

1966 276.1 251.3 308.2 308.4 338.3 358.9 367.1 363.2 330.4 329.4 316.6 322.4 

1967 312.2 280.5 324.0 325.2 361.8 382.3 401.3 390.5 354.0 353.1 331.3 331.0 

1968 322.6 299.2 344.8 350.3 355.1 370.7 393.3 374.6 343.7 362.2 324.1 330.6 

1969 323.7 288.1 345.7 341.9 381.1 392.9 420.3 407.8 376.0 388.0 359.5 366.9 

1970 353.1 316.8 368.3 369.9 404.1 430.9 443.3 434.9 390.3 409.3 391.4 398.2 

1971 397.0 357.6 432.5 440.5 475.0 496.3 491.8 505.5 483.5 473.2 450.6 467.8 

1972 457.4 416.7 480.1 494.6 526.3 535.2 548.4 549.2 491.1 483.7 465.1 470.4 

1973 449.6 416.8 498.9 466.7 513.4 535.8 563.8 538.4 450.3 521.6 483.3 474.9 

1974 472.8 418.3 516.6 513.4 560.4 572.8 584.2 561.5 516.2 532.7 502.5 510.5 

1975 487.3 435.8 504.3 517.5 541.1 529.5 559.5 522.4 481.8 496.3 478.4 497.7 

1976 486.5 447.7 509.3 518.6 566.3 580.3 601.9 591.4 548.3 547.2 513.8 531.3 

1977 519.7 459.8 545.5 540.4 588.3 605.4 635.2 619.0 567.4 566.0 540.5 553.9 

1978 526.5 473.2 572.5 579.9 637.6 654.3 661.3 663.0 606.0 600.3 575.9 582.7 

1979 567.0 515.1 612.3 612.9 694.4 721.1 753.6 718.2 669.0 662.1 619.4 644.2 

1980 611.9 592.3 673.7 680.3 754.3 764.5 804.5 757.6 696.1 709.9 646.6 685.2 

1981 682.8 621.2 734.0 721.8 754.0 781.9 821.2 787.3 728.7 749.2 690.7 671.7 

1982 652.2 626.9 740.3 727.8 778.4 804.8 817.9 791.0 731.9 714.1 685.0 689.1 

1983 680.4 645.9 771.7 764.9 840.1 855.0 855.7 863.0 797.4 769.8 755.4 759.4 

Source: CHILECTRA, "Informe Estadíst ico Anual". 

Note: The data are for production in Chi le 's interconnected gr id system. 
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APPENDIX A(3) 

CHILE: 1970-1984 

APPARENT MONTHLY CONSUMPTION OF 

HOUSEHOLD KEROSENE 

(in thousands of cubic meters) 

MONTHS 

YEAR - -

J F M A M J J A S 0 N D 

1970 20.5 18.9 23.8 30.1 44.8 64.4 69.7 57.6 36.3 32.6 23.5 23.8 

1971 21.3 20.6 28.0 40.4 52.5 77.0 72.2 66.0 50.3 36.6 25.6 26.7 

1972 22.5 21.7 30.2 43.0 66.8 75.5 95.8 89.2 63.3 42.5 38.6 27.9 

1973 24.1 25.2 37.1 44.4 87.8 85.2 91.3 65.8 48.9 52.7 29.3 29.3 

1974 34.5 16.0 26.1 33.9 58.9 73.8 87.0 60.6 46.4 30.7 23.8 25.0 

1975 17.3 21.1 26.1 30.8 45.6 51.3 62.5 47.8 31.7 27.5 17.8 19.6 

1976 17.1 16.9 28.4 30.9 52.3 65.6 70.3 56.6 42.8 30.6 22.6 21.4 

1977 19.7 18.4 27.1 30.5 44.1 65.6 77.0 63.7 35.1 26.3 19.9 17.5 

1978 15.3 16.5 25.0 27.2 42.7 64.5 63.7 56.1 36.0 19.4 14.4 13.8 

1979 12.3 11.9 18.6 21.6 36.5 57.5 52.4 39.8 30.5 18.1 12.7 9.8 

1980 9.9 10.3 11.6 26.0 38.2 45.6 56.1 35.8 24.5 16.3 10.2 9.1 

1981 9.4 8.2 11.6 14.7 33.0 49.9 51.5 35.1 22.4 16.1 7.4 6.4 

1982 6.3 6.1 9.1 14.6 34.0 50.5 47.4 34.2 18.8 10.3 6.2 5.6 

1983 5.4 4.3 7.8 9.7 24.7 40.4 37.1 26.8 18.8 5.5 5.3 5.2 

1984 5.1 5.1 4.8 6.8 8.6 - - - - - - -

Source: EMAP, "Estadísticas de Petróleo y Derivados". 
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APPENDIX A(4) 

CHILE: 1976-1984 

APPARENT MONTHLY CONSUMPTION OF 

DIESEL OIL 

(in thousands of cubic meters) 

YEAR 

MONTHS 

J F M A M J J 

1976 76.8 68.1 93.9 98.8 87.2 77.9 89.0 87.1 93.6 75.9 86.0 81.1 

1977 74.7 76.4 88.1 86.8 87.3 75.7 91.5 88.2 96.4 83.3 84.5 88.2 

1978 97.8 90.9 101.1 99.1 106.8 98.1 96.2 112.2 98.5 104.6 102.7 109.4 

1979 93.1 95.6 118.1 97.6 106.8 107.1 106.1 123.5 98.8 124.8 118.5 109.9 

1980 112.0 100.9 128.7 108.7 117.4 113.9 118.4 124.8 119.6 137.1 119.3 128.1 

1981 123.3 115.9 140.4 128.2 121.1 128.6 133.0 131.0 117.9 126.4 117.7 119.1 

1982 108.5 112.4 132.9 119.0 115.7 108.6 120.3 122.1 121.8 118.9 116.3 117.7 

1983 110.5 109.4 135.5 121.9 124.0 122.1 125.4 123.6 126.1 134.5 123.5 129.1 

1984 123.8 128.6 145.0 132.3 131.7 . . . . . . . 

