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Producers of official statistics face a complicated task in managing users’ access to the data 
they collect, as they must maintain the confidentiality of the individuals or businesses who 
have provided their data to them, while being under pressure to release ever more detailed 
datasets in order to provide greater analytical insight to those who wish to use such data.

Traditionally, national statistical offices have provided trusted users (such as academics) with 
access to some micro-level data at the level of individuals or businesses, while publishing 
aggregate statistical tables to other users. This approach is not a perfect solution to managing 
access to data, as many users will not obtain the amount of detail they are seeking, while 
vetting and managing trusted users is time consuming, and does not guarantee that they will 
never misuse or lose the data they access.

However, there is another way of providing users with analytical insight, by providing them 
with Synthetic Data, which may be advantageous for certain use case scenarios. Synthetic 
data can be simulated in such a way as to have many of the same properties as the original 
dataset, and to allow derivation of the same results and insights, but with a much lower risk of 
revealing information about individuals to which that data relate.

If you are involved in managing users’ access to official statistics, and would like to have 
another option for dealing with your data access dilemmas, this guide will give you what you 
need to get started.
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Preface

Synthetic data provides new opportunities for National Statistical Offices (NSOs) to maximise the 
amount of statistical information that data users can utilise, while keeping statistical disclosure risks 
at a minimal level.

NSOs have always faced a tension in deciding how much information to release to users, and how 
much emphasis to place on minimising the risk of disclosure of the details from a specific record 
within an underlying microdata set (which could for example relate to a specific individual). This 
tension has increased in recent years, as NSOs have faced greater pressure to release more detailed 
data, and faster than ever before.

Traditionally, NSOs have managed these risks either via the public dissemination of only tabulated 
aggregates of the underlying micro-datasets, and/or by authorising certain groups of users (e.g., 
accredited researchers) access to some of their microdata (i.e., accessing individual records to 
perform sophisticated analyses). However, these are not ideal solutions, because:

• Tabulated aggregates will often not satisfy the information needs of many users, who may demand 
additional breakdowns of tabulated data. Each new breakdown provided makes it harder to 
suppress the risk of disclosing information about a specific individual record, and requires more 
resources to monitor and manage the production of such tables.

• In the case of statistical microdata access, especially stringent measures are required to manage 
which users can access such datasets. The process and procedures to manage access can be 
cumbersome, bureaucratic, time-consuming and not without risks that could potentially have 
serious consequences in the event of a disclosure.

Into this arena comes the application of synthetic data as an alternative option for managing 
the release of data by National Statistical Offices, which may be more convenient for certain use 
cases, for which synthesised micro-level records may be sufficiently realistic to satisfy the analytical 
requirements of the users of such data, while posing a substantially reduced risk of disclosing 
information about the original data from which the synthetic data was synthesised.

Of course, the term “sufficiently realistic” is highly dependent on the particular use case for which such 
synthetic data is to be utilised by the user, and the extent to which the disclosure risk is acceptable to the 
NSO is also dependent on the specific circumstance in question. There are also a variety of different methods 
with which synthetic data sets can be created, each having its own advantages and disadvantages.

This guide is for those working in NSOs who are involved in managing access to statistical data, and 
who wish to explore the possibility of using synthetic data as a possible method for users to access it. 
The guide highlights some recent successful applications of synthetic data by a number of different 
NSOs, and introduces some of the different approaches that can be taken to creating synthetic data, 
including recommendations on which approaches to use in different situations, as well as practical 
tips and resources for getting started for practitioners.

There are also chapters dedicated to disclosure risk considerations when releasing synthetic data 
(including privacy preserving techniques, and measures to assess disclosure risk), and on utility 
measures that can be used to assess how well the synthetic data meets the analytical needs of users.

This guide is based on the results from the UNECE High-Level Group on Modernisation of Official 
Statistics (HLG-MOS) Synthetic Data Project (2020-2021) and earlier work of the Blue Skies Thinking 
Network activity of synthetic data, and is approved by the HLG-MOS.

We hope that this guide helps you on your journey towards implementing synthetic data in your 
organization!
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Chapter 1: Introduction

Data are a valuable resource, providing critical input for statisticians, economists, and data scientists, 
to generate timely and granular insights that respond to the information needs of a broad range of 
stakeholders. In a world where increasingly large volumes of data are coming from an increasing 
number of providers, National Statistical Offices (NSOs) are using innovative approaches to maintain 
data standards and definitions, good privacy and confidentiality management systems, and 
responsible data-sharing.

NSOs have a leadership role to play in establishing safe and transparent ways to share data, expertise, 
and best practices to support the use of data for testing, evaluation, education, and development 
purposes. With data integrity and confidentiality at the forefront, NSOs are well-positioned to provide 
the tools, methods and approaches to promote responsible data-sharing in order to meet a growing 
number of stakeholders’ needs in this ever-changing and fast-paced data ecosystem.

NSOs recognise that the call for greater openness and transparency of data must be met while 
simultaneously remaining steadfastly committed to protecting the confidentiality and privacy 
embedded in their data holdings. The dual mission of NSOs is nicely conveyed by Duncan et al. 
(2011) who write on page 12:

Data stewardship organization is serving two masters [providing high-quality information and 
protecting confidentiality] – each with conflicting interests and concerns.

It is widely acknowledged that releasing information that is both useful and completely safe cannot 
be achieved in full.1 The Office of the Privacy Commissioner of Canada writes that:2

It should be noted that there is no such thing as zero [disclosure] risk when releasing data.

Also, it is widely acknowledged that ‘safety’ is relative, not absolute. For instance, Desai et al. (2016) 
write that:

‘Safety’ is a measure, not a state. For example, ‘safe data’ […] does not mean that the data is 
non-disclosive. ‘Safe data’ could be classified using a statistical model of re-identification risk, or a 
much more subjective scale, from ‘very low’ to ‘very high’. The point is that the user has some idea 
of ‘more safe data’ and ‘less safe data’.

It is within this context that NSOs must establish measures for the relative importance of the 
usefulness3 of the statistical information released and the protection for the person-level (or business 
level) information gathered from which it is derived.

1 For instance, page 135 of El Emam (2013), or item 4 on page 5 of Elliott et al. (2016).

2 See paragraph 130 of https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-
federal-institutions/2018-19/pa_20191209_sc/

3 In this context, usefulness relates to how well the (synthetic) data meet the analytical needs of users,  
as defined by the concept of utility, described in the next section.

https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-federal-institutions/2018-19/pa_20191209_sc/
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-federal-institutions/2018-19/pa_20191209_sc/
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With the emergence of synthetic data, NSOs now have a promising data release option that responds 
to the call to expand the usefulness of data holdings, while providing safeguards for the confidentiality 
of record-level information. Use of synthetic data presents the opportunity to move toward standard 
approaches with this starter guide to synthetic data in NSOs. This synthetic data guide comprises 
a compendium of theoretical methods to create synthetic data, a consensus regarding practical 
applications and best practices to promote consistency, transparency and comparability within 
statistical agencies, as well as for users in academia and the private sector. This guide is intended to 
provide practical and direct guidance to decision-makers working in NSOs to help them to determine 
if synthetic data is the right solution for them to facilitate responsible data-sharing.

This guide opens with the most common scenarios for NSOs where synthetic data would be 
a suitable solution (Chapter 2). Chapter 3 discusses methods used to generate synthetic data, as 
well as recommendations for determining suitable applications for them. Chapter 4 highlights 
important considerations when releasing synthetic data, including privacy preserving techniques, 
and measures to assess disclosure risk. Finally, Chapter 5 presents utility measures that can be used 
to assess how well the synthetic data meets the analytical needs of users.

1.1 Key concepts for synthetic data

Any discussion about synthetic data must involve an understanding of utility as well as privacy, 
sensitivity, security and confidentiality, since decisions made about the creation of synthetic data 
will involve balancing some of these concepts. To explore these ideas further, it helps to refer to 
Figure 1, which illustrates a linear representation of the life cycle of data holdings, inspired by the 4G 
framework4 (Rancourt, 2019): Data are gathered, guarded, grown and given.

Figure 1 Illustration of how data is collected, transformed, creates value  
and then disseminated based on the 4G framework

 

Gather:

Privacy is associated with how personal data are gathered by NSOs, involving such considerations 
as the right of individuals to be free from observation, the NSO’s entitlement to ask for and obtain 
information pertaining to individuals, and individuals’ consent to share their information with a NSO 
only under agreed-upon terms.5

4 Some representations include a fifth ‘G’ with Governance overseeing the other four Gs described here.

5 No consensus exists on the precise meaning of ‘privacy’: not only may definitions differ from one field to another  
(e.g., computer science vs official statistics), but they may also vary within a given field (e.g., between NSOs).



Chapter 1 – Introduction

3

Guard:

Once information has been entrusted to an NSO through a sharing agreement, it exists in a highly 
identifiable person-level form, and must therefore be guarded against any unauthorised access. This 
is where the various data-storing options, access protocols and security measures available to NSOs 
come into play.

Grow:

Utility is then grown by transforming person-level data into statistical information, a form better 
suited for release purposes. This is where finite population estimates are calculated, complex 
statistical analyses are performed, and analytical data sets are produced. For example, data gathered 
from graduates could be transformed into enrolment numbers by major fields of study. 

Give:

Finally, the data are given to users. Here, confidentiality issues relate to unwarranted disclosure, as 
per the information-sharing agreement, of the personal data entrusted to a NSO that may occur 
when statistical information is released.

Thus, the 4Gs described above imply that privacy and confidentiality are distinct notions, as they 
arise at opposite ends of the data life cycle (Gather and Give). This is not to say these notions 
are unconnected, but rather that concerns one may have with regard to each deserve separate 
consideration.

The concepts of disclosure and disclosure risk extend the discussion on confidentiality. Disclosure 
risk is the risk or possibility of inappropriate release of data or attribute information (OECD, 2003), 
and applies to the dissemination of any aggregate statistic or microdata set, including synthetic data. 
In fact, there is often a balance when creating synthetic data between the utility and the disclosure 
risk, as the more closely synthetic data results emulate those of the original data, the higher the risk 
that confidential information in the original data could be disclosed.

In the event of unwarranted disclosure, it is reasonable to expect that the harm done to an individual 
will be greater the more sensitive the information revealed is. However, this does not mean that 
information that is less sensitive is any less confidential, since that information is confidential due 
to being covered by the terms and conditions of the sharing agreement, and not because of how 
sensitive it is deemed to be by its custodian.

To help manage confidential data, NSOs can rely on the Five Safes framework,6 developed at the 
Office for National Statistics in the United Kingdom, notably when thinking of data access solutions 
(e.g., Desai et al. (2016)). One of the framework’s five dimensions is Safe Data, which examines the 
disclosure risk posed by the data itself. Both synthetic data sets and Public-Use (Microdata) Files 
(PUFs or PUMFs) are access solutions that are made to score high on the Safe Data scale through the 
use of appropriate disclosure control methods.

6 See www.fivesafes.org for details.

http://www.fivesafes.org
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1.2 Data access options of National Statistical Offices

Typically, much of the data collected and stored by NSOs is sensitive in nature, and can only be 
accessed by trusted employees and researchers working in a secure environment under strict 
conditions. Anonymised versions of original data files are not good candidates for public release 
because the information they contain can often still be attributed to a respondent, constituting a 
violation of the requirements of statistical legislation, regulations, policies, standards, and relevant 
ethical guidelines.

NSOs have a number of alternatives for safe data sharing, ranging from dummy files to Research 
Data Centres; however, there remains a gap in sustainable access solutions that balance utility with 
confidentiality.

The core business of NSOs is to disseminate aggregate statistical information. This information 
is very valuable to the public, as well as industrial and political decision makers. However, due to 
confidentiality reasons, aggregate information does not provide the level of detail in the data that 
users of official statistics are increasingly looking for.

NSOs may also have Public Use Microdata Files (PUMF) at their disposal, to provide users with more 
granular data. PUMFs are anonymised microdata files containing information relating to a sample 
of individual units from a survey, census or administrative file. The anonymisation process is one 
where identifying information is modified or suppressed to avoid identification of individual entities 
in a data file. Though PUMFs provide more granularity, the anonymisation process can limit their 
analytical value.

To provide the confidential microdata to users, NSOs have created physical Research Data Centres 
(RDCs) to facilitate research projects that draw, for example, on survey or administrative microdata. 
RDCs provide direct access to a wide range of anonymised but not fully confidentialised microdata 
to accredited researchers under strict conditions.

These physical location requirements can pose constraints for users. As a result, some NSOs such as 
Statistics Canada, Statistics New Zealand, the Australian Bureau of Statistics and Statistics Netherlands, 
have introduced real-time remote access or remote execution solutions, to enable users to quickly 
obtain a full range of descriptive statistics without the physical location requirement. This access 
option is typically limited to accredited researchers.

