Economic and Social Council

Distr.
GENERAL
TRANS/WP.29/2003/40
4 April 2003
ENGLISH
Original: ENGLISH and FRENCH

ECONOMIC COMMISSION FOR EUROPE

INLAND TRANSPORT COMMITTEE

World Forum for Harmonization of Vehicle Regulations (WP.29)
(One-hundred-and-thirtieth session,
24-27 June 2003, agenda item 4.2.19.)

DRAFT CORRIGENDUM 2 TO THE 05 SERIES
 OF AMENDMENTS TO REGULATION No. 83

(Emissions of M_{1} and N_{1} categories of vehicles)
Transmitted by the Working Party on Pollution and Energy (GRPE)

Note: The text reproduced below was adopted by GRPE at its forty-fifth session, and is transmitted for consideration to WP. 29 and AC.1. It is based on the text of document TRANS/WP.29/GRPE/2003/7, not amended (TRANS/WP.29/GRPE/45, para. 28).

This document is a working document circulated for discussion and comments. The use of this document for other purposes is the entire responsibility of the user. Documents are also available via the INTERNET:
http://www.unece.org/trans/main/welcwp29.htm

Paragraph 11.1.3.2., correct to read (English and Russian only):
". m above."

Paragraph 11.1.4.1., correct to read:
"......
shall be considered, for the purposes of paragraphs 11.1.3.1. and 11.1.3.2. as vehicles in category $\mathrm{N}_{1} . "$

Annex 4, Appendix 3,

Paragraph 5.1.1.2.8., correct to read:
"......
$\mathrm{R}_{\mathrm{T}}=$ total driving resistance $=\mathrm{R}_{\mathrm{R}}+\mathrm{R}_{\text {AERO }}$
$K_{R}=$ temperature correction factor of rolling resistance, taken to be equal to: 8.64. $10^{-3} /{ }^{\circ} \mathrm{C}$, or the manufacturer's correction factor that is approved by the authority
$\mathrm{t}=$ road test ambient temperature in ${ }^{\circ} \mathrm{C}$
where:
$\mathrm{M}=$ vehicle mass in kg ,
and for each speed the coefficients a and b are shown in the following table:

$\mathrm{V}(\mathrm{km} / \mathrm{h})$	a	b
20	$7.24 \cdot 10^{-5}$	0.82
40	$1.59 \cdot 10^{-4}$	0.54
60	$1.96 \cdot 10^{-4}$	0.33
80	$1.85 \cdot 10^{-4}$	0.23
100	$1.63 \cdot 10^{-4}$	0.18
120	$1.57 \cdot 10^{-4}$	0.14