Source: ENAP, "Estadísticas de Petróleo y Derivados". 
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APPENDIX A(5) 

CHILE: 1970-1984 

APPARENT MONTHLY CONSUMPTION OF 

81-GRADE MOTORGASOLINE 

(in thousands of cubic meters) 

YEAR 
MONTHS 

M J J 

1970 114.6 108.4 112.3 113.5 104.2 106.1 106.9 107.5 102.5 114.3 107.2 121.5 

1971 114.8 112.8 124.2 116.7 110.6 110.9 113.2 117,7 115.9 120.9 119.4 133.2 

1972 125.2 118.9 125.2 118.6 113.7 107.5 112.2 116.7 106.4 88.1 112.1 118.5 

1973 120.0 115.6 123.3 110.1 110.3 106.1 95.9 73.7 78.6 109.5 104.0 119.1 

1974 121.2 95.9 109.0 107.2 101.9 86.6 109.8 100.6 91.1 101.3 96.6 104.9 

1975 99.3 95.2 93.5 92.8 83.7 74.9 82.3 70.3 72.9 88.1 71.4 87.5 

1976 88.3 77.5 91.4 78.3 76.3 72.7 81.4 79.8 83.2 78.6 81.7 92.5 

1977 86.4 80.8 90.4 83.3 79.9 78.4 76.6 82-7 82.4 76.0 78.2 87.7 

1978 83.8 81.5 93.4 75.3 79.8 72.1 72.5 73.8 72.6 77.4 73.7 83.5 

1979 84.0 77.5 86.0 76.4 76.3 75.2 75.2 78.5 73.8 83.8 72.9 82.4 

1980 85.3 82.3 82.4 77.8 73.0 68.1 71.7 70.2 72.9 72.4 64.6 78.7 

1981 74.5 69.6 72.2 68.7 58.5 60.3 62.4 57.8 57.4 58.3 54.8 59.3 

1982 53.3 50.7 53.4 48.7 43.7 38.7 43.0 40.5 40.0 37.9 36.2 39.6 

1983 36.6 35.7 39.9 33.3 31.0 31.1 28.4 28.5 28.4 28.8 28.9 31.1 

1984 31.5 30.0 31.2 28.4 26.6 . . . . . . . 

Source: ENAP, "Estadísticas de Petróleo y Derivados". 
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APPENDIX B 

CHILE: 1960-1983 

ANNUAL VALUES OF FIVE CHILEAN ENERGY VARIABLES 

(in units as indicated) 

Apparent Consumption of: 

Household 81-grade 

Kerosene a/ Hotorgasoli ne b/ Diesel Oil c/ Electric Power Peak Power 

(Thsd. cubic (Thsd. cubic (Thsd. cubic Generation d/ Demand e/ 

Year meters) meters) meters) (mn kwh/yr) (000 KW) 

1960 258 675 286 est. 2342 307 
1961 269 749 272 est. 2552 329 
1962 277 804 328 est. 2804 330 
1963 291 819 352 est. 3164 388 
1964 297 862 380 est. 3400 416 
1965 314 898 401 est. 3559 415 
1966 334 959 493 est. 3870 443 
1967 361 1048 733 est. 4147 477 
1968 358 1145 1008 est. 4171 486 
1969 408 1250 1168 est. 4362 503 
1970 446 1319 1168 est. 4711 533 
1971 517 1412 1128 est. 5471 583 
1972 617 1363 1030 est. 5918 626 
1973 621 1266 927 est. 5914 651 
1974 517 1226 980 est. 6262 657 
1975 399 1012 1148 est. 6052 606 
1976 456 982 1015 6443 639 
1977 444 983 1021 6741 700 
1978 395 939 1217 7133 740 
1979 322 942 1300 7789 822 
1980 294 899 1429 8377 864 
1981 266 754 1503 8745 903 
1982 243 526 1414 8759 892 
1983 191 382 1486 9359 953 

Notes: "est." means 'estimated1. 

Sources: a/ 1971-1983: Exhibit 1. 

1960-1970: Comisión Nacional de Energfa, Balance de Energfa. 1960-1978, Chile, pp. 186-

187. 

b/ 1970-1983: Exhibit 1. 

1960-1969: Comisión Nacioal de Energfa, Balance de Energfa. 1960-1978, Chile, pp. 184-

185. 

ç/ 1976-1983: Exhibit 1. 

1960-1975: Comisión Nacional de Energfa, Balance de Energfa. 1960-1978, Chile, pp. 182-

183. 

d/ 1965-1983 
1960-1964 

e/ 1965-1983 

1960-1964 

Exhibit 1. 

CEPAL energy data bank based on official sources. 

Exhibit 1. 

Endesa, Producción v Consumo de Energfa Eléctrica. Chile, 1964. 
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APPENDIX CO) 

CHILE : 1976-1982 autocorrelation coefficients for the 
f i rs t twenty-four lags of the monthly values of the 

apparent consumption of diesel o i l . 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 1.00000 
1 -0.53413 *********** 
2 0.00577 
3 0.07518 
4 0.03397 
5 0.01941 
6 -0.12036 ** 
7 0.11324 
8 0.01169 
9 -0.12400 ** 

10 0.04376 
11 0.14004 
12 •0.19981 **** 
13 -0.01668 
14 0.11884 
15 0.02964 
16 -0.25211 ***** 
17 0.26307 
18 -0.10899 ** 
19 0.04993 
20 -0.11215 ** 
21 0.06874 
22 0.11694 
23 -0.14916 *** 
24 -0.03564 * 

APPENDIX C(3) 

CHILE : 1976-1982 partial autocorrelation coefficients of 
the residuals for the f i rs t twenty-four lags of the 
monthly values of the apparent consumption of diesel o i l . 

APPENDIX C(2) 

CHILE : 1976-1982 partial autocorrelation coefficient for 
the first twenty-four lags of the monthly values of the 

apparent consumption of diesel oil. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 -0.53413 
2 -0.39109 
3 -0.21379 
4 -0.02579 
5 0.13453 
6 -0.00505 
7 0.03461 
8 0.08505 
9 -0.07458 

10 -0.12833 
11 0.10472 
12 -0.05942 
13 -0.20908 
14 -0.10748 
15 0.06363 
16 -0.22627 
17 0.07990 
18 0.01568 
19 0.07218 
20 -0.02043 
21 -0.05466 
22 0.03091 
23 0.10599 
24 -0.11892 

*********** 
******** 

**** 
* 

* 
*** 

* 
** 

APPENDIX C(4) 

CHILE : 1976-1982 autocorrelation coefficients of the 
residuals for the first twenty-four lags of the monthly 

values of the apparent consumption of diesel oil. 