Finally, and least usefully, NSOs may share dummy files, which are data sets where almost none of 
the original data set’s analytical value is preserved, and the focus is on maintaining the structure and 
the logical rules of the original file. These files provide very little analytical value and so are not useful 
to many users.

These traditional options, used by NSOs for data release, are depicted in Figure 2, with dummy files 
on the far left being the dissemination option that carries the least disclosure risk (but also the least 
utility), to the original data on the top right, where the utility is the greatest (but with the highest 
disclosure risk).
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Figure 2 Confidentiality versus utility of current data release mechanisms
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As shown in Figure 2, particularly between PUMF and remote access disclosure options, NSOs face a 
gap in utility and confidentiality options that needs to be filled in order to be more transparent, and 
to ensure data holdings are made more accessible to users. Synthetic data is a viable alternative data 
dissemination strategy that can facilitate data access, especially in cases involving highly sensitive 
data.
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1.3 A brief introduction to synthetic data

Synthetic data is defined as being stochastically generated data that has analytical value, and which 
maintains high levels of disclosure control. Synthetic data has its roots in data editing and imputation 
methods, and has become more developed with recent advances in computing and data science 
methods, as well as a drive by NSOs for more open and transparent data sharing. Creating synthetic 
data involves a generation or modelling process that targets both the preservation of analytical 
value and confidentiality.

The advantage that synthetic data brings to the suite of disclosure options for NSOs is that it breaks 
the direct link between collected data and the released outputs, due to the modelling or generation 
process.

Figure 3 illustrates the synthetic data generation process. At a high level, the goal of synthetic data is 
to take the original data set (D) that outputs results (Θ(D)), and to synthesise the data (D’) so that the 
confidentiality of the records is maintained, while also ensuring that the results of the synthetic data 
(Θ(D’)) match as closely as possible to those results obtained based on the original data.

Figure 3 Illustration of the synthetic data generation process 
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1.4 Types of synthetic files

There are various types of synthetic files, and elements of each should be taken into consideration 
when determining which one is most suitable for its purpose.

1.4.1 Dummy files

Dummy files are data sets where almost none of the analytical value is preserved. The focus is on 
maintaining the structure and the logical rules of the original file. These files are often used to test 
programs and processes, and to provide remote access to structurally similar (but not inferentially 
valid) data sets. Since there is no analytical value to these files, there is also almost no disclosure risk. 
This type of file is well known and in wide use, so is not a focus of this guide.

1.4.2 Fully synthetic files

In fully synthetic data files, all of the variables are synthesised. The goal is to preserve significant 
levels of relevant analytical value compared to the original data set, in order to meet the needs of 
the user. For example, this could be done by preserving within the synthetic data the univariate 
distributions for the variables from the original data, or it could be done by preserving one or more 
multivariate or joint distributions of those variables. Variables could be generated in order to preserve 
only particular statistics (e.g., margins, mean, etc.), or entire sets of relevant descriptive statistics for 
relevant distributions.

These files have the same use as PUMFs, but present greater analytical value when the joint 
distribution of the original data is preserved. These files strive to present low disclosure risk, however 
they could present inferential disclosure risk (or merely perceived disclosure risk). When their utility 
increases, so too can their potential disclosure risk, and so these objectives must be weighed against 
each other when creating such data sets.

1.4.3 Partially synthetic files

In partially synthetic files, only some of the variables are synthesised. The goal is the same as the 
approach with fully synthetic files, but the approach typically focuses on a subset of variables in the 
data set. For example, one could synthesise the most sensitive variables and leave all of the other 
variables untouched.
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Chapter 2: Uses of synthetic data

Synthetic data can solve statistical disclosure problems faced by NSOs, but the value of synthetic 
data varies with the nature of the problem faced. This section explains the main uses of synthetic 
data in NSOs, with a discussion of utility, disclosure risk requirements, and risk mitigation.

2.1 Releasing synthetic microdata to the public

Traditional data release approaches used by NSOs can limit users’ access to high-quality microdata. 
However, with the increasing emphasis on transparency and data access, NSOs are exploring 
synthetic data as a new data release option.

If synthetic microdata are publicly disseminated, NSOs cannot know or control how the data are 
used. Therefore, there is no prior knowledge of what distributions, variables, or relationships need 
to be preserved in the synthetic data, and so in principle as many as possible of the original data’s 
relationships should be preserved to maximise the utility of the released file. However, this increased 
utility also tends to increase disclosure risk, and since the audience is the public, there are no other 
controls or vetting processes over the access to, and use of, the data. Therefore, the confidentiality 
requirements in such a scenario are of utmost importance.

2.1.1 Example: Statistics New Zealand’s synthetic unit record files

Statistics New Zealand is now releasing more granular data, and one way they are doing this is through 
Synthetic Unit Record Files (SURFs). SURFs are generated by a mathematical model, based on, but 
not the same as, the original data. Statistics New Zealand has released a few such files, including one 
based on their 2007 income survey and a ‘Census for Schools’ SURF based on their 2019 household 
savings survey and census.

These files are semi-realistic representations of a sample of the New Zealand population, but 
respecting only the distributions, variables and relationships that are preserved by the synthesis 
method that was used. Published data are typically perturbed (noise-added) representations of 
population data. Hence, privacy of the data is preserved because even if some of the synthetic data 
resembles the original data, an attacker (someone who deliberately seeks to disclose or breach 
confidentiality rules) arguably cannot be sure which data are the same, which data are different, and 
whose data is whose.

For example, the SURF files released in 2007 were based on the income survey from the second 
quarter of 2003. Each file contains over 11,000 records, and one hundred such files were released 
in 2007, representing 100 samples (some potentially overlapping) of the New Zealand population 
between the ages of 25 and 64, who participated in paid work. The variables included are age, sex, 
ethnicity, highest educational qualification, weekly hours worked and weekly income.

These SURFs were released with a clear recommendation that they could be used for the purposes 
of teaching or learning, developing analytical methods or processes, or some level of statistical 
inference (New Zealand Income Survey Super SURF, n.d. ). The policy of Statistics New Zealand is 
to release SURF data with appropriate metadata about their methodology, inferential validity, and 
safety (disclosure risk).
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2.2 Testing analysis

Some NSOs grant confidential microdata access to trusted parties, remotely or at physical Research 
Data Centres (RDCs), but going through security checks, vetting and approvals can greatly delay 
important research and analysis projects. Synthetic data could be useful in this context by allowing 
researchers to more easily develop and test their models, algorithms or analyses, and potentially 
to conduct exploratory data analysis and/or to determine initial hypotheses or conclusions, while 
they wait for access to the original data. The original data would be required only to complete their 
research, requiring fewer journeys to be made to the RDC premises.

In some ways, such a use case is easily accommodated, because NSOs typically know the types 
of analyses that researchers would conduct. NSOs can generate synthetic data that preserve 
specific distributions, variables and relationships of interest to the researchers, while variables or 
relationships that are not of interest need not be preserved, allowing for more flexibility in synthetic 
data modelling choices. However, such use cases may involve extensive work for NSOs to provide 
bespoke synthetic data files for users.

2.2.1 Example: Statistics Canada synthetic census-based data

Starting in June 2021, one of the ongoing projects of Statistics Canada has been the creation of 
a synthetic version of a census-based database. Its objective is to test and run the new dynamic 
micro-simulation model of the Canadian retirement and income system, built for Employment and 
Social Development Canada (ESDC). A desired feature of the model is non-confidentiality, allowing 
the model to be used at any location. This would increase operational flexibility and the potential 
for external collaboration and broader use. Different options were explored, and synthetic data was 
chosen as it seems likely to provide results closest to the original data.

The original database represents a part of the Canadian population in 2011, with some basic cross-
sectional characteristics of the starting population. Based on this, the dynamic micro-simulation can 
be thought of as experimenting with a virtual society of millions of individuals whose lives evolve 
over time. This micro-simulation model will allow academics, researchers and government policy 
makers to model changes to the Canada Pension Plan (CPP), enabling research on public pensions 
and, more broadly, income security in retirement. The public (synthetic) database, of roughly 8.6 
million records, will support model development, as well as preliminary programme assessment, 
policy analysis and research. For final analysis and publication, the micro-simulation model will be 
run on the original data housed in the Research Data Centres.

2.2.2 Example: Provision of synthetic data for users of the Scottish 
Longitudinal Study

The Scottish Longitudinal Study (SLS) is a source of linked data. At the core of the SLS is a 5% sample 
from the census data for Scotland, where individuals (SLS members) are linked over time between 
censuses. The data also include information on all household members of each SLS member. Further 
data sets are permanently linked to the SLS, including births, deaths, marriages and school-record 
data. Other data sets can be linked to the SLS for specific projects related to hospital admissions, 
cancer registrations and many other topics.7

7 Further details can be found at https://sls.lscs.ac.uk/

https://sls.lscs.ac.uk/
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Currently, an extract of the data is prepared for each user with an approved project. The extract 
can only be viewed and analysed under supervision in the National Records of Scotland Offices in 
Edinburgh, which incurs a travel burden on researchers. To reduce this burden, researchers can request 
a synthetic data extract at the time of applying for access to the original data. To receive synthetic 
data, researchers and other members of the research team must complete safe-researcher training 
and agree to comply with conditions on the storage and use of synthetic data. The synthetic extract 
is then supplied to the researcher to analyse on their own computer. Results from synthetic data can 
only be shared among members of the research team and no findings from the synthetic data can 
be published. Final analyses for publication must be run on the original data in the Edinburgh office. 
In exceptional cases, SLS staff can run analyses remotely.

2.2.3 Example: Using synthetic data to test machine learning algorithms  
at the Australian Bureau of Statistics

Machine learning (ML) and artificial intelligence techniques have become more prevalent both for 
producing and analysing official statistics. At the Australian Bureau of Statistics (ABS), a need arose 
for data scientists to test ML methods using published (and non-confidential data) that represented 
entities and relationships of interest for their ML models, such as persons, households, regions, 
industries and business units.

Using a micro-simulation model, the ABS was able to create a synthetic data set, using only publicly 
available information that provided the details and relationships appropriate for testing these 
models.
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2.3 Education

High-quality data is needed in order for students, academics, and users in general, to learn new 
concepts and methods related to a variety of topics, such as data science, statistics, data analysis and 
even technology. The more complex the methods (such as machine learning or complex statistics), 
the more important it is that the data yield realistic results.

In providing data for such educational purposes, NSOs may know the specific method or topic 
that is being studied and, as in the testing analysis use case, may preserve only the distributions 
of interest. Alternatively, synthetic data made for another use could be repurposed for educational 
use, provided that the use case in question has similar utility and disclosure risk requirements to the 
original purpose for which that synthetic data set was created.

While for many other use cases, the requirement for high utility limits options for minimising 
disclosure risk, for educational and training use, the confidentiality requirements can vary greatly: in 
some NSOs, as soon as microdata leaves the premises, the data must meet top disclosure standards 
no matter who is using the data. In other cases, the students may have some level of security 
clearance or agreement with the NSO already, therefore lowering the confidentiality requirements 
for the synthetic data.

2.3.1 Use Case: The Canadian Health Measures Survey

Many universities in Canada are developing undergraduate programmes that aim to develop, among 
other things, capacities in working with large data sets.

The Canadian Health Measures Survey (CHMS) includes a comprehensive data set from a questionnaire, 
as well as physical and laboratory data. The data are currently accessible only via Research Data Centres 
(RDCs), which require stringent security checks that can take time to complete. For undergraduate 
research programmes to work with CHMS data, it is proposed to create scientific use files (SUF) for 
which some of the variables and survey weights are synthesised to allow open access to the data. 
This data set would allow students to develop analytical skills on data derived from a complex survey 
design, however the publication of results derived from SUFs would be prohibited, as users would 
require access the original microdata for publication purposes.

2.4 Testing of technology

For the purposes of testing new software and technology, dummy data that represent the file layout 
and error rates of original data are often used. However, dummy data files have no analytical value, 
and as complex technologies such as artificial intelligence and machine learning become more 
prevalent, such testing increasingly requires more analytically realistic data. In these cases, synthetic 
data with some inferential validity can be beneficial.

The utility of the original data needs to be preserved to some extent, so that the results of the system 
can be assessed and verified, even though the conclusions drawn from the results have minimal 
value.
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2.4.1 Example: Census systems testing at the Office for National  
Statistics (ONS)

The ONS used synthetic data in testing its census processing system prior to the 2021 census. 
Their census processing comprised several phases, each dependent on the previous, with various 
quality ‘gate checks’. While many system tests worked on ‘dummy’ data, other tests required variable 
distributions that were representative of the population, to realistically verify that the checks worked 
as expected, and to ensure system resources were sufficient under realistic workloads. Dummy data 
were not sufficient in this use case, as specifications on required test data distributions ran to roughly 
60 pages.

