UNITED NATIONS

Economic and Social Council

Distr.

GENERAL

TRANS/WP.29/2003/40

4 April 2003

ENGLISH

Original: ENGLISH and FRENCH

ECONOMIC COMMISSION FOR EUROPE

INLAND TRANSPORT COMMITTEE

World Forum for Harmonization of Vehicle Regulations (WP.29) (One-hundred-and-thirtieth session, 24-27 June 2003, agenda item 4.2.19.)

DRAFT CORRIGENDUM 2 TO THE 05 SERIES OF AMENDMENTS TO REGULATION No. 83

(Emissions of M_1 and N_1 categories of vehicles)

Transmitted by the Working Party on Pollution and Energy (GRPE)

<u>Note</u>: The text reproduced below was adopted by GRPE at its forty-fifth session, and is transmitted for consideration to WP.29 and AC.1. It is based on the text of document TRANS/WP.29/GRPE/2003/7, not amended (TRANS/WP.29/GRPE/45, para. 28).

This document is a working document circulated for discussion and comments. The use of this document for other purposes is the entire responsibility of the user. Documents are also available via the INTERNET:

http://www.unece.org/trans/main/welcwp29.htm

Paragraph 11.1.3.2., correct to read (English and Russian only):

"..... meets the requirements of this Regulation as required by paragraph 11.1.2.2. above."

Paragraph 11.1.4.1., correct to read:

"

shall be considered, for the purposes of paragraphs 11.1.3.1. and 11.1.3.2. as vehicles in category $N_{\rm I}$."

Annex 4, Appendix 3,

Paragraph 5.1.1.2.8., correct to read:

".....

 R_T = total driving resistance = $R_R + R_{AERO}$

 $K_R=$ temperature correction factor of rolling resistance, taken to be equal to: 8.64 . $$10^{\text{-3}}\text{/}^{\text{o}}\text{C}$, or the manufacturer's correction factor that is approved by the authority$

t = road test ambient temperature in °C

....

where:

M = vehicle mass in kg,

and for each speed the coefficients a and b are shown in the following table:

V (km/h)	a	b
20	7.24 . 10 ⁻⁵	0.82
40	$1.59 \cdot 10^{-4}$	0.54
60	$1.96 . 10^{-4}$	0.33
80	$1.85 \cdot 10^{-4}$	0.23
100	1.63 . 10 ⁻⁴	0.18
120	$1.57 \cdot 10^{-4}$	0.14

•