LAG CORR. • 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 -0.17494 
2 0.04233 
3 0.12306 
4 0.13431 
5 0.19953 
6 -0.12491 
7 0.02784 
8 -0.00611 
9 -0.08193 

10 0.01024 
11 -0.03624 
12 0.03300 
13 -0.07099 
14 0.03857 
15 - 0.05745 
16 -0.11632 
17 0.17036 
18 0.03566 
19 -0.04836 
20 -0.02576 
21 0.04673 
22 0.04829 
23 0.01696 
24 -0.12741 

0 1.00000 
1 -0.17494 
2 0.07164 
3 0.09967 
4 0.09376 
5 0.16139 
6 -0.15382 
7 0.12754 
8 0.00766 
9 -0.05643 

10 0.04479 
11 -0.07069 
12 0.07930 
13 -0.11915 
14 0.05151 
15 -0.05263 
16 -0.11887 
17 0.19421 
18 -0.08597 
19 -0.01799 
20 -0.03642 
21 0.06684 
22 0.08741 
23 -0.09378 
24 -0.04715 

******************** 

Source : CEPAL, using SAS1s AR¡HA computer program. 
Note : "." narks two standard errors. 
CORR. = CORRELATION 
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APPENDIX D(1) 

CHILE : 1971-1982 autocorrelation coefficients for the 
f i rs t twenty-four lags of the monthly values of the 

apparent consumption of household kerosene. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

APPENDIX D(2) 

CHILE : 1971-1982 partial autocorrelation coefficient for 
the first twenty-four lags of the monthly values of the 

apparent consumption of household kerosene. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 1.00000 
1 -0.46107 
2 -0.10447 
3 0.29652 
4 -0.29476 
5 0.02576 
6 0.01208 
7 -0.02312 
8 0.24606 
9 -0.25483 
10 0.08024 
11 0.24205 
12 -0.53256 
13 0.27960 
14 0.11546 
15 -0.16947 
16 0.09591 
17 -0.00699 
18 -0.01936 
19 -0.04374 
20 -0.04015 
21 0.08058 
22 -0.02162 
23 -0.02832 
24 0.10460 

********* 
** 

****** 
****** 

• * 

-
***** 

***** 
** 
***** 

*********** 
****** 
** 

*** 
** 

* 
* 
** 

* 
** 

1 -0.46107 ********* 
2 -0.40267 ******** 
3 0.06562 , 
4 -0.17995 **** 
5 -0.18147 **** 
6 -0.28739 **** 
7 -0.16996 ****** 
8 0.22888 *** 
9 -0.02812 B 

10 -0.06629 * 
11 0.22794 * 
12 -0.25898 . 
13 -0.10098 ***** 
14 0.03489 _** 
15 0.19680 . 
16 -0.05395 . 
17 -0.08751 * 
18 -0.07212 .** 
19 -0.08174 .** 
20 0.10463 . 
21 -0.11452 .** 
22 -0.12418 _** 
23 0.06555 
24 -0.09106 _** 

APPENDIX DC3) 

CHILE : 1971-1982 partial autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of the apparent consumption of household 

kerosene. 

APPENDIX D(4) 

CHILE : 1971-1982 autocorrelation coefficients of the 
residuals for the first twenty-four lags of the wdnthly 
values of the apparent consumption of household kerosene. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 0.05268 
2 0.00237 
3 0.08801 
4 -0.30681 
5 -0.13417 
6 -0.10913 
7 0.04765 
8 0.08587 
9 -0.20165 
10 0.00318 
11 0.08382 
12 -0.00491 
13 0.17817 
14 0.15099 
15 -0.01709 
16 -0.09413 
17 0.02861 
18 -0.03882 
19 -0.10481 
20 -0.02352 
21 -0.12515 
22 -0.03783 
23 0.01696 
24 -0.02644 

*** 

0 1.00000 
1 0.52684 
2 0.00514 
3 0.08816 
4 0.29435 
5 -0.15951 
6 0.10484 
7 -0.02390 
8 0.13383 
9 -0.10476 
10 0.07629 
11 0.12263 
12 -0.08695 
13 0.20137 
14 0.16408 
15 -0.05052 
16 -0.03954 
17 -0.07993 
18 -0.15031 
19 0.16165 
20 -0.04195 
21 -0.00236 
22 0.01562 
23 0.07055 
24 0.07862 

*** 

******************** 

**** 
*** 

Source : CEPAL, using SAS's ARIMA computer program. 
Note : M." marks two standard errors. 
CORR. = CORRELATION 
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APPENDIX E(1) 

CHILE : 1971-1982 autocorrelation coefficients for the 
first twenty-four lags of the monthly values of the 

apparent consumption of 81° motorgasoline. 

LAG CORR. 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 1.00000 ******************** 
1 -0.31949 ****** a 
2 -0.20236 **** 
3 0.11375 ** 
4 -0.02066 
5 -0.01940 
6 0.04660 * 
7 -0.00102 
8 -0.05673 * 
9 0.05274 * 

10 0.14533 *** 
11 0.13989 *** 
12 -0.48834 ********** 
13 0.11767 ** 
14 0.12981 *** 
15 -0.08415 ** 
16 -0.01739 
17 0.08843 ** 
18 0.02290 
19 -0 .10657 ** 
20 0.12187 ** 
21 -0.04919 * 
22 -0.14833 *** 
23 0.03950 *** 
24 0.20538 

APPENDIX 

* 

E(3) 

APPENDIX E(2) 

CHILE : 1971-1982 partial autocorrelation coefficient,for 
the first twenty-four lags of the monthly values of the 

apparent consumption of 81° motorgasoline. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 -0.31949 
2 -0.33905 
3 -0.10211 
4 -0.09934 
5 -0.05523 
6 0.00633 
7 0.01911 
8 -0.03712 
9 0.02343 

10 0.19612 
11 0.40971 
12 -0.25724 
13 -0.15217 
14 -0.13977 
15 -0.07622 
16 -0.14348 
17 -0.00552 
18 0.14568 
19 -0.02259 
20 0.03173 
21 0.03244 
22 0.01300 
23 0.13394 
24 0.07794 

****** 
******* 

** 
** 

***** 
*** 
*** 
** 

*** 

**** 
******** 

*** 
** 

APPENDIX E(4) 

CHILE : 1971-1982 partial autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of the apparent consumption of 81° motor 

gasoline. 

CHILE : 1971-1982 autocorrelation coefficients of the 
residuals for the first twenty-four lags of the monthly 
values of the apparent consumption of 81° motorgasoline. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 0.00579 
2 -0.00495 
3 0.03599 
4 0.02442 
5 0.15229 
6 0.16087 
7 0.04305 
8 0.02606 
9 0.18078 

10 0.11047 
11 0.04451 
12 -0.06820 
13 -0 .08500 
14 -0.02900 
15 -0 .08600 
16 -0.12320 
17 0.09409 
18 0.08753 
19 -0.03383 
20 0.02498 
21 •0.01188 
22 -0.03109 
23 0.07372 
24 0.09610 

*** 
*** 

** 
** 

!* 

LAG CORR. 

0 1.00000 
1 0.00579 
2 -0.00491 
3 0.03593 
4 0.02484 
5 0.15191 
6 0.15886 
7 0.03690 
8 0.03032 
9 0.18655 

10 0.12173 
11 0.07273 
12 -0.03053 
13 -0.04879 
14 0.04952 
15 0.01842 
16 -0.03627 
17 0.12406 
18 0.08032 
19 -0.02505 
20 0.04014 
21 -0.05429 
22 -0.05498 
23 0.10368 
24 0.08560 

- 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

******************** 

*** 
*** 
* 

Source : CEPAL, using SAS's ARIHA computer program. 
Note : " . " marks two standard e r r o r s . 
CORR. = CORRELATION 
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APPENDIX F(1) APPENDIX F<2> 

CHILE : 1971-1982 autocorrelation coefficients for the 
first twenty-four lags of the monthly values of gross 
electricity generation in Chile's interconnected electric 

power system. 