Multiple synthetic data sets were generated to test load balancing and the various functions used in 
the processing pipeline. Some synthetic variables that were not previously captured in the census 
were modelled and generated.

2.5 Tips to get started

When deciding whether synthetic data is the right solution for a given data release scenario, a 
firm understanding is needed of both the constraints involved to ensure confidentiality, as well as 
the requirements that the users will have for the synthetic data. While synthetic data can provide 
confidential data with high levels of analytical value for users, the level of confidentiality and the 
specific sort of analytical value that needs to be retained, is dependent on the use case in question. 
Table 1 summarises the key considerations for the different use cases presented in this chapter, along 
with the average balance of utility and confidentiality for each. The specific use case, together with 
these considerations play a role in determining which method to use to generate synthetic data.

Table 1 Summary of use cases, their key considerations and their balance of confidentiality  
and utility

Use Case Key Considerations Confidential/Utility Balance

Releasing microdata 
to the public

The synthesiser does not know who or how the data 
will be used.

High confidentiality as well as 
high utility are required. 

Testing analysis Specific analysis or variables distributions that must 
be maintained may be known at time of synthesis.

High confidentiality as well as 
high utility are required.

Education Synthesisers may know the analysis to be conducted 
and users may have security clearance or agreement 
with the NSO, however the opposite may also be 
true.

High utility with possible 
varying levels of 
confidentiality.

Testing technology The value of synthetic data is dependent on how 
complex the system is and how sophisticated the 
test data needs to be. Many methods to generate 
synthetic data may be too computationally heavy to 
make the effort worthwhile.

Medium utility and medium 
confidentiality.
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Chapter 3: Methods for creating synthetic data

There are many methods for generating synthetic data, and to determine which method to use, it is 
important to start by identifying the type of synthetic data that is required and within what context 
they will be used. Specifically, when creating a synthetic data set, the synthesiser (the individual 
making the synthetic data) needs to consider the desired analytical value to be preserved, as well 
as the acceptable level of disclosure risk, which will mainly depend on how accessible the synthetic 
data set that is generated will be (i.e., public release, restricted release, etc.). 

With regard to the preservation of analytical value, the spectrum of available options is quite wide. 
Indeed, some projects only require specific pre-defined statistics and statistical conclusions to be 
preserved (such as the mean value of a given variable). At the other extreme, some projects require 
preservation of relationships between all of the variables to the maximum extent possible, without 
prior selection of specific statistics to preserve.

Recent developments in computing and software have expanded the range of methods available 
for generating different sorts of synthetic data. This chapter aims to provide an overview of such 
methods, and to establish recommendations on the most appropriate methods to use. The methods 
presented have been grouped into three categories:

• Sequential modelling; 

• Simulated data; and 

• Deep learning methods. 

This chapter is focused on methods that have been used in practice by NSOs, although it should be 
noted that the field of synthetic data is always expanding, with further methods under development. 
While methods may be referred to in other parts of this guide, pertaining to such areas of further 
research or investigation, the goal of this chapter is rather to highlight the applicability of methods 
that have been explored by NSOs, and to outline the pros and the cons of these methods and the 
resulting synthetic data sets. In addition to methods, this section also presents some of the tools that 
can help to create synthetic data.

3.1 Sequential modelling

3.1.1 The Fully Conditional Specification (FCS) method

If the joint probability distribution of all of the variables in a data set is known, this not only reveals 
distributions for individual variables, but moreover the relationships between these variables. In such 
a scenario, simulating a synthetic data set from this information would in theory be straightforward 
to implement if sufficient computing resources were available.

In practice, however, the joint distribution will not be known, and must be estimated using modelling, 
though attempting to model the joint distribution in a single step is usually too difficult to do. 
Another option, therefore, is to decompose the (multidimensional) joint distribution into a series of 
conditional and univariate distributions that are easier to deal with, and this is the basis of the Fully 
Conditional Specification (FCS) method.
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The FCS method was originally developed within a data imputation context (Van Buuren et al., 2006), 
but given that data synthesis can be regarded as a massive imputation process on a data set, the 
FCS can also be used to create synthetic data. In the original imputation context, data are replaced 
because they are missing or invalid; in this new synthetic setting, valid data are being replaced to 
enhance the confidentiality protection. Instead of trying to explain all relationships between the 
variables that exist in the data set at once, the synthesiser proceeds step by step, by modelling and 
generating one variable at a time, each conditional upon the previous ones.

fX1, X2, …, Xp  =  fX1
 × fX2|X1

  ×…×  fXp|X1, X2, …, Xp–1
      (1)

Data synthesis using the FCS can be implemented as a two-step process:

• First, the FCS is used to model the joint distribution, by using the original data set to estimate in 
turn each of the conditional distributions represented in the right-hand side of equation (1).

• The second step consists of generating synthetic values for each variable in turn, using the 
estimated model for the conditional distribution of that variable, using as input the synthetic 
values already produced for the previous variables (Drechsler, 2011).

Because the goal is to preserve the joint distribution as a whole, one could argue that the FCS aims 
to preserve all distributions and statistical conclusions rather than specific pre-identified summary 
statistics.

Two questions to consider when implementing this method are the order in which the variables in 
the data set are to be synthesised and generated, and the specific models to be used for each of the 
variables. However, there is no known standard procedure for selecting the order of the variables, 
and subject matter expertise may be important for informing such choices (for example, synthesising 
variables for age and level of education prior to synthesising income). 

Models should be chosen carefully, considering the nature of the targeted variable, which allows 
the synthesiser some flexibility in how each variable is modelled. For example, some variables 
could be modelled using parametric models and others through non-parametric or mixed models. 
Classification and Regression Tree (CART) machine learning models are often a suitable choice for 
synthesising variables (Drechsler and Reiter, 2011). Indeed, they can more easily be implemented 
and adapted to data with irregular distributions than some other models (Reiter 2005). CART can 
notably capture non-linear relationships between variables which may not be properly considered 
with parametric modelling methods, which could be important in attempting to retain analytical 
value in the synthetic data set.
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3.1.2 Pros, cons and considerations for the Fully Conditional  
Specification method

Table 2 summarises the pros and cons of the Fully Conditional Specification method.

Table 2 Pros and cons of Fully Conditional Specification

Pros Cons

This method is relatively easy to understand and 
explain. Because the method estimates the joint 
distribution of the data set, this method aims to 
preserve all relationships between all variables, 
so it is not necessary to specify in advance which 
relationships between variables to preserve. 

For skewed data (such as business or economic data), 
the presence of outliers remains a challenge in terms 
of disclosure or perceived disclosure control. With 
many variables the modelling process can become 
time-consuming.

3.1.3 Tools for FCS

The R package synthpop is a tool for generating synthetic data sets, implementing a range of different 
methods for doing so in a user-friendly manner. The majority of methods it incorporates are based 
on a full conditional specification (FCS), although methods for categorical data, based on preserving 
margins, are also available (Nowok et al., 2015). For the FCS method, synthpop supports a wide range 
of ways to specify each of the conditional models, including both parametric and non-parametric 
models.

The package is designed to allow someone new to data synthesis to get started easily, by using the 
default options that are determined from the properties of the original data, while at the same time 
allowing flexibility for the more experienced user. It also includes tools for utility evaluation and for 
statistical disclosure control (SDC) of the synthetic output.8

3.1.4 In practice: Use of FCS at Statistics Canada

At present, Statistics Canada has released two public-use synthetic data sets that were generated 
using FCS, with high analytical value. Both of these synthetic data sets were created for use in 
hackathon-type activities, allowing their participants to draw statistical conclusions from the 
synthetic files that would be as close as possible to those which could be derived from the original 
data file, independently of the analysis performed.

The first of these events took place in 2018 as part of the 5th International Population Data Linkage 
Network conference held in Banff, Canada. To allow participants to undertake team-based analysis 
using a synthetic data set that mimicked original linked data, synthesis was performed using linkage 
of variables from the census and a mortality registry. The second of these events used a hackathon 
activity during the 2019 Canadian Cancer Research Conference, to explore relationships between 
cancer incidence, treatment and sociodemographic characteristics, based on data synthesised 
from a linkage of data from the census and administrative databases. Further details about the FCS 
method, its implementation and evaluation can be found in Sallier (2020).

8 For more information visit www.synthpop.org.uk

http://www.synthpop.org.uk
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3.1.5 The Information Preserving Statistical Obfuscation (IPSO) method

The goal of the Information Preserving Statistical Obfuscation (IPSO) method is to generate new 
synthetic data values, while preserving specific statistics and statistical conclusions (Cano and Torra, 
2009). 

The basic idea is that some of the variables in the data set are synthesised from other variables in that 
data set. For this purpose, the data set is partitioned into two subsets:

• The matrix Y, which is the subset of the original data file that is to be synthesised; and

• The matrix X, which is the subset of the original file that the model is based upon (containing 
explanatory variables).

The objective of this method is ultimately to create a synthetic version of Y, denoted Yʹ, that can 
either be released on its own as a fully synthetic data set, or to be released together with X, as a 
partially synthetic data set (if the variables within X are non-confidential).

The first stage in this process is to make predictions for Y, denoted Ŷ, using a linear model relating  
Y to X as follows:

Y= βX + ε      (2)

where β is the set of model parameters, and ε are the set of residual errors between the actual values 
of Y and the model’s predictions.

Assuming that the variables involved have multivariate normal probability distributions, then 
estimates for the parameters β̂ can be made such that:

Ŷ= β̂X  and  ε = Y − Ŷ      (3)

Then a normally distributed noise is added to Ŷ to obtain the synthetic values Yʹ. 

While there are different versions of the IPSO method, the main goal is to adjust the regression model, 
Y = βX + ε, in such a way that the synthetic values Yʹ provide the same (or very close) estimates of 
parameters (β) and variance-covariance matrix (Σ) as the original Y. Some versions of IPSO involve 
adding extra steps to force the equality β̂original = β̂synthetic , whereas some other versions are even 
stricter and force both equalities β̂original = β̂synthetic and Σ̂ original = Σ̂ synthetic, so that if a user tried 
to fit the same model Yʹ = βX + ε, to the synthetic data set they would obtain the same estimates 
values for β and ε. This can be achieved by modifying the values of either Yʹ or X in such a way that 
equalities are respected. In the same vein, the synthesiser could decide in advance what specific 
parameters or summary statistic derived from the regression model they would like to preserve.

Hybrid methods can be obtained by completing existing methods with IPSO. Domingo-Ferrer and 
Gonzalez-Nicolas (2010) combined microaggregation with generation of synthetic data, running 
the IPSO procedure separately within each microaggregation cluster. The statistics preserved by 
ordinary IPSO are also preserved by this method. Using the method in Muralidhar and Sarathy (2008), 
it is possible at the variable level to select the degree of similarity to the original data. There is also 
random orthogonal matrix masking (Ting et al., 2008) that controls the relationship with the original 
data via a single parameter.
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By using one of these hybrid methods the problem of non-normal data can be reduced, which 
helps to fulfil the required modelling assumptions. More generally, Langsrud (2019) describes all of 
the above methods under a common framework, and within it develops improved algorithms and 
generalised methods.

3.1.6 Pros, cons and considerations

Table 3 Pros and cons of Information Preserving Statistical Obfuscation

Pros Cons

Like the FCS, this method is fairly easy to understand and explain. With 
this method, it is possible to preserve some pre-identified parameters 
and summary statistics precisely, which can be used to allow a specific 
analysis performed on the synthetic data set to replicate results that 
would be obtained if the original data had been used. IPSO can be 
implemented as part of another method or process, to generate 
synthetic data sets. These hybrid methods may be used to alleviate the 
normal distribution assumption.

Normal distribution for all variables 
is a strong assumption that is 
seldom true.

3.1.7 Tools to apply IPSO

Examples and R packages for IPSO are as follows:

• Mu-Argus, Implementation of Domingo-Ferrer and Gonzalez-Nicolas (2010),  
https://github.com/sdcTools/muargus 

• R package sdcMicro, An implementation of Ting et al. (2008) is included as a noise  
addition method, https://cran.r-project.org/package=sdcMicro 

• R package RegSDC, Implementation of all methods described in Langsrud (2019),  
https://CRAN.R-project.org/package=RegSDC

3.2 Simulated data 

3.2.1 From dummy files to more analytically advanced synthetic files

It is not always possible or practical to derive analytical results and conclusions using algebra, 
especially if the distribution of the data analysed is not known. Thus, a way to overcome this challenge 
is to use computer simulations that rely on a large number of repeated random sampling processes, 
to obtain numerical values and results. Monte-Carlo experiments for density estimation (L’Écuyer 
and Puchhammer, 2021) and Bootstrap procedures for variance estimation (Efron, 1979) are concrete 
examples where simulations are powerful tools for situations where algebra and equations become 
too complex to be solved.

https://github.com/sdcTools/muargus
https://cran.r-project.org/package=sdcMicro
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Simulation processes can additionally be applied to the creation of confidential data sets, that can 
serve as synthetic data. For example, we could generate p independent vectors X1, X2, … , Xp of size 
N using a normal distribution generator process to obtain a synthetic data made of N synthetic units 
and p synthetic variables. In this example, the synthesiser could fix the values of the parameters to be 
used in the normal distribution generator process (i.e., the mean and the variance) without using any 
original data. In other words, synthetic data can be generated from ‘scratch’ without any disclosure 
risks. Here the analytical value would be considered to be null in the sense that no attributes of the 
original data would have been preserved in the synthetic data. 