LAG CORR. • 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

CHILE : 1971-1982 p a r t i a l autocorre la t ion coeff ic ients for 
the f i r s t twenty-four lags of the monthly values of gross 
e l e c t r i c i t y generation in Ch i l e ' s interconnected e l e c t r i c 

power system. 

LAG CORR. • 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 1.00000 
1 -0.28307 
2 -0.16933 
3 0.06449 
4 -0.05215 
5 0.19393 
6 -0.17961 
7 0.07233 
8 0.03135 
9 -0.08157 

10 0.11990 
11 0.08153 
12 -0.34394 
13 0.08853 
14 -0.03665 
15 0.04033 
16 -0.02365 
17 -0.11635 
18 0.21855 
19 -0.21294 
20 0.03337 
21 0.08585 
22 -0.09506 
23 0.08527 
24 -0.11505 

****** 
**** 

******************** 1 -0.29307 
2 -0.27119 
3 -0.08590 
4 -0.12166 
5 0.16605 
6 -0.10036 
7 0.08161 
8 0.01058 
9 -0.01899 

10 0.06317 
11 0.20646 
12 -0.32634 
13 -0.05391 
14 -0.24120 
15 -0.05457 
16 -0.17872 
17 -0.00510 
18 0.02137 
19 -0.06841 
20 -0.03773 
21 0.06829 
22 -0.00986 
23 0.15626 
24 -0.16024 

****** 
***** 

** 
** 

*** 
** 

. *• 
• 
. 
. * 
, **** 

******* 
* 

***** 
* 

**** 

* 
* 

- • 
. 

*** 
*** . 

APPENDIX FC3) 

CHILE : 1971-1982 partial autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of gross electricity generation in Chile's 

interconnected power system. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

APPENDIX F(4) 

CHILE : 1971-1982 autocorrelation coefficients of the 
residuals for the first twenty-four lags of the monthly 
values of gross electricity generation in Chile's 

interconnected power system. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 -0.03631 
2 -0.06617 
3 -0.09037 
4 -0.05091 
5 0.18401 
6 -0.15746 
7 0.12779 
8 0.03171 
9 0.01561 

10 -0.04426 
11 0.09830 
12 0.05165 
13 0.03779 
14 -0.01969 
15 -0.04141 
16 •0.03964 
17 -0.09584 
18 0.05639 
19 -0.13293 
20 0.04950 
21 0.08959 
22 -0.04758 
23 0.04423 
24 0.03634 

Source : CEP/1 
Note • flaM 

CORR . * CORR 

0 1.00000 
1 •0.03631 
2 -0.06477 
3 -0.08495 
4 -0.03862 
5 0.19697 
6 -0.15258 
7 0.10979 
8 0.01738 
9 0.00826 

10 -0.01567 
11 0.01491 
12 0.11735 
13 0.00344 
14 •0.02596 
15 -0.07016 
16 -0.00879 
17 -0.06376 
18 0.05781 
19 •0.08859 
20 0.04222 
21 0.10160 
22 -0.07813 
23 0.07256 
24 -0.05118 

• **** 

* . 
** 
* 

**** 
.*** 

** 

** 

* 
* 

* 
* 

** 
* 
•* 

** 
* 

* 

wMirtnntwKiftwirWitAwHVJTili 

CE PAL, using SAS1s ARIMA computer program. 
marks two standard errors. 
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APPENDIX G(1) 

CHILE : 1971-1982 autocorrelation coefficients for the 
first twenty-four lags of the monthly values of peak 
electricity demand in Chile's interconnected electric 

power system. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

APPENDIX G(2) 

CHILE : 1971-1982 partial autocorrelation coefficient for 
the first twenty-four lags of the monthly values of peak 
electricity demand in Chile's interconnected electric 

power system. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

0 1.00000 
1 •0.19997 **** 
2 -0.13183 .*** 
3 0.14377 . 
4 -0.06155 * 
5 -0.06397 * 
6 -0.07873 ** 
7 0.04846 , 
8 0.03863 . 
9 -0.137*5 .*** 

10 0.16324 . 
11 0.1*963 . 
12 -Ü.37Ô05 H RAAA R * 

13 0,05704 
14 0.10837 , 
15 -0.10281 ** 
16 -0.02654 * 
17 0.05766 
18 0.05381 
19 -0.10754 ** 
20 0.04907 
21 0.06542 
22 -0.07010 * 
23 -0.07885 ** 
24 0.18986 

APPENDIX G(3) 

*********A»A»A»A»A»* 

CHILE : 1971-1982 partial autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of peak electricity demand in Chile's 

interconnected electric power system. 

1 -0.19997 
2 0.17898 
3 0.08275 
4 -0.03712 
5 -0.05556 
6 -0.14119 
7 -0.00550 
8 0.03273 
9 -0.10927 

10 0.10882 
11 0.19745 
12 -0.27688 
13 -0.07179 
14 0.02051 
15 -0.00622 
16 -0.02863 
17 0.02609 
18 -0.00265 
19 -0.08442 
20 0.05102 
21 -0.04174 
22 0.01553 
23 0.01877 
24 0.07248 

**** 

* 
*** 

**# 

APPENDIX G(4) 

CHILE : 1971-1982 autocorrelation coefficients of the 
residuals for the first twenty-four lags of the monthly 

values of peak electricity demand in Chile's interconnected 
electric power system. 

LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 LAG CORR. - 1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1 0.00338 
2 -0.38035 
3 0.07158 
4 -0.07513 
5 -0.07718 
6 -0.14376 
7 -0.01347 
8 0.03048 
9 -0.06094 

10 0.13877 
11 0.11162 
12 0.00672 
13 -0.02771 
14 0.07517 
15 -0.00003 
16 0.00311 
17 0.03101 
18 0.00522 
19 -0.07731 
20 0.07151 
21 -0.09952 
22 0.01334 
23 0.01254 
24 -0.04272 

Source : CEPJ 
Note : " ." 

** 

0 1.00000 
1 0.00338 
2 -0.03902 
3 0.07121 
4 -0.07250 
5 -0.08301 
6 -0.13160 
7 -0.01736 
8 0.03482 
9 -0.06605 

10 0.15546 
11 0.13930 
12 -0.00116 
13 -0.00701 
14 0.06923 
15 -0.02288 
16 -0.05581 
17 0.00035 
18 0.00568 
19 -0.08904 
20 0.06441 
21 -0.04898 
22 0.02430 
23 0.02045 
24 -0.03465 

* 
** 

*** 

******************** 

CEPAL, using SAS's ARIMA computer program. 
" ." marks two standard errors. 
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Notes 

1/ Excluded from consideration here are two other cases of mixed 
models: first, the simple one in which a time trend is included in a 
causal regression equation to capture a steadily evolving 'shift' 
effect; and, second, the case in which lagged values of the dependent 
and, perhaps, independent variable(s) are introduced into a static 
causal regression equation to make it dynamic. This might be done to 
retain the usefulness of the equation for intermediate or longer-term 
forecasting, via the non-lagged expressions of the equation, while 
increasing its near-term forecasting power via the newly inserted 
time-lagged expressions. 

2/ Data limitations prohibited the inclusion of 93° 
motorgasoline but not of 81° motorgasoline. The former fuel dominates 
the Chilean motorgasoline market. The latter fuel is gradually 
disappearing from it. Since the purpose of this study is not to 
forecast but, rather, to present case studies in time series 
forecasting, the inclusion of 81° motorgasoline was accepted, despite 
this pattern of small and declining volumes of its sales. In fact, 
the unusual track of this variable during 1970-1982 makes it an 
interesting one for this forecast exercise. 

3/ International Monetary Fund, "Estadisticas Financieras 
Internacionales, Anuario" (in Spanish), 1987, pp. S286-287, line 996. 
The data are for "PIB, a precios de 1980". The average annual rate of 
growth in Chile's total real output during 1976-1982, diesel oil's 
sample period, was 4.3%. 

4/ In 1986 and 1987, the U.S. economy held in inventory about 
three months of annual oil sales, roughly five weeks each in crude oil 
and unfinished oils, the rest in refined oil products. Inventory held 
in the Strategic Petroleum Reserve was excluded in calculating these 
oil inventory figures. See: "Survey of Current Business", April, 
1988, Vol. 68, Nfl4, p. S-28. 

5/ The derivation of this figure is: 1/3 [$.40/gal] + 1/3 
[$.40 gal] + 1/3 [($.40/gal) + ($.30/gal)] = US$.50/gal, the estimated 
weighted average out-of-pocket investment in crude oil and refined 
product inventory, excluding interest. The US$ .40/gallon figure is 
the result of dividing the assumed cost of US$17/bbl. of crude oil by 
the figure of 42 gallons per barrel of crude oil. The US$.30/gallon 
figure is an estimate of the out-of-pocket costs of refining a gallon 
of refined oil product. Thus, conceptually, both the US$.40 and US$ 
.30 figures are short-run marginal costs per gallon. This means that 
the estimated carrying cost of US$ .50 per gallon of oil inventory 
grossly underestimates the total unit long-run cost of holding oil 
inventory. Hence, it biases strongly downward the payout of the 
investment in improved forecast accuracy as developed very roughly in 
the text in terms of short-run marginal costs. Finally, the 
discussion in the text ignores the macroeconomic benefits of improved 
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inventory management through better energy forecasting, and it also 
ignores some other savings in resource inputs achieved through lower 
average inventory levels. These considerations strongly suggest that 
actual rates of return, both economically and financially, on 
investments in impoved forecasting are even higher than those 
developed in a very approximate way in the text. 

6/ The relevance of each criteria depends on the time series 
method. For example, a t-test on fitted coefficients is valid for 
Box-Jenkins ARIMA models but not for the slope coefficients of 
exponential and harmonic smoothing models. 

7/ Basically, this means that: (1) all parameter values of the 
ARIMA model should fall within the limits of plus unity and minus 
unity; (2) the. sum of the parameter values of all the AR terms and of 
all the MA terms, each group treated separately, should be less than 
unity; (3) the value of the parameters in the AR and in the MA 
components of the model should fall off steadily over time; and (4) 
in an ARIMA model with a second order AR term or with a second order 
MA term, the difference between the value of the coefficient of the 
second order term less that of the first order term (for the AR and MA 
components separately) should be less than unity [5, 6]. 

8/ The tests for heteroskedasticity are those of Cochrane [ 10 ], 
two versions of the Goldfeld-Quandt test [11,12], the tests of Hartley 
[13] and Bartlet [11], a simple F-test [1], and Spearman's rank order 
correlation test [8]. In one of the Goldfeld-Quandt tests, the 
residuals are split into two equal groups, while in the other test the 
middle one-quarter of the residuals are initially removed, and the 
remaining residuals are split into two equal sets which are then used 
to test for the presence of heteroskedasticity. 
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GLOSSARY 

Accuracy The accuracy of a forecast refers to the closeness 

of predicted to actual values of a forecast 

variable. There is no perfect measure of 

forecast accuracy. In this text, preference is 

given to the mean absolute percentage error 

(MAPE) ; the root mean square percentage error 

(KMSPE) ; and the mean percentage error (MPE). 

The error concepts used in the text are defined 

below. Let Y¿ and Y¿ be actual and fitted 

observations, Y be the mean of the series, "n" 

the number of observations in the series, and let 

S represent n, then: 

1) MAPE = 

2) RMSPE = 

S Y - Y i i 1 .100 

Y . 
i 

n 

S 

A 

Y . - Y . 
i i .100 

2 

Y . 
i 

.100 

3) MSE -
S (Y. - Y.)' 

i i 
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4) Maximum error, the absolutely highest of a 

series of error terms. 

5) RMSE, the root mean square error: 
Ã T~ 

S (Y. - Y.r 
i i 

6) SSE, the sum of squared errors: 

S (Y. - Y.r 
1 1 

7) SDE, the standard deviation of error: 

A p 

S (Y. - Y.r 
i i 
n-1 

8) ME, the mean error: 

S (Y. - Y.) 
i i 
n-1 

9) MPE, the mean percentage error: 

c (Y. - Y.) .100 
S i i 

Y. 
l • 

n 
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10) MAD, the mean absolute error: 

i A i S Y. - Y. 
i i i| 

n 

Adaptive An autoregressive (AR) model or a moving average 

filtering model (MA) in which the parameters are determined 

model by a non-linear least squares approach using the 

method of steepest descent. A learning constant 

is used to regulate the rate of change of old 

parameter values to new ones. Stationary data 

inputs are required for this model. 

Adaptive response A time series forecast method in the smoothing 

rate single category that reacts relatively quiclcly to changes 

exponential in the pattern of a time series when they occur; 

smoothing and when they do not occur, it is structured to 

emphasize even more the smoothing of randomness. 
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ARMA (ARIMA) 

model 

An autoregressive (AR)/moving average (MA) model. 

AR processes assume that future values of a 

variable are a function of linear combination of 

past values of it; and MA processes assume that 

future values are linear combinations of past 

forecast errors. ARIMA refers to an ARMA 

integrated model, that is, an ARMA model applied 

to data that have been differenced to achieve 

stationarity. ARMA/ARIMA models require 

stationary data inputs. The ARMA or ARIMA method 

is often referred to as the Box-Jenkins method. 