Such simulated data files are often referred to as “dummy” files within NSOs. However, it is important 
to realise that these dummy files can nonetheless be useful, depending on the users’ needs. For 
example, if the goal is to test processes without any regards to the values or relationships between 
variables existing in the original data. This type of simulation process is easy to implement and can 
be used with other types of statistical distributions.

The synthesiser could also decide to use information from the original data in the generation 
process, to ensure that some of the analytical value is preserved. If we use our previous example, 
the synthesiser could have decided to generate the data is such a way that the parameters used to 
generate each of the p variables are estimated using original data for each of the variables. Thus, 
we would generate one synthetic variable for each original variable, using the estimated mean and 
variance observed for that original variable. In that case, the shape (or distribution) of the original 
variables might not be preserved (if the original variables do not follow a normal distribution) but 
the estimated means and variances for each of the synthetic variables would be the same in the 
original and synthetic data sets. Also, because the variables would have been generated separately, 
the relationships between them would not be preserved.

Simulation processes can be adapted to incorporate more or less of the information contained 
within the original microdata, so as to preserve more or less of its statistical properties according to 
its required use. For example, the Fleishman-Vale-Maurelli method derived from Fleishman (1978) 
and Vale and Maurelli (1983), is an approach that uses information from the original data to generate 
multivariate non-normal distributions with specific features preserved, such as intercorrelation 
between variables and marginal (univariate) means, variances, skewness and kurtosis. This method 
is well suited to capture correlations between continuous variables.

Options for capturing relationships between categorical variables include drawing values from the 
estimated multinomial equation, or classification and regression tree approaches, to create safe 
categorical variables.

3.2.2 Pros, cons and considerations

Table 4 Pros and cons of simulated data

Pros Cons

Simulation processes are often easy to understand, 
and can create completely safe data when no 
information pertaining to the original data is used. 
However, for more advanced types of simulations, 
some analytical value can be preserved.

May not meet complex analytical needs, particularly if 
distributions or outputs need to match those from an 
original data set.
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3.2.3 Tools to apply the method

In general, simulation processes can be programmed using a wide variety of software. For more 
complex types of simulation, the R package semTools9 simulates microdata using the covariance 
matrix, skewness and kurtosis from the original sample data (Jorgensen et al., 2019).

3.2.4 In practice: Australian Bureau of Statistics

In 2017 the Australian Bureau of Statistics (ABS) started using a serverless architecture (cloud), 
provided by the Amazon Web Server (AWS), for some of their projects. In order to explore emerging 
tools on their AWS, the ABS have generated completely safe synthetic data sets, using simulations, 
that can be sent out to the cloud to explore ML methods before obtaining approvals to access their 
data assets.

3.3 Deep learning

Deep learning is a subset of machine learning, and is a growing genre in the Data Science and 
Artificial Intelligence arenas. These methods are becoming more popular in the field of synthetic 
data because synthesisers are dealing more and more with large data sets. At the time of writing 
of this guide, Generative Adversarial Networks are a deep learning method that is used by NSOs to 
generate synthetic data.

With improvements in technology and computational capacity, implementation of machine 
learning processes has become easier and more accessible. Thus, it is natural that machine learning 
approaches have increasingly been employed to generate synthetic data sets. More specifically, the 
use of deep learning models has become appealing because of their capacity to develop powerful 
predictive models based on large data sets.

3.3.1 Generative Adversarial Networks (GAN)

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is a prominent generative model 
used to produce synthetic data. The model tries to learn the underlying structure of the original 
data by generating new data (more specifically, new samples) from the same statistical distribution 
as the original data, with two neural networks competing with each other in a game.10 Because 
the GAN relies on neural networks, that means that the approach can be used to generate discrete, 
continuous or text synthetic data.

In a GAN there are two competing neural network models:

• One is called the generator and takes noise (or random values) as input and generates samples. 

• The other model, the discriminator, receives samples from both the generator and the training 
data, and attempts to distinguish between the two sources. 

9 https://CRAN.R-project.org/package=semTools

10 Because the theory and implementation of processes related to deep learning and neural networks  
can be technically challenging, we will mainly explain the overall concepts, as more information  
can be found in the references.

https://CRAN.R-project.org/package=semTools
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The discriminator serves a function similar to a binary classifier, that would take as input both real 
(or original) data as well as generated (or synthetic) data, and would compute a pseudo-probability 
value that would be compared to a fixed threshold value in order to classify the input from the 
generator as either generated or real. 

As shown in Figure 4, the training process is an iterative one, during which the two networks play 
an ongoing game where the generator is learning to produce more realistic samples, while the 
discriminator is learning to get better at distinguishing generated data from real data. This interaction 
between the two networks is required for the success of GAN as they both learn at the expense of 
each other, eventually attaining an equilibrium.

Figure 4 Illustration of training of a GAN

Source: Kaloskampis et al. (2020).
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3.3.2 Pros, cons and considerations

Table 5 Pro and cons of GANs

Pros Cons

GANs have been used in NSOs to 
generate continuous, discrete and 
textual data sets, while ensuring that 
the underlying distribution and patterns 
of the original data are preserved. 

Furthermore, recent research has been 
focused on the generation of free-
text data which can be convenient in 
situations where models need to be 
developed to classify text data.

GANs can be seen as complex to understand, explain or implement 
where there is only a minimal knowledge of neural networks. 

There is often a criticism associated with neural networks as lacking 
in transparency. 

The method is time consuming and has a high demand for 
computational resources. 

GANs may suffer from mode collapse, and lack of diversity, 
although newer variations of the algorithm seem to remedy these 
issues. 

Modelling discrete data can be difficult for GAN models.

3.3.3 Tools to apply the method 

There is no specific tool broadly available and used in practice in NSOs. However, Kaloskampis et al. 
(2020) provides detailed information on the method, and how to implement it in the context of 
NSOs. In addition, open-source tools are being developed for such models, for example the Synthetic 
Data Vault (https://sdv.dev/).

3.3.4 In Practice: Data Science Campus, Office for National Statistics (ONS)

The ONS Data Science Campus has explored the use of synthetic data to replace sensitive original 
data for testing their Census 2021 system. To communicate their work, Kaloskampis et al. (2020) 
published a study on generating synthetic data sets based on the U.S. Census Bureau’s income 
data set.11 This data set contains numerical and categorical variables, including socio-demographic 
information, and variables related to income (such as working status and income itself ). 

GANs were used in a binary classification model context, in order to generate new synthetic data. 
More specifically, the idea was to train a GAN algorithm to predict whether the income of an individual 
exceeds $50,000 per year based on some of the variables available in the original data set. In this 
example from the ONS, income is the target variable and the generator provides synthetic values at 
the end of the process.

11 available on the UCI repository: https://archive.ics.uci.edu/ml/datasets/adult

https://sdv.dev/
https://archive.ics.uci.edu/ml/datasets/adult
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3.3.5 Other deep learning methods

This section presents very brief overviews of some other deep learning synthetic data generation 
methods that are gaining traction in the research and development communities, and which NSOs 
would benefit from being aware of.

Autoencoders are feed-forward deep neural networks, which are used to first compress and then 
decompress the original data. This is somewhat analogous to saving an image file at a lower resolution 
and then trying to reconstruct the higher resolution image from the lower resolution version.

The first part of the process is performed by a neural network of its own called the encoder, 
which restricts the amount of information that travels through the network using a convolution. 
Autoencoders use a second deep learning network called the decoder, which tries to reverse the 
effect of the encoder, by attempting to reconstruct the original input, with the reconstruction being 
synthetic data (Kaloskampis et al., 2020). Figure 5 illustrates the architecture of an autoencoder.

Figure 5 Illustration of autoencoder architecture

Source: Kaloskampis et al. (2020).

Autoregressive models are being explored to improve on some of the shortcomings of GANs models 
(Leduc and Grislain, 2021). Autoregressive models use a variant of a regression formula, that allows 
for the prediction of the next point of a sequence, based on previous observations of that sequence.

Other methods of note are Synthetic Minority Oversampling Technique (SMOTE) methods, which 
create synthetic data instances based on existing instances from the original data (Chawla et al., 
2002). Many of these deep learning methods are used to create differentially private synthetic data, 
which will be discussed in further detail in Chapter 4.
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3.4 Methodological considerations

As synthetic data become more widely used in practical settings, those who synthesise it must 
consider dealing with issues such as variable types and sampling weights. This section presents 
possible solutions to some of the challenges that synthesisers may encounter.

3.4.1 Handling data types

The data holdings of statistical organizations consist of different types of data, such as numerical 
variables (e.g., age, and income) and categorical variables (such as marital status or occupation). 
Synthetic data are created by modelling the data, with the models used for this depending on the 
sort of variables in the data set, and their properties.

Some categorical variables may have an implicit ordering, such as salary bands, while others have 
no such ordering. Discrete variables (e.g., age), are often based on underlying continuous variables, 
but in official statistics they are expressed only to a limited accuracy (for age, in completed years 
or age groupings). Grouping of continuous variables into distinct intervals is often used to reduce 
disclosure risk.

When synthesis proceeds via conditional distributions (such as with the Fully Conditional 
Specification), the model used for each conditional distribution must be appropriate to the type of 
variable. For example, a logistic regression model can only be used for a categorical variable with two 
categories, and a log-normal distribution can only be used for a strictly positive numerical variable.

Some tools are available to help identify appropriate methods for the type of data, for example the 
synthpop package, to check if each variable is appropriate for the method being considered to model 
its conditional distribution. Transformations may be required for numerical data, to make the data 
more appropriate for the model. Some methods for modelling conditional distributions (e.g., CART) 
can be used for either numerical or categorical data. 
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Similarly, methods that model the whole distribution may require all variables to be numerical (e.g., 
Information Preserving Statistical Obfuscation) or all variables to be categorical (e.g., the differentially 
private histogram method, discussed in Chapter 4) while others (e.g., some implementations of 
GANs) can handle mixtures of different types of variables.

The synthesiser can create discrete variables by binning (grouping) continuous variables. This can 
be done during the synthesis, for example in the synthpop package, or via tools provided to use at a 
pre-processing stage. This allows methods for categorical data to be applied to data sets containing 
numerical data, although some of the information contained in the continuous variable is sacrificed.

Some variables are combinations of categorical and continuous variables. The most common 
example of this is a numerical variable with missing values. In this case, there are two data types for 
this variable. One is a ‘missingness’ indicator, and the other is the value of the numerical variable when 
it is not missing. Such data can be synthesised as part of a FCS, by first synthesising the missingness 
indicator, and then synthesising the non-missing values for cases where the synthetic missingness 
indicator is false. The synthpop package handles this automatically for missing values, and it can be 
customised for other types of mixed variable.

Both utility and disclosure risk, discussed later in this guide, depend crucially on the type of data 
being synthesised. For categorical data, a variable with many possible categories (and hence 
potentially small cell-entries) can pose a disclosure risk, but pooling groups of small categories can 
make the data less useful. Similar considerations apply to the precision with which numerical data 
are released. Particular values of continuous variables can pose a disclosure risk if the synthetic 
generation method reproduces unique values from the original data set. Smoothing or top-coding 
these values either during or after synthesis can mitigate the disclosure risk.

3.4.2 Data synthesis and survey features

Presently, most research related to data synthesis has focused on census data sets and administrative 
data. Lately, however, greater attention has been paid to exploring how to synthesise samples drawn 
from finite populations. A natural question which arises here is how to include survey design features 
in the data synthesis process, given that NSOs often use probabilistic sampling to collect survey data.
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Most of the methods presented in this chapter work under the assumption that the original data 
cover the entire population of interest or are drawn via a non-informative sampling process from a 
finite population (such as simple random sampling). In other words, if the original data consists of 
sample from a finite population, the methods usually aim at synthesising the original data without 
regard for the finite population from which it was drawn. Therefore, statistical conclusions obtained 
via the synthetic file can only be comparable to the ones obtained in the original sample and not 
necessarily the original population, especially when the sampling process follows an informative 
design (Lavallée and Beaumont, 2015). 