However, the generalized adaptive filtering model 

and variants of it, are also ARIMA-type models. 

ARMA adaptive 

filtering model 

An adaptive filtering model applied simultaneously 

to autoregressive (AR) and moving average (AM) 

terms. 

Autocorrelated 

residuals 

The degree of association between the values of 

the residuals of an equation for some given lag 

between them. 

Autocorrelation The degree of association between values of the 

same variable at different time periods. 
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Autocorrelation 

coefficient 

(Autos) 

The degree of association (R) or mutual dependence 

between the values of the same time series at 

different time periods, or lags. 

Autoregression A regression of a variable on previous values of 

itself for some specified lag. 

Average absolute 

percentage change 

The average absolute percentage change in a 

variable (Y) for a given lag (t,t-l) for n 

observations is given as: 

Y. - ï. -
i 1-1 Y. 

i 
i=2 

n-1 

Average change The average change in a variable (Y) for a given 

lag (t,t-l) for n observations is given as: 

Y- - Y- «, i 1-1 

i=2 
n-1 
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Black box A term used to designate the unknown, but precise 

way in which an input, or a cause, is transformed 

into an output, or an effect. It is "black" 

because the way that the transformation is 

effected is not known, and it is a "box" because, 

again, it is not transparently obvious, or clear, 

to the observer, how the transformation is really 

effected. 

Box-Jenkins 

method 

See ARMA. 

Box-Jenkins 

three-parameter 

smoothing method 

A time series technique that is based on the 

principle of smoothing errors and which can be 

applied to either stationary or non-stationary 

data. 

Box-Pierce Q-

statistic 

A statistic used to test whether several partial 

or autocorrelation coefficients (or other 

statistics, such as the autocorrelation of 

residual errors) are significantly different from 

zero. 

Brown's one-

parameter 

adaptive method 

A time series forecast method that uses smoothed 

values of current errors and previous values of 

the time series to predict. 
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Brown's one-

parameter linear 

exponential 

smoothing method 

An instance of a linear exponential smoothing 

method for forecasting. It uses a single and a 

doubled smoothed series and a trend adjustment to 

forecast. 

Census method A time series forecasting method that is 

essentially an extension of the classical 

decomposition method in terms of both statistical 

procedures and outputs. 

Chow's adaptive 

control method 

A time series method that is basically similar to 

the adaptive-response-rate single exponential 

smoothing technique with the difference that it 

can be used for non-stationary data. 

Classical 

decomposition 

A time series forecasting technique that isolates 

and then forecasts separately the trend, cycle, 

and seasonal components of a time series. The 

method presents its forecast as the sum of these 

three component forecasts, randomness, the fourth 

component, not being forecastable. 

Cochran-Orcutt 

correction 

A method for correcting coefficients for the bias 

resulting from autocorrelation of residuals. 



Coefficient of 

determination 

(R2) 
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The square of R, or the ratio of explained to 

total variation; and, as such, a measure of how 

well a regression fits the data. 

Confidence limits A set of bounds, or limits, within which it can be 

asserted that a certain percentage of the actual 

values probably will fall, according to 

statistical theory and a relevant probability 

distribution. 

Correlation 

coefficient (R) 

A measure of the degree of relationship between 

two variables. 

Correlation 

matrix 

A matrix that shows the coefficient of 

correlation between each pair of variables 

contained in it. 

Cycle component As used in time series analysis, this term refers 

to fluctuations in data due to economic forces 

associated with the business cycle. 

Delphi method A qualitative forecast method that uses the 

opinion of experts as the key input. 

Deseasonalized 

data 

A time series that has been produced by removing 

the seasonal pattern from the original data. 
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The value of a variable at one time period (Y^) 

less its value at an earlier period (Yfi), or: 

(Yt)-(Yt~i). Differences may be of first, second, 

or higher orders. 

Durbin-Watson 

statistic 

This statistic is used to test the hypothesis that 

there is no autocorrelation of the first order 

i.e., of one time lag, in a series of residuals. 

Exponential 

smoothing 

A class of time series forecasting methods that 

generate a forecast by weighting, or smoothing, 

the past values of a time series. The more 

popular methods of exponential smoothing are 

simple exponential smoothing and those of Brown, 

Holt, and Winters. 

Fitting In a statistical sense, this word means passing a 

line, curve, surface, or higher expression through 

a set of data points to characterize them 

generally. Typically, a mathematical technique, 

such as simple or multiple regression or the 

maximum likelihood method, is used to specify the 

parameters of the function used in this way. When 

only one or two independent variables are 

involved, the line,curve, or surface can be passed 

through the data points intuitively, without 

utilizing a formal mathematical technique. 
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Least squares 

estimation 

A method of calculating parameter values for an 

equation based on the criterion of minimizing the 

sum of the squares of the deviations between the 

actual values and the fitted values of the model. 

Linear 

exponential 

smoothing 

A time series forecast method that uses an 

equation which has exponentially decreasing 

weights assigned to past observations. 

Linear moving 

averages 

A time series forecast technique in which an 

average of fixed length is initially constructed; 

and then that average is recalculated repeatedly 

by adding each new observation and deleting the 

oldest one. This new average, each time, is used 

to forecast the value of the variable for the next 

period. This series of averages of fixed length 

is called a moving average. 

Janus 

coefficient 

A measure of the prospective forecast power of an 

equation. This coefficient is defined as the 

ratio of the average squared error made in 

predictions outside the sample range to 

predictions made inside it. 
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Heteroskedas-

ticity 

A condition of inequality of variance in the 

observation of a time series, which means that the 

error is not constant over the series'range. When 

this condition exists, it violates one of the 

basic assumptions that must hold for the use of 

time series and regression methods. 

Holt's two-

parameter linear 

exponential 

smoothing method 

A time series forecast method that is similar to 

the method of single exponential smoothing but 

corrects for trend. 

Homoskedas-

ticity 

A condition of constant error variance over the 

range of a variable. It is the opposite of 

heteroskedasticity. 

Intervention 

analysis 

An extension of the multivariate 

autoregressive/moving average (MARMA) model to 

assess the impact on the dependent variable of a 

change in the value of an independent variable. 

Iteration Estimation by a series of repeating 

approximations. 

Lag The length of time between time periods. 
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A representation of reality. As used in this 

study, it is an equation or set of equations 

characterizing a set of observations on a 

variable. 

Multicollinearity A condition that exists when two or more 

independent variables are highly related to each 

other. 

Multivariate More than one variable. 

MARMA models A multivariate autoregressive/moving average 

model. This class of forecast models combine the 

time series and structural approach to 

forecasting. 

Naive forecast A highly simple forecast method that can be 

employed very rapidly and at low cost. 

NF 1 Naive forecast model 1. This model predicts 

tomorrow's value of a variable as equal to today's 

actual value of that variable. 