Thus, a way to address this would be to incorporate information on the sampling process within the 
data synthesis procedure, in order to obtain a synthetic dataset from which to estimate characteristics 
of the original population. This section aims at summarising some proposed strategies for generating 
synthetic survey weights or incorporating weights in the synthetic data generation process.

The sampling weight can be interpreted as the number of typical units in the surveyed population 
that each sampled unit represents. Often, auxiliary information (from a census or administrative file) 
about the survey population is used to compute survey weights. Weights may be further adjusted, for 
example to account for non-response, incorporating more auxiliary information (Statistics Canada, 
2003). Then, estimates can be calculated using the survey weights. 

Because of the use of auxiliary information, weights can often be a fingerprint of the information that 
went into producing them. Therefore, NSOs do not usually release survey weights, as this information 
could be used to identify specific units. Thus, it was a consensus among international experts that 
it would be unwise to release original sampling weights, even if the rest of the variables were to 
be synthesised, notably because if all units in a given sub-group of the population have the same 
distinct weight, then, even if the record is synthetic, that weight must have originated from data in 
that sub-group. In that case, if an attacker knows the mapping between weights and sub-groups, 
providing synthetic weights, or including weight in the data synthesis process, removes the exact 
fingerprint mapping between the weights and the original sampled units. 

Alternatively, weights can inherently be very distinct, which is more commonly an issue with 
asymmetric data, such as business data, where large businesses may have weights that look unlike 
any other business. In this case, even synthetic weights pose a risk of outlier re-identification if the 
synthetic weights resemble the original weights, and either differential privacy could be a solution, 
or this might motivate the inclusion of weights directly in the data synthesis process such that 
no weights (even synthetic) would be directly released to users. In either case, it is important to 
realise that the disclosure risks of releasing synthetic weights can be estimated the same way as the 
disclosure risk of any other variable is estimated.

Then two types of strategies were raised:

1. Generate and provide synthetic weights to users.

a. Treat the weights as a variable to be synthesised among all the others.

b. Synthesise the design variables and recalculate synthetic sampling weights  
based on them and the original sampling design.

2. Use weighted models to approximate distributions from the original population, and generate 
values from them (in this case no weights would be provided to users).



Synthetic Data for Official Statistics – A Starter Guide

28

3.4.2.1 Generate and provide synthetic weights to users
Some users might want to have synthetic weights made available with the rest of the synthetic 
variables, especially if the goal is to explore the synthetic data set while waiting for access to the 
original data set if that is also expected to include weights.

3.4.2.1.a Treat the weights as a variable to be synthesised among all the others

The idea was to consider survey weights as any other variables to be synthesised. One of the main 
concerns here is to ensure that the synthesised weights need to be coherent with the synthesised 
design variables as well as all the other variables.

3.4.2.1.b Synthesise the design variables and recalculate synthetic sampling weights based 
on them and the original sampling design

Here, the goal would be to synthesise all variables involved in the sampling design, and to 
recalculate synthetic weights in the same way that they were calculated at the design stage of the 
survey. However, that covers mainly the calculation of basic sampling weights. Usually, in practice, 
basic weights are then being processed to take into account calibration, non-response and even 
smoothing on some occasions. For example, for calibration, it could be possible to adjust the 
synthetic weights to ensure that some weighted totals of the synthetic file correspond to known 
totals from the original population. Also, for non-response adjustment, a solution could be to re-
weight for total non-response with the synthetic weights. In that case, it would be important to 
synthesise total non-response indicator variables in the synthesis process and then use those to re-
weight synthetic weights with traditional methods.

In general, providing synthetic weights requires a lot of attention to be paid to the original survey 
design, and where those weights are coming from. In addition to that, it is important to realise 
that it also limits the selection of synthesis approaches that can be used. Indeed, recalculating 
synthetic sampling weights might be more complicated with more complex survey designs. Thus, it 
is important to understand users’ needs, to ensure that the effort put in the synthesis process truly 
matches the analytical needs of the requirement.

3.4.2.2 Use weighted models to approximate distributions from the original 
population, and generate values from them

The pseudo likelihood method is suggested in this case. This method can be considered to be an 
example of an advanced simulation process that generates data of high analytical value. The idea is 
to preserve univariates statistics and relationships between variables from the original population as 
much as possible. In this case no weights would be provided to users.
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3.4.3 Pseudo likelihood

The pseudo likelihood method generates synthetic populations, by incorporating survey weights 
into the models using the pseudo likelihood approach (Kim et al., 2020). The idea is to estimate the 
distribution of the finite population. Once the finite population density is estimated, the synthesiser 
can generate fully synthetic populations, by drawing values repeatedly from it. This notably requires 
derivation of the full conditional distributions of the Markov Chain Monte Carlo (MCMC) algorithm 
for posterior inference, by using the pseudo likelihood function. A full presentation of the method is 
beyond the scope of this guide; further details can be found in (Kim et al., 2020).

Pros, cons and considerations

Table 6 Pros and cons of Pseudo Likelihood Method

Pros Cons

When generating synthetic populations, the sampling process is already 
accounted for; thus, the uncertainty introduced by the sampling process is also 
accounted for. 

Providing synthetic populations can be better than providing synthetic samples 
and can be more convenient (no need for original survey weights and no need to 
estimate sampling variance).

There are potential 
challenges with 
the choice of prior 
distribution for the 
MCMC algorithm.

Tools to apply the method

There is no known tool per se to apply the method. However, section 2.1 and 2.2 of Kim et al. (2020) 
provides detailed information on the method and how to implement it.
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3.5 Tips to get started

This section provides recommendations on synthetic data generation methods, depending on 
the particular use case and requirements for the synthetic data produced. Table 7 connects the 
recommended methods with the use cases presented in Chapter 2. Figure 6 illustrates a decision 
tree to help practitioners identify the method most suitable for their project.

Table 7 Method recommendations by use case

Use Cases

Methods Public 
synthetic 
microdata 
release / 
testing analysis

Education Testing 
Technology

Comments

Sequential 
Modelling

Fully 
Conditional 
Specification

Recommended Can be used, 
though if 
analyses 
conducted 
and statistical 
conclusions 
are pre-
determined 
it might be 
too time-
consuming in 
comparison to 
other methods.

Can be used, 
but might be 
too advanced 
in comparison 
to the real 
analytical need.

This method aims, in 
theory, at preserving 
relationships between 
variables from the 
original data. Disclosure 
risk and analytical value 
need to be evaluated 
according to the release 
process.

IPSO Recommended 
if the analyses 
are all related 
to linear 
regression, 
otherwise not 
recommended.

Can be used, 
depending on 
the context: 
Recommended 
if the analyses 
are all related 
to linear 
regressions, 
otherwise not 
recommended.

Can be used, 
but might be 
too advanced 
in comparison 
to the real 
analytical need.

This method preserves 
results and statistics 
specifically related 
to linear regressions. 
Disclosure risk and 
analytical value need to 
be evaluated according 
to the release process.
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Use Cases

Methods Public 
synthetic 
microdata 
release / 
testing analysis

Education Testing 
Technology

Comments

Simulated 
Data

Dummy files Not 
recommended

Can be used if 
training does 
not require 
analytical value 
in the data.

Recommended This method does not 
preserve any analytical 
value from the original 
data, but is easy and 
quick to implement. 
Data is totally safe.

Analytically 
advanced 
simulated 
data

Recommended 
if analyses 
conducted are 
related to the 
pre-identified 
results that 
needed to be 
preserved in 
the synthesis 
process. 
Otherwise, not 
recommended.

Recommended 
if analyses 
conducted are 
related to the 
pre-identified 
results that 
needed to be 
preserved in 
the synthesis 
process. 
Otherwise, not 
recommended.

Can be used, 
but might be 
too advanced 
in comparison 
to the real 
analytical need.

This method only 
preserves pre-identified 
results and statistics. 
Disclosure risk and 
analytical value need to 
be evaluated according 
to the release process.

Pseudo 
Likelihood 

Strongly 
recommended 
if user wants 
to estimate 
statistics 
from the 
original finite 
population. 
However not 
recommended 
if user is 
expecting 
synthetic 
weights.

Can be used, 
though if 
analyses 
conducted 
and statistical 
conclusions 
are pre-
determined 
it might be 
too time-
consuming in 
comparison to 
other methods.

Can be used, 
but might be 
too advanced 
in comparison 
to the real 
analytical need.

This method aims, in 
theory, at preserving 
relationships between 
variables from the 
original population. 
Disclosure risk and 
analytical value need to 
be evaluated according 
to the release process.

Deep 
Learning

Generative 
Adversarial 
Network

Recommended 
especially in 
presence of text 
or unstructured 
data.

Can be used, 
though if 
analyses 
conducted 
and statistical 
conclusions 
are pre-
determined 
it might be 
too time-
consuming in 
comparison to 
other methods.

Can be used, 
but might be 
too advanced 
in comparison 
to the real 
analytical need.

This method aims, in 
theory, at preserving 
relationships between 
variables from the 
original data. The only 
method that handles 
unstructured and text 
data. Disclosure risk and 
analytical value need to 
be evaluated according 
to the release process.

Table 7 Method recommendations by use case (continued)
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Figure 6 Synthetic data generation method decision tree
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Chapter 4: Disclosure considerations for synthetic data

According to the Organization of Economic Cooperation and Development (OECD, 2003), disclosure 
relates to the inappropriate release of data or attribute information of an individual or an organization. 
Disclosure risk is the possibility of disclosure occurring, and disclosure control refers to methods that 
can be used to reduce it. The purpose of this chapter is to present the disclosure control options 
available to NSOs and their synthesisers.

When data are altered to protect against disclosure, either by creating synthetic data or by other 
methods, the discussion is often in terms of the trade-off between disclosure risk and utility. This is 
often presented graphically as shown in Figure 7. For synthetic data, as we discuss in the next section, 
utility is a measure of the closeness of results from the synthetic data compared to the original data. 
Data where all the records had identical values might have a utility of zero, and a disclosure risk 
of zero, while the original data will have a utility of 100%. Disclosure risk for synthetic data is at 
a maximum when the original data are unaltered. The ideal position on this graph, at the top left 
corner, with perfect utility and no disclosure risk, is never attainable because altering the data to 
protect against disclosure risk will always change data values.

Figure 7 The trade-off between utility and disclosure risk
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of DP methods for synthetic data is given below. 
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Although no record in a (fully) synthetic data file corresponds to a real person or household, there is 
concern that attribute and identification disclosure risk could still be present. Identification disclosure 
could be present if unique observations found in the population are present in the synthetic data 
(Drechsler and Reiter, 2009) and attribute disclosure would occur if the value of the original data for 
such an individual could be determined, perhaps wrongly, from the synthetic data. These situations 
could result in loss of reputation for the data holders and put at risk respondents’ willingness to 
participate in surveys, census or provide their information by other means. Therefore, NSOs may still 
decide to use additional disclosure controls in addition to synthetic data.

NSOs should choose whether or not to implement additional disclosure controls on their synthetic 
data, as well as any specific privacy preserving techniques, based on their own legislative and 
operational frameworks. Common privacy preserving techniques and other statistical disclosure 
control (SDC) measures can be applied to both synthetic as well as real data. Examples include 
top-coding or bottom coding of extreme values and smoothing or rounding of numerical data as 
well as indistinguishability-based techniques such as k-anonymity, ℓ-Diversity, t-closeness that are 
frequently used by NSOs. We include introductions to these methods here, and towards the end of 
this chapter we outline methods for disclosure control that have been developed by Statistics New 
Zealand.

4.1 Measures of disclosure risk for synthetic data

There are two main types of disclosure: identity disclosure and attribute disclosure. Identity 
disclosure occurs when a record in the released data is recognised as matching to an individual for 
whom the attacker knows values of the released data from another source. This definition is only 
relevant to partially synthetic data since the records in fully synthetic data do not have one-to-one 
matches to the original data. A small subset of variables in the data, including the synthesised values, 
are used to make the linkage and once the linkage is successful, the attacker can disclose all other 
non-synthesised attributes for the individual. Reiter and Mitra (2009) have proposed methods for 
evaluating disclosure risks for partially synthetic data. They assume that an attacker has access to 
multiple versions of the synthetic data and uses a sophisticated approach to evaluating this risk that 
will not be suitable for NSOs.