NF 2 Naive forecast model 2. This model takes today's 

actual seasonally adjusted value of a variable as 

equal to the seasonally adjusted value predicted 

for tomorrow. 
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Kalman A general engineering-based approach to 

filter forecasting that mathematically incorporates all 

forecasting methods as special cases of it. 

Kurtosis The degree of peakedness in a distribution. 

Marquandt•s The Marquandt method of constrained optimization 

algorithm is one method available to solve parameter values 

of ARIMA models. This method combines the Gauss-

Newton and the steepest descent iterative 

approaches. 

Maximum A method for obtaining estimates of parameter 

likelihood values which consists in the maximization of the 

likelihood function. Basically, this method 

chooses parameter values that maximize the joint 

probability of the observed sample values. 

Mean The sum of the values (Y¿) of a series divided by 

the number of values (n) in the series. 

Mixed Models that combine the time series and structural 

models approaches to model building. 
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Parsimonious 

model 

This concept refers to the objective of minimizing 

the number of parameters used to fit a model to a 

set of data. A simple model is one in which the 

parameters of a model are of low power (i.e., low 

exponent value). A forecast equation should be 

both parsimonious and simple. 

Partial 

autocorrelation 

coefficient 

(Partials) 

The extent of relationship (R) between current 

values of a time series and previous values of it, 

for a given time lag, holding constant the effects 

of all other time lags. 

Pattern The structural relationships underlying and 

generating the data. This concept specifically 

excludes randomness in the data. 

Randomness The inherently unpredictable fluctuations, or 

noise, contained in a set of observations on a 

variable. 

Ratio-to-moving 

average method 

The time series method of classical decomposition. 

Regression 

(simple and 

multiple) 

A quantitative technique that facilitates 

comparison of a dependent variable and either one 

independent variable (simple) or more than one 

independent variables (multiple). 
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Noise Unpredictable, random fluctuations in a time 

series. 

Non-stationary A time series that does not oscillate about a 

time series steady mean and, as such, a time series that 

contains a trend. 

Observation A value of a variable at a given time. 

Optimum The forecast that is used in this study as a proxy 

forecast (OF) for the best forecast that can be realistically 

expected. It is taken here, for approximation 

purposes, as that forecast which has a MAPE equal 

to the MAPE of the random component of the CENSUS 

decomposition technique as generated by the Sibyl-

Runner time series programme. 

Outlier An unusually high or low observation. 

Overfitting As used in this study, applying an overly complex 

ARIMA model to the data. 

Parameter As used in this study, a coefficient of an 

equation. 
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Seasonal ARMA 

models 

An ARMA model that incorporates seasonality. In 

sequential ARMA adaptive filtering models, the 

number of parameters is set equal to the length of 

seasonality or, if this approach fails, the number 

of coefficients is then selected on the basis of a 

study of autocorrelation coefficients. In the 

Box-Jenkins approach, the parameters of the ARMA 

model are specified on the basis of an analysis of 

the pattern of autocorrelation and partial 

autocorrelation coefficients of the seasonally 

differenced data. 

Seasonality 

component 

Fluctuations in a time series related to a fixed 

seasonal factor, such as the seasons, the months 

of the year, the days of the week, or the like. 

Second fit test A measure of forecast power in which the actual 

values of the variable are regressed on the 

forecast values and a constant. If the constant 

and slope of this linear regression test 

insignificantly different from zero and one, 

respectively, at, say, a 95% confidence level, 

then the equation is taken as an attractive 

predictor. 
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Residual The difference between an observed value and its 

fitted value; or the unexplained portion of the 

variables1 value at a point in time. It is the 

error, calculated as the difference between the 

actual and forecast values of a variable. 

SAS The software programme used to process the ARIMA 

models generated in the study. 

Scenario 

development 

A qualitative forecast method that departs from a 

few key assumptions and generates a simulation of 

what those assumptions might imply for the future 

of one or more variables. Imagination is a key 

ingredient in this method. 

S-curve A curve depicting the life trajectory of a product 

or process as, for example, the S-curve for the 

sales of transistor radios. The curve can be 

fitted using any number of life-cycle functions. 

That function is then used to forecast the values 

of the variable under study. 
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Smoothing Averaging by some rule as a means of tempering or 

eliminating fluctuations in the data. 

Spearman's R Spearman's coefficient R reports the degree of 

rank order correlation between two variables. 

Stationary A time series that oscillates around a constant 

time series mean and, as such, a series without a trend. 

Stochastic Random, as in a random process. Also used in the 

sense of 'probabilistic'. 

Structural Used in models to mean an associative relationship 

between variables; also, used in a highly 

qualified way as synonymous with 'causal'. 

Time series A time-ordered set of observations on a variable. 

Time series A set of forecast methods that predicts the future 

methods as a function of past values of the variable being 

forecasted and perhaps a time trend variable. No 

other variables than these are included in the 

specification of time series models. 



Sequential ARMA 

adaptive 

filtering 
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An ARMA adaptive filtering model in which 

initially a moving average model (MA) is fit to 

the residuals of an autoregressive model; and, 

then, MA models are fit sequentially to residuals 

until a random pattern of residuals emerges. A 

filter is used in this method to regulate the 

speed with which old parameter values are 

converted to new ones in the sequential modelling 

operation. 

Sibyl-Runner 

time series 

programme 

The programme used to process the smoothing, 

decomposition, time series multiple regression, 

and the sequential generalized adaptive filtering 

(GAF) seasonal models used in this study. 

Sign change A change in the sign of change from one set of 

time series observations to another. 

Simple model See "Parsimonious Model". 

Skewness The degree of symmetry in a distribution. 

Slope The average change in the dependent variable 

divided by the average change in the independent 

variable. 
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Turning 

point 

A change in the direction of a time series from up 

to down or from down to up, and, therefore, a 

change in the sign of change from one set of 

observations in the time series to another, 

adjacent one. 

Univariate One variable. 

Variance A measure of the distribution of all population 

values about the mean. It is defined as the sum 

of squared deviations from the mean divided by the 

number of observations. For a sample, it is 

defined as the sum of the squared differences 

between each observation and the mean of a time 

series divided by the number of observations in 

the series less one, an adjustment for degrees of 

freedom. 

Weight 

(parameter) 

The importance given to an item; for example, the 

value of a coefficient of an equation is an 

expression of the weight, or the importance, of 

that variable. 

Winter's linear 

and seasonal 

exponential 

smoothing method 

A time series forecasting method based on the use 

of three smoothing equations, one each for 

smoothing the parameter associated with the 

stationary, linear, and seasonal components. 
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EXHIBITS AND APPENDICES 

EXHIBIT 1 

EXHIBIT 2 

EXHIBIT 3 

EXHIBIT 4 

EXHIBIT 5 

EXHIBIT 6 

EXHIBIT 7 

EXHIBIT 8 

EXHIBIT 9 

EXHIBIT 10 

Chile: 1971-1983, graphs of the original values of 
the five Chilean energy variables, January, 1971-
December, 1983 and January, 1976-December, 1983 
(diesel oil). 