Attribute disclosure from either fully or partially synthetic data can occur without identity disclosure. 
The scenario we envisage is that an attacker observes an individual in the synthetic data that appears 
to be a unique match to a known individual. An attacker may use synthetic data to obtain information 
for an individual about one or more of their synthesised values. Here we need to distinguish between 
information that is available from the model that has generated the synthetic data and information 
that is specific to an individual in the released data. As an example of the former, the synthesis model 
for the relationship between occupations and income might find that a high proportion of merchant 
bankers were in the highest income brand. Then an attacker with the synthetic data, wishing to 
determine the income band for a merchant banker, would be able to do so with high probability.
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4.1.1 Attribute disclosure measures

Approaches developed to address attribute disclosure from researchers in the context of synthetic 
data have used the idea of replicated-uniques, also sometimes termed apparent matches. A replicated 
unique is a record in the synthetic data with a unique combination of values identified from all 
variables or from a selected subset and where this combination is also a unique record in the original 
data. These are termed key variables or quasi-identifiers that represent information that an attacker 
might possess about an individual. An attacker might then assume that this was the real individual 
with these characteristics and find the values of other items in the person’s record. Of course, such 
values may be wrong, but publicity associated with an apparent data breach could be detrimental 
to the NSO. Thus, NSOs can take steps to delete replicated-uniques or to minimise the proportion of 
such records present in synthetic data. Nowok et al. (2017), have investigated this method and its 
impact on utility for synthetic data. As expected, the proportion of replicated-uniques is greatest for 
small data sets with pseudo identifiers taking many unique values. In the examples investigated, the 
removal of replicated-uniques had only a very small influence on data utility.

Replicated-uniques or apparent matches can also be used as the basis of a disclosure risk measure for 
synthetic data. The apparent matches in the synthetic data can be aligned with the records in the 
original data. This was illustrated with data synthesised from the year 2018 of the American Community 
Survey (ACS) that was part of the HLG-MOS Synthetic Data Challenge 2022, an accompanying sprint 
to evaluate this guide (Bhagat et al., 2022).12 The original data contained 143,371 records and it 
was synthesised with the default settings of the synthpop package. There were 1,826 records in the 
synthetic data with unique combinations of the quasi-identifiers, PUMA area, age, and sex. Only 
671 of these records, or 0.47%, were also unique records in the original data, giving a 0.47% rate of 
replicated-uniques.

To mimic what an attacker might do, we can then match each of the replicated-uniques back to the 
original data; a sample of 9 such records is shown in Table 8, where we also show 3 other variables 
that might be of interest to an attacker, MARST (marital status), EDUC (education level) and INCTOT 
(total income). For example, we can count the proportion of categorical variables where the synthetic 
and original data agree. In the sample shown 4 of the 9 records agree on marital status and 3 on 
education but only one on both. The percentages for all 671 replicated-uniques in the ACS data were 
55% for MARST, 37% for education, and 16% for both. For INCTOT we could calculate the percentage 
of synthetic incomes that were within 20% of the original data for the 9 records in Table 8 there is 
only one such. This was true for 16% of the 671 records.

12 The HLG-MOS Synthetic Data Challenge 2022 was held in January 2022 in order to evaluate the recommendations 
of this guide in practical applications. A total of 17 teams participated, representing NSOs, industry and academia, 
from various countries. Participants were tasked to synthesise data with different combinations of data sets, 
synthesis methods and utility and disclosure measures. The results and experiences from this challenge  
contributed to content within this guide. The results and knowledge gained from the challenge is archived on  
https://pages.nist.gov/HLG-MOS_Synthetic_Data_Test_Drive/index.html (Bhagat et al., 2022)

https://pages.nist.gov/HLG-MOS_Synthetic_Data_Test_Drive/index.html
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Table 8 Sample of 9 randomly chosen records from the 671 replicated uniques  
in the synthesised 2018 ACS data.

Quasi-identifiers Other variables

Synthetic data Original data

PUMA Age Sex MARST EDUC INCTOT MARST EDUC INCTOT

17-3532 72 Male With spouse 7 20,000 With spouse 8 139,600

17-3527 64 Male With spouse 8 80,000 Single never 
married

11 37,000

39-5403 37 Male No spouse 10 44,000 No spouse 6 32,000

17-3521 76 Female Widow 6 51,700 With spouse 6 23,000

17-3308 85 Male With spouse 11 74,000 With spouse 7 22,500

39-4107 86 Female Widow 6 31,680 Divorced 6 17,100

17-3523 88 Female Single never 
married

2 19,000 Widow 5 18,050

17-3528 86 Female Widow 6 16,700 Widow 6 79,800

17-3309 84 Male With spouse 6 75,700 Single never 
married

8 26,000

Source: HLG-MOS Synthetic Data Challenge 2022 (Bhagat et al., 2022)

Summary measures of disclosure risk could include the proportion of replicated-uniques as well as the 
proportion of non-key variables that were correctly identified from apparent matches. Depending on 
the results of such analyses the user might decide to delete all replicated-uniques based on quasi-
identifiers from the data. If they are left in the released data, the summary measures would give 
some measure of the likelihood of an attacker getting a correct answer to an attempt to identify an 
individual’s attribute. This approach has not been fully developed at present, and further work is 
needed to find out if it could be of practical use.

4.1.2 Identity disclosure measure

Identity disclosure can be more difficult to measure, particularly with a fully synthetic data set where 
no record is real. A method that has been utilised by one NSO, at the writing of this guide, to assess 
identity disclosure is called rates related to database reconstruction. These rates refer to the percentage 
of matches one gets from reconstructed data to the original data, with the intent to determine how 
easily the original data can be generated with the information available to the public. As an example, 
a subset of the Summary File 1 (SF1) of the 2010 Census of the United States of America was taken to 
review. The SF1 contains data from the questions asked of citizens of the United States of America and 
about every American housing unit. The SF1 has the following data protections: the housing units in 
the file were swapped at some unpublished rate; the group quarters in the file were protected using 
synthetic data techniques and the tables themselves are an information reduction. The data for the 
variables, age, sex, race, Hispanic/Latino ethnicity, and census block (geography) variables were 
reconstructed using a subset of the SF1 through a system of equations that when solved, converted 
to microdata. These records were then matched with data from commercial holdings as well as the 
Census Edited File (CEF) itself. In the commercial holdings example, the U.S. Census Bureau had a 
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specific series of commercial data holdings and this experiment was to determine if identities could 
be inferred via linking data sets. The CEF experiment was conducted as a worst-case analysis, serving 
as a proxy for an attacker with data holdings on par with the CEF in terms of quality. More generally, 
the exercise could be conducted with any additional data sets that contain identifiers, like name 
and address, and a subset of variables to match with the subset under review (for example age and 
sex). In this Census example, after combining the reconstructed with the commercial data, the five 
variables plus a unique identifier are linked exactly to the same variables in the CEF. There are two 
main rates to consider: putative (suspected match) and confirmation linkage, or confirmed match.

The matching process works as follows:

1. Reconstructed data says there is 1 male white Hispanic person aged 52 in a block.

2. The commercial data shows that the only 52-year-old male in that block is Bob  
at X address (putative match).

3. Attach white/Hispanic to the putative match.

4. Look for Bob/X address/age 52/male/white/Hispanic in the CEF.

5. Find that record in the CEF (confirmed match).

This exercise can be scaled to rather large data sets, as demonstrated by the exercise conducted 
by the U.S. Census Bureau. Table 9 summarises the putative, confirmed, and precision rates of the 
census exercise. Precision is defined as the confirmed matches divided by the putative matches. The 
precision variable in Table 9 shows how often we are right when we think we are.

This method was implemented to assess re-identification via matching all the variables. However, it 
is important to keep in mind that if the commercial (or other) data holdings used for re-identification 
purposes contain other variables on the file that can be attributed to an individual. Thus, we need 
to consider attribution disclosure as presented in the precious section. In summary, rates related to 
database reconstruction pertain to identity disclosure but strongly imply the potential for attribute 
disclosure.

Table 9 Disclosure Risk Assessment of Population Uniques by Block Population Size

Block 
Population 
Bin

Putative  
Re-identifications
(Source: Commercial Data)

Confirmed  
Re-identifications
(Source: Commercial Data)

Precision
(Source: Commercial Data)

Putative  
Re-identifications
(Source: CEF)

Confirmed  
Re-identifications
(Source: CEF)

Precision
(Source: CEF)

Total 137,709,807 52,038,366 37.79% 238,175,305 178,958,726 75.14%

0

1-9 1,921,418 1,387,962 72.24% 4,220,571 4,093,151 96.98%

10-49 25,148,298 13,481,700 53.61% 47,352,910 43,415,168 91.68%

50-99 30,567,157 12,781,790 41.82% 51,846,547 42,515,756 82.00%

100-249 38,306,957 13,225,998 34.53% 63,258,561 45,807,270 72.41%

250-499 21,789,931 6,408,814 29.41% 35,454,412 22,902,054 64.60%

500-999 13,803,283 3,460,118 25.07% 23,280,718 13,514,134 58.05%

1000+ 6,172,763 1,291,984 20.93% 12,761,586 6,711,193 52.59%

Source: Abdow, J. (2021b)
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4.2 Privacy-preserving techniques

Privacy preserving techniques can be applied on real data or synthetic data. NSOs may choose to 
apply privacy preserving techniques in addition to synthetic data based on their national context, 
legislative and operational frameworks. Of increasing interest is the differential privacy framework 
and how it can be applied in conjunction with synthetic data.

4.2.1 Differential Privacy

Differential Privacy (DP) was introduced in 2006 in computer science by Cynthia Dwork, Frank 
McSherry, Kobbi Nissim and Adam Smith. It is only recently that DP has made its way to official 
statistics and DP-compliant methods are playing an increasingly important role in today’s digital 
world. While DP’s terminology is well established making use of computer science terms such as 
databases, mechanisms and queries in this document we adopt a more statistical language to 
convey the same notions.

Contrary to popular belief, DP is neither a method nor an algorithm but a definition supporting a 
mathematical disclosure-control framework. Thus, despite its name, the intended use of DP in official 
statistics is to prevent disclosure when releasing statistical information rather than to address privacy 
concerns when gathering personal data from individuals. As such, DP presents itself as an alternative 
to the traditional disclosure control framework which has been used by NSOs for decades now.

The two main vintages of DP are: the one-parameter ε-DP and the weaker two-parameter (ε-δ) DP. 
In this chapter, we focus on the more stringent ε-DP, which is the form people usually have in mind 
when referring to DP. Where applicable, DP can be used by a data custodian to provide explicit and 
mathematically provable disclosure protection guarantees when releasing statistical information 
derived from personal data. DP is the first disclosure control framework explicitly stating the type and 
degree of protection it is offering.

What is a DPε-compliant Method?

Any method applied to a data set D for the purpose of releasing statistical information - either in 
the form of tables or data sets (including those of a synthetic kind) - is at risk of disclosing some 
of the personal information D contains. Such a method M is called (ε-) differentially private or DPε-
compliant when it meets DP’s mathematical requirements which impose restrictions on the type of 
disclosure that may occur.

Furthermore, the privacy parameter ε - whose value in practice is set by the data custodian - 
determines the degree of disclosure protection a DPε-compliant method M is offering by means of 
the upper limit it imposes on the amount of person-level information M might be disclosing. More 
explicitly, the data custodian controls through ε the (average) amount of suitable random noise used 
by M to produce its outputs, which incidentally also impacts their utility: the degrees of protection 
and utility are closely linked. Indeed, the larger (smaller) the value set to ε the less (more) noisy M’s 
outputs become and, generally speaking, the greater (lesser) the disclosure risk they pose and the 
greater (lesser) their utility.13

13 ε is often referred to as the “privacy loss parameter”, with small values leading to less loss of privacy, and larger 
values leading to greater losses of privacy.
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Why the name, Differential Privacy?

To better understand DP we need to state the problem it has been introduced to solve. As a preamble 
suppose you were told that John’s height is 10 centimetres (or 4 inches) more than the national 
average for men. Now should you learn from a data set of national heights, say, that the national 
average is 1m78 (or 5 feet 10 inches) then you would correctly conclude that John is 1m88 (or 6 feet 
2 inches) tall.

Note that, and this is key, John’s height may have become known to you without him ever having 
participated in the data collection of the national heights data set. In the situation where indeed, John 
did not contribute his information to the data set, then its custodian can hardly prevent disclosure 
from happening since it is directly due to external factors such as what people (like you) already 
know about John. After all, while it is certainly John’s prerogative to not contribute information to 
this data set, he cannot prevent others from contributing their information which may bring the data 
set to play an accessory role in a disclosure event involving him.

By thinking of examples such as this one, the authors of DP posited that disclosure protection 
guarantees cannot be absolute in nature: simply put, a method ought not to be held responsible 
for a disclosure event that could have occurred without the concerned individual ever having 
contributed to the data set itself. Instead, they proposed assessing a method’s role in a disclosure 
event differentially by comparing what it can reveal about an individual when their information is 
present in the data set to when their information is not included.

In effect, this differential assessment limits M’s role in a disclosure event to what it can reveal as a 
result of the participation (or absence thereof ) of the concerned individual to the data set. Hence, if 
M’s outputs were about the same regardless of whether John had participated in the data set or not, 
then M would hardly be at risk of disclosing something specific about John since his contributions 
have little influence on M’s outputs. This will become clearer later when examples of a DPε-compliant 
method are presented.

What are exactly the mathematical requirements underlying Differential Privacy?

The concerns just expressed over the role any one piece of information might play in determining 
M’s output led to DP’s mathematical requirements. But first, those concerns must be rephrased in 
the language of data sets that M understands. To that end, consider two data sets that are identical 
except for a single piece of information one has and the other not; in DP’s parlance these are called 
adjacent data sets. Then, for a given output of the method M and a given pair of adjacent data sets D 
and D’, determine how more likely is this output value to occur when M is applied to D instead of D’.

The relative likelihood assessment just described involves a specific combination of an output and a 
pair of adjacent input data sets. DP-compliance requires doing the same, but this time for an arbitrary 
combination of an output value and a pair of adjacent data sets. More specifically, M is DPε-compliant 
if an output is no more likely to occur than the limit set by the data custodian through the privacy 
parameter ε when M is applied to D rather than to D’, irrespective of which one output and which one 
pair of adjacent data sets D and D’ are considered.

This is DP’s way of sizing up the influence any one individual in the data set might have on any one of 
M’s outputs, as their personal information may be the only thing separating D from D’. This is not to 
say that the upper limit associated with a DPε-compliant method holds for all outputs and all pairs 
simultaneously; it rather means that it is holding for any one arbitrary output-pair combination, as 
opposed to holding just for one cherry-picked combination.
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Furthermore, the upper limit calculated as part of DP’s likelihood assessment has to hold even if 
the user already knows everything about the data set’s contents except for just one individual’s 
contribution and knows the inner working of M. Thus, DP has what can be called a no-secrecy policy: 
the validity of its protection guarantee does not rely on users having little knowledge of both the 
data set and the disclosure control method used, an assumption usually made for the protection 
offered to be most effective. On the contrary, DP’s likelihood assessment is to be performed by 
assuming users have an understanding of D and M comparable to that of the data custodian. We 
will discuss this further below when examples of a DP-compliant method are presented. DP’s no-
secrecy policy is a major selling point and explains to a large extent practitioners’ interest in DP as a 
disclosure control framework.

What does it mean to have formal disclosure protection guarantees?

The explicit and mathematically provable protection guarantees DP offers characterise this 
framework. While such formal guarantees are a novelty in a disclosure control context, they are a 
familiar occurrence in probability sampling: statistical bias and variance are examples of formal quality 
guarantees. For both probability sampling and DP, formal guarantees stem from the mathematical 
requirements underlying each framework.

In contrast, it is usually not possible to formally assign bias and variance measures to estimates 
derived from nonprobability samples, which were en vogue in the 1930s before probability 
sampling was introduced and have recently been making a comeback. While a carefully designed 
nonprobability sample might allow for sound inferences to be made, it has traditionally been lacking 
the mathematical underpinnings needed to support formal quality guarantees such as bias and 
variance.

What does a DPε-compliant method look like?

Just like a probability sample looks the same as a nonprobability sample (both are just subsets of 
the population), a DPε-compliant method looks no different than any other method. The difference 
rather lies in how the samples and methods are conceived: both a probability sample and a DPε-
compliant method result from a process designed to meet well-defined mathematical requirements 
from which they each inherit their formal guarantees. While some of the dissemination methods 
exploited under the traditional disclosure control framework already are DPε-compliant, most are not 
(although some can be modified to become differentially private).

Applications: two examples of a DPε-compliant method

In this section two examples of a DPε-compliant method are given for illustrative purposes: the first 
releases a numerical value and the other a data set. In each case, the DPε-compliant method is derived 
from a non-compliant one to showcase its distinctive features.

First, consider the situation in which a data custodian is looking to release a count extracted from 
D after rounding it to the nearest 5, say. Hence, raw counts of 14 and 12 would get released as 15 
and 10, respectively. This method is not differentially private. Indeed, a key theorem of DP (i.e., a 
verifiable consequence of DP’s mathematical requirements) states that no deterministic method can 
be differentially private. And rounding to the nearest 5 is such a method since, for instance, it always 
returns 15 when the raw count is 14 (and always returns 10 when the raw count is 12). Note that 
increasing the rounding base to 10 or 100 would not change the outcome: it is the deterministic 
‘nearest-to’ feature of the rounding that poses the problem here, not the actual base value.
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It is instructive to establish non-compliance directly, that is without appealing to DP’s theorem. 
Consider a data set D containing 13 yeses, which gets rounded up to 15, along with its adjacent D’ 
obtained from D by dropping one of those thirteen records. The ensuing count of 12 yeses for D’ 
would get rounded down to 10, allowing one to conclude with certainty that the dropped record was 
a ‘yes’. The same argument, but expressed this time in DP’s parlance, shows that the output value 
of 15 occurs with probability one when the rounding is applied to D (with its 13 yeses) but with 
probability zero when the rounding is applied to D’ (with its 12 yeses). This can be paraphrased as 
saying that M’s output of 15 is “infinitely” more likely to occur from D rather than from its neighbour 
D’, which is something DP does not allow to happen as “infinity” is larger than any pre-set limit.

From this, we conclude that a method must have a random component to be differentially private. 
However, this is not a sufficient condition. For example, rounding a raw count to the multiple of 
5 directly above or below it based on the flip of a coin (e.g., rounding 14 to either 10 or 15, each 
with probability ½) has a random component but is not differentially private. Indeed, consider D 
leading to a count of interest of 15. Since it is already a multiple of 5, it would get released as 15. Now 
consider D’ such that its count is 15-1=14. Under the current random rounding scheme, this count 
has equal chances of getting released as either 10 or 15. Because the output value 10 is possible for 
D’ but impossible for D, their relative occurrence likelihood is “infinite” which again is something DP 
does not allow to happen.

In this situation, a DPε-compliant method is Laplace’s mechanism, which is obtained by adding noise 
generated from Laplace’s continuous distribution to the raw count. For example, 15.199385… and 
13.836519… are just two of the countless possibilities for Laplace’s output to the same input value of 
14. (Later we discuss a way of using Laplace’s mechanism to release whole numbers, which is what 
users would naturally expect to get as released counts.) 

Laplace’s mechanism14 was the first example ever given of a DPε-compliant method and it possibly 
remains the simplest one to this day. The variance of the Laplace distribution determines the 
(average) amount of noise that gets generated. Not surprisingly then, the privacy parameter ε of 
Laplace’s mechanism is directly tied to the variance of the underlying Laplace distribution, which 
drives the degree of protection (and utility) conferred by the data custodian to Laplace’s outputs.

Considering users’ dislike of noise-adding methods, a welcome consequence of DP’s no-secrecy 
policy is that a data custodian can safely divulge the variance of Laplace’s distribution used (or 
equivalently, the value set to the privacy parameter e). This is a departure from traditional disclosure 
control practices which call for such information to be kept secret in order for the protection offered 
to be most effective. Thus, under DP users are given the means to assess the statistical significance 
of the conclusions they are drawing by factoring in the (average) amount of noise that has gone into 
the outputs analysed. It is important to note that in practice, accounting for the noise in the output 
is extremely difficult. To date, there is a knowledge gap between NSOs and users on interpreting 
noisy results. Inexperienced users are often not comfortable looking at negative counts. Some NSOs, 
for example, the case of the Australian Bureau of Statistics, have found that there are significant 
investments in educating users so that they can be comfortable with non-additive tables.

14 While it is tempting to use the better-known Gaussian or normal distribution instead of Laplace’s, this strategy does 
not quite lead to a DPε-compliant method since it only meets the requirements of the weaker two-parameter (ε−δ) 
form of DP.
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For the second example of a DPε-compliant method, suppose a Yes-No question is administered to 
individuals using a Randomised Response (RR) method as a means of reducing the response bias 
due to the sensitive nature of the information gathered – see for instance Section 12.5 in Lohr (1999) 
for a short discussion of RR methodology. A RR method introduces plausible deniability15 by altering 
any given response with probability p (which is known to the data custodian) before recording it 
in a data set. Also, a RR method is to keep no trace of the reported answers nor of which ones were 
altered.

It can be shown that knowing p allows one to draw meaningful statistical conclusions about the 
true proportion of yeses from the recorded values alone. However, in the traditional disclosure 
control setting only the data custodian would be allowed to know p. In contrast, in the case of a DPε-
compliant RR method, the value for p could be safely divulged in accordance with DP’s no-secrecy 
policy allowing users to make valid inferences as well.

We can see such a RR method as producing partially synthetic data, albeit of a very limited analytical 
kind. Indeed, not only are cross-relations among variables not captured by the method discussed 
here, but there is also legitimate ground to question its efficacy in addressing the initial bias concerns.

For the sake of further illustrating how DP-compliance works, suppose the data custodian felt16 that 
only yeses were sensitive and therefore needed to be protected. To this end, a RR method is used 
whereby only some of the yeses are randomly altered: all reported noes are directly recorded in the 
data set.

While economical in the amount of noise it uses, this RR method is not DP-compliant. To see why, 
consider a data set as output of this method in which a ‘yes’ has been recorded for a certain individual. 
The custodian might argue that without knowing how the method works, a user cannot say for 
certain whether this value points to a reported ‘no’ instead of a reported ‘yes’. However, this line of 
argumentation does not comply with DP’s no-secrecy policy which requires assuming the user does 
know how the method works. And a user knowing that a reported ‘no’ cannot possibly be recorded as 
a ‘yes’ in the output data set by this RR method would conclude with certainty – which is something 
DP does not allow to happen – that the individual had to have answered ‘yes’ to the question. In 
this situation, DP-compliance requires randomly altering some of the noes as well to complete the 
masking of the yeses undertaken.

Is a DP-compliant method always better than a non-compliant one?

The short answer is no, not always. Just like an ill-designed probability sample can lead to nonsensical 
conclusions (as exemplified by the famous tale of Basu’s elephants 17), an ill-devised differentially 
private method can do a poor job of preserving the personal information used as input. If the method 
is not well designed or the data is too difficult, the added noise can overwhelm the input, rendering 
the released outputs all but useless.

15 The notion that respondents can deny that the recorded answers are truly those they initially expressed.

16 As argued above, deciding which information is to be protected ought to be a matter of the agreement passed 
between parties and not a matter of opinion as is the case here.

17 First told in Basu (1971), numerous other accounts of the story are widely available on the Web.
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Previously we discussed the basic approach for adding Laplacian noise to counts of individuals. Data 
synthesis is often performed by combining these privatised counts to parameterise or train a model 
which can generate new records in the original schema. Simple histogram models, probabilistic 
graphical models (PGM)s and generative adversarial networks (GAN) have all been used for this 
(Bowen and Snoke, 2021). These methods will be elaborated on later in this chapter, however 
intuitively, for high utility we want the added noise to be small in comparison to the original count 
values, so the relative shift between the input and output counts is not large. More accurate counts 
lead to more realistic data models. But, due to differential privacy composition, the more counts we 
take over a given individual, the more noise we need to add to maintain the same level of privacy.

This means that challenging cases occur if a given data schema has a large number of variables 
(which require many counts for the model to capture), or the data has few records (meaning many 
counts are small), or if the variables have many possible values (meaning the data is spread sparsely 
across different options and many counts are small or zero). These conditions can pose significant 
problems for utility that researchers are actively working to overcome (Bowen and Snoke, 2021). 
However, when a data set has a large number of records, a small number of variables, and does 
not spread the data out too sparsely, existing DP synthetic data generators can produce very high-
quality data with robustly protected privacy. Pre-processing data can often improve performance by 
eliminating variables and reducing granularity on variables with large numbers of possible values.

In addition, DP methods can fall short on protecting privacy as well. If the privacy parameter is 
excessively large and the method does minimal additional processing to the data, the provided 
protection can deteriorate to the point of being meaningless.

Also, a commonly held belief has DP providing unfailing protection against disclosure of personal 
information, which it does not. For instance, DP does not prevent the effective disclosure protection 
from decreasing when multiple outputs involving the same individual are released. For example, 
the random noise used in Laplace’s mechanism tends to cancel out when several of its outputs are 
averaged out to form a single result. On the bright side, not only does DP’s Compositional Theorem 
warn data custodians of the compounded privacy loss incurred by making repeated use of a DPε-
compliant method to release statistical information, it also quantifies that loss. It states that the 
composite privacy loss ε is the sum of the privacy losses for each output. This has given rise in practice 
to the notion of privacy budget which is used to closely monitor the situation: once the cumulative 
privacy loss incurred from a series of releases made from a data set reaches the budgeted value set 
by the data custodian, access to the data set is closed.

Some Implementation Considerations

A successful implementation of any new methodology to a specific context promises to be a 
challenge, as various practical constraints will bring issues not directly addressed by the theory. And 
looking to release differentially-private synthetic data is not an exception. However, attention to the 
following details will certainly help with the implementation of DP in such a context.