Chile: 1971-1983, graphs of the natural logarithms 
of the original values of the five Chilean energy 
variables, January, 1971-December, 1983 and January, 
1976-December, 1983 (diesel oil). 

Chile: 1971-1983, annual values of the monthly data 
presented in Exhibit 1. 

Chile: January, 1971-December, 1982, mean absolute 
percentage change of five energy variables: totals 
and components. 

Chile: 1971-1982, five energy variables, historical 
accuracy of time forecast techniques. 

Chile: selected statistics for five Box-Jenkins 
forecast equation over their respective sample 
periods. 

Chile: 1983, selected error measurements of a 1983 
ex post forecast of five energy variables using the 
five surviving Box-Jenkins forecast equations. 
Chile: 1983, values of an ex post forecast for 1983 
of the apparent consumption of diesel oil using Box-
Jenkins model (Oil)(Oil) with input values scaled in 
original form. 

Chile: 1983, values of an ex post forecast for 1983 
of gross electricity generation using Box-Jenkins 
model (210(011) with input values scaled in natural 
logarithms of original observations. 

Chile: 1983, forecast for 1983 of values of an ex-
post forecast for 1983 of peak electrical demand 
using a Box-Jenkins model (022)(110) with input 
values scaled in reciprocals of the original 
observations. 
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EXHIBIT 11 

EXHIBIT 12 

EXHIBIT 13 

EXHIBIT 14 

EXHIBIT 15 

EXHIBIT 16 

APPENDIX A (1) 

APPENDIX A (2) 

APPENDIX A (3) 

APPENDIX A (4) 

APPENDIX A (5) 

APPENDIX B 

APPENDIX C (1) 

Chile: 1983, values of an ex post forecast for 1983 
of the apparent consumption of motorgasoline (81°) 
using a Box-Jenkins model (210)(Oil) with input 
values scaled in the reciprocals of the original 
observations. 

Chile: 1983, values of an ex post forecast for 1983 
of the apparent consumption of household kerosene 
using a Box-Jenkins model (011(011) with input values 
scaled in the natural logarithms of the original 
observations. 

Chile: 1983, five energy variables. Comparison of 
the average forecast errors over the sample periods 
and the average errors of the twelve monthly 
forecasts. 

Chile: selected statistics for sixteen candidate 
forecast equations for five energy variables. 

Chile: 1983, statistical characteristics of five 
regression equations for predicting ex post the 1983 
monthly values of five Chilean energy variables. 

Chile: 1983, errors of the 1983 ex post forecasts 
of the five Chilean energy variables using various 
predictive routines. 

Chile: 1965-1984, monthly values of peak electricity 
demand in Chile's interconnected power system. 

Chile: 1965-1983, monthly gross electricity 
generation in Chile's interconnected power system. 

Chile: 1970-1984, apparent monthly consumption of 
household kerosene. 

Chile: 1976-1984, apparent monthly consumption of 
diesel oil. 

Chile: 1970-1984, apparent monthly consumption of 
81-grade motorgasoline. 

Chile: 1960-1983, annual values of five Chilean 
energy variables. 

Chile: 1976-1982, autocorrelation coefficients for 
the first twenty-four lags of the monthly values of 
the apparent consumption of diesel oil. 
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APPENDIX C (2) Chile: 1976-1982, partial autocorrelation 
coefficients for the first twenty-four lags of the 
monthly values of the apparent consumption of diesel 
oil. 

APPENDIX C (3) 

APPENDIX C (4) 

Chile: 1976-1982, partial autocorrelation 
coefficients of the residuals for the first twenty-
four lags of the monthly values of the apparent 
consumption of diesel oil. 

Chile: 1976-1982, autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of the apparent consumption of diesel 
oil. 

APPENDIX D (1) 

APPENDIX D (2) 

APPENDIX D (3) 

APPENDIX D (4) 

APPENDIX E (1) 

APPENDIX E (2) 

APPENDIX E (3) 

APPENDIX E (4) 

Chile: 1971-1982, autocorrelation coefficients for 
the first twenty-four lags of the monthly values of 
the apparent consumption of household kerosene. 

Chile: 1971-1982, partial autocorrelation 
coefficients for the first twenty-four lags of the 
monthly values of the apparent consumption of 
household kerosene. 

Chile: 1971-1982, partial autocorrelation 
coefficients of the residuals for the first twenty-
four lags of the monthly values of the apparent 
consumption of household kerosene. 

Chile: 1971-1982, autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of the apparent consumption of 
household kerosene. 

Chile: 1971-1982, autocorrelation coefficients for 
the first twenty-four lags of the monthly values of 
the apparent consumption of 81" motorgasoline. 

Chile: 1971-1982, partial autocorrelation 
coefficients for the first twenty-four lags of the 
monthly values of the apparent consumption of 81e 

motorgasoline. 

Chile: 1971-1982, partial autocorrelation 
coefficients of the residuals for the first twenty-
four lags of the monthly values of the apparent 
consumption of 81° motorgasoline. 

Chile: 1971-1982, autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of the apparent consumption of 81s 

motorgasoline. 
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APPENDIX F (1) 

APPENDIX F (2) 

APPENDIX F (3) 

APPENDIX F (4) 

APPENDIX G (1) 

APPENDIX G (2) 

APPENDIX G (3) 

APPENDIX G (4) 

Chile: 1971-1982, autocorrelation coefficients for 
the first twenty-four lags of the monthly values of 
gross electricity generation in Chile's 
interconnected electric power system. 

Chile: 1971-1982, partial autocorrelation 
coefficients for the first twenty-four lags of the 
monthly values of gross electricity generation in 
Chile's interconnected electric power system. 

Chile: 1971-1982, partial autocorrelation 
coefficients of the residuals for the first twenty-
four lags of the monthly values of gross electricity 
generation in Chile's interconnected electric power 
system. 

Chile: 1971-1972, autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of gross electricity generation in 
Chile's interconnected electric power system. 

Chile: 1971-1982, autocorrelation coefficients for 
the first twenty-four lags of the monthly values of 
peak electricity demand in Chile's interconnected 
electric power system. 

Chile: 1971-1982, partial autocorrelation 
coefficients for the first twenty-four lags of the 
monthly values of peak electricity demand in Chile's 
interconnected electric power system. 

Chile: 1971-1982, partial autocorrelation 
coefficients of the residuals for the first twenty-
four lags of the monthly values of peak electricity 
demand in Chile's interconnected electric power 
system. 

Chile: 1971-1982, autocorrelation coefficients of 
the residuals for the first twenty-four lags of the 
monthly values of peak electricity demand in Chile's 
interconnected electric power system. 
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