With respect to implementing data synthesis within a national statistical agency, Sallier and 
Girard (2018) recommend decomposing the required tasks into pre-processing, synthesis, and 
post-processing steps. In their experience (which did not involve DP considerations), a successful 
implementation of data synthesis hinges on making informed, forward-looking decisions at the pre-
processing stage of the project. Indeed, while it is tempting to rush straight into synthesising a data 
set, it is important to first reflect on the balance to be struck between utility and confidentiality. By 
avoiding making decisions based on utility alone, one prevents putting too much strain on synthesis 
to protect confidentiality, whether this is attempted under DP or not.
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To illustrate, consider the following example. A data set D contains information about families, 
including the number of siblings each contains. Clearly, the participation of a family with ten 
siblings will have a greater impact on the total number of siblings than on the total count of families. 
Indeed, the latter statistic inherently offers greater anonymity since a family with ten siblings only 
contributes a value of 1 to the tally, as all other families do. Pre-processing involves deciding here 
whether information about family size remains in the data set or not; and if it does, then cutting 
off its tail by resorting to an open-ended category such as “more than 5 siblings” would reduce the 
burden put onto synthesis.

When designing a DPε-compliant method to meet practical needs, two important consequences of 
DP’s mathematical requirements may prove very useful: the Compositional Theorem and the Post-
Processing Theorem. We saw previously that the Compositional Theorem warns data custodians 
against the compounded privacy loss incurred by repeated use of a DPε-compliant method on a data 
set. But the same theorem can also be used to manufacture a nontrivial DPε-compliant method by 
putting together two existing and simpler DPε|2-compliant methods. Thus, a complex DPε-compliant 
method need not be created from scratch, but it can rather be built using available or easier-to-
design DP-compliant pieces.

We alluded to the Post-Processing Theorem before (although not by name) when evoking a way of 
releasing Laplace’s outputs as integers; loosely put, it states that any transformation of the output of 
a DPε-compliant method is itself DPε-compliant provided it is operating independently of the input data 
set. Thus, to get an integer out of Laplace’s mechanism one simply needs to round Laplace’s output 
to the nearest integer. In the same vein, the Post-Processing Theorem supports the practice of setting 
a negative Laplace’s output to 0 prior to being released without upsetting its DP-compliance status. 
However, if one were to round Laplace’s output to the nearest integer only when the raw count is 
smaller than 15, say, then this would violate the theorem’s premise. Indeed, since Laplace’s output 
itself does not reveal whether the original raw count was smaller than 15 or not, this rounding rule 
can only be implemented by first revisiting the data set. But then because Laplace’s mechanism is no 
longer the only way statistical information is getting released from the data set, its previously-earned 
DP-compliance status gets revoked. (This is not a statement of non-compliance per se – it merely 
implies that DP-compliance of the combined Laplace-with-conditional-rounding method must be 
examined anew.)

But wait, why is it rounding Laplace’s output to the nearest integer leads here to DP-compliance 
when we previously established that rounding a raw count to the nearest 5 (or 10, 100, etc.) is not 
itself a DPε-compliant method? The apparent contradiction is resolved by paying close attention to 
what gets rounded in each case. While DP says that rounding a raw count to the nearest integer is 
not effective at preventing disclosure of personal information from happening, rounding Laplace’s 
output to the nearest integer poses no issue when it is solely done for practical reasons. Indeed, in 
this case, Laplace is the one method responsible for protecting the personal data that has gone into 
the output, not the subsequent rounding performed. The concern here rather becomes whether the 
extra rounding performed can undo the protection already provided by Laplace’s mechanism. DP 
says this will not happen as long as Laplace’s mechanism remains the only way statistical information 
gets released from the data set.
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Differentially Private Data Synthesis

How can differential privacy be applied in the context of synthetic data? If an organization wishes 
to apply differential privacy to their synthetic data, there are two broad categories of methods that 
have been explored at length: marginal based methods and GANs.

A broad family of marginal based methods range in simplicity with the histogram method to the 
more complex Probabilistic Graphical Models (PGM). This family of methods takes counts of the 
number of records that have a given combination of feature values, noise (based on the differential 
privacy framework) is then added to those feature values and then are used to generate synthetic 
data.

The histogram method is useful when there are few features (variables) so that one can take the direct 
count of the number of records that fall into each possible combination of features. The histogram 
method transforms continuous variables into discrete variables through binning the data. Noise 
(following the differential privacy framework) is then applied to the frequencies of the constructed 
bins. The final synthetic data is then obtained by sampling from the noisy bins proportionally to the 
noisy counts (Wasserman and Zhou, 2010). It proceeds as follows:

1. Group all continuous variables in the data into categories or bins, where the optimal choice 
for the total number of bins is M(n, r) is given by: M(n, r)=n r/(2+r) where n is the total sample 
size and r is the number of continuous variables

2. Produce a cross-tabulation of all combinations (the histogram) 

3. Add Laplace noise to each cell of the table 

4. Create a multidimensional sampling grid, where each point falls in the centre of one bin. Each 
point in the grid will be assigned a weight equal to the noisy count of the bin to which the 
point belongs.

5. A weighted sample will be drawn from the grid using the weights assigned in step 4.

6. To smooth the selected sample, apply noise from a uniform distribution such that each selected 
point will move randomly from the centre of the bin to somewhere inside the bin. These new 
re-spaced sample represent the synthetic data.

Figure 8 provides an example of a simplified histogram generation method with a toy data set with 
two variables. For illustrative purposes, three bins are shown instead of the optimal number (as 
determined by n 1/(2+r)). The addition of Laplace noise (step 2) to the true counts in each bin (shown 
as a 3D histogram in panel B) yields noisy counts (panel C). The noisy counts are used to create a 
two-dimensional sampling grid (step 3; panel D) where the weights for each bin are used when 
sampling (step 4) the number of points that become the synthetic data (panel E). The new points can 
be thought of as centred in the grid but are shown spread out so that the reader can see how many 
there are in each bin. The points are then spaced out within a bin through the addition of uniform 
random noise (step 5) to redistribute them across the range of each bin for the continuous variable 
(panel F). Panel G compares the newly generated synthetic data to the original.
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Figure 8 Illustration of a simplified histogram generation method with a toy data set  
with two variables
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The addition of Laplace noise to the histogram bins, following Dwork et al. (2006), makes the 
histogram method differentially private. However, this perturbation can lead to changes in the 
distribution of the data. When there are bins with zero (or low) counts, adding Laplace noise will 
yield some bin counts above zero and some below. Those below get truncated to zero resulting in a 
noisy distribution that is different from the original. Such changes in the histogram distribution are 
most likely to occur when the original data is sparse or if the bin size is set such that there are many 
bins with zero (or low) counts. Despite changes in the individual bin counts, the histogram method 
can still generate exactly the same number of synthetic records as the original data using a well-
designed sampling procedure.

However, if you have a lot of features, it can be impossible with the histogram method to capture 
the distribution as counts for every possible combination for all features at once. To make this more 
manageable, marginal methods are used to break up the features to be more manageable. Marginal 
methods use the marginal distributions of a subset of random variables to determine the probability 
distribution of variables contained in the original data (Ridgeway et al., 2021).

Adding noise can increase the difficulty to get from the counts to the synthetic data as noisy counts 
may not match up to what was present in the original data. Given a key feature of synthetic data 
is its replication of distributions and relationships of the original data, the mismatch in counts 
between the original and noisy data is problematic on the utility front. PGMs can be used to get from 
pairwise (2-marginal) probability distributions to a fully generated set of synthetic records. PGM uses 
graph-structured interpretable models to record patterns of variable correlations. These graphs are 
constructed automatically from the original data. The graphs are then manipulated using reasoning 
algorithms to create synthetic data (Ridgeway et al., 2021).

Within the context of marginal and PGM methods, differential privacy strictly protects all information 
associated with any single individual, which means that synthetic data generators which satisfy 
differential privacy cannot directly deidentify individual records or samples from real individual 
records. Instead, they need to take as input noisy aggregate statistics about the population as a 
whole, where the added noise has been calibrated to satisfy the DP guarantee. The composition 
theorem shows that the ε for the synthetic data is then the sum of the εs for all of the statistics 
used to define the model fit. Marginal methods used most often to create synthetic data define the 
model from a set of margins, each of which has noise added to make it DP. These marginal methods 
create synthetic data using noisy ‘marginals’ or co-occurrence counts on features. Given a collection 
of marginals, noise is added and so these noisy counts no longer reflect any single consistent set of 
records. The noisy number of records with a certain set of attributes might not be resolvable into any 
single set of counts about whether those records have the exact match of real attributes. This could 
then be rendered into a set of synthetic records with all of the features in the initial schema. Marginal 
methods can use probabilistic graphical models (Bayesian models, Markov models), constraint 
satisfaction (“solving” for a synthetic data set that comes closest to matching all of the noisy counts), 
or even iteratively weighting or rescaling public data to mirror the noisy counts on the private data.

Additional computation is required in the case of marginal methods to make the margins consistent 
with each other. This is justified by the post-processing theorem (Bowen and Snoke, 2021) which 
states that once a DP result has been released, any subsequent transformation of these outputs are 
also DP. An important limitation of these methods is that any exploration of the data to define the 
model to use for the synthesis must contribute to the privacy budget. Since DP requires additional 
noise with each additional query, there is pressure to capture the distribution of the data with as 
few queries as necessary, and this means there are a variety of creative techniques for getting from 
this optimised set of noisy marginal counts back to complete synthetic records. If the model is 
selected from another similar data set, say from a previous year’s version of the data release, then 
this information can be used freely without contributing to the privacy budget.
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The GANs approach to creating differentially private synthetic data involves iteratively training a 
deep learning model for the synthetic data with a differentially private mechanism, which involves 
adding noise in each iteration. As a reminder from Chapter 3, GANs mainly consist of a generator and 
a discriminator. In each iteration, the discriminator trains a binary classifier from the original data 
and the synthetic data produced by the generator and attempts to distinguish between original and 
synthetic data. In the training process, the model minimises an empirical loss function to improve 
the data fit. Non-privacy preserving GANs use optimisation algorithms such as the statistical gradient 
descent (SGD) for the minimisation. Differentially private GANs use a noisy SGD to incorporate ε into 
the discriminator during the training process (Abadi et al., 2016). The ε of the differentially private 
mechanism is accumulated from each training iteration. Adding to Figure 4 from Chapter 3, Figure 9 
illustrates where ε will come into play in the GANs synthetic generation process.

Figure 9 Illustration of training of differentially private GAN based on Kaloskampis et al. (2020).

Source: Based on Kaloskampis et al. (2020).

In these methods, each iteration of the training process uses a noisy objective function over the 
input data to improve the model fit, and the noisy objective function is one form of noisy aggregate 
statistic of the input data. In these iterative approaches, the ε from these procedures is the sum of 
those from each step. Unlike non-DP iterative procedures, the number of steps must be fixed in 
advance so as to maintain the DP property.

To summarise this section, Table 10 presents the pros and cons of differentially private synthetic data 
methods.



Chapter 4 – Disclosure considerations for synthetic data

49

Table 10 Pros and cons of differentially private synthetic data generation methods

Pros Cons

These methods create synthetic data that adheres 
to the differential privacy framework. Adhering to 
the differential privacy framework can be useful as it 
provides a level of privacy assurance, making it easier 
to make decisions and communicate with end-users 
on the level of privacy.

In most evaluations of utility, these differentially 
private methods do not perform as well as their non-
differentially private counterparts (source).

Many of these methods can computationally be quite 
costly.

Tools to apply these methods

As the field of differentially private synthetic data evolves so too do the tools to generate it. Open-
source tools for PGMs are being more widely used. Examples of such tooling include Private-pgm 
(McKenna et al., 2019) and DataSynthesizer (Data, Responsibly 2021).

Why are DP-compliant methods not more widely used in official statistics?

DP is the first framework capable of addressing formal disclosure protection guarantees. However, the 
underlying mathematical requirements are often difficult to satisfy in practice and many practitioners 
actually find them too stringent to begin with. More specifically, they see the disclosure scenario 
underlying DP as too severe: a user will simply not know just about everything that is contained in the 
data set as DP requires the custodian to assume through its mathematical requirements. As a result, 
they claim, DP’s requirements unduly undermine the utility that can ever be attained. DPε-compliant 
methods may in fact not provide the required utility under different NSO’s requirements. The DP 
framework was developed under cryptography literature and the main objective is to protect privacy. 
Protecting privacy is an important consideration for NSOs, but protection needs to be balanced with 
providing useful statistical information to inform decision-making. Deployment of the DP-compliant 
methods will be context dependent to maximise NSOs ability to provide useful statistical information.

While DP’s requirements are indeed strong, there is more to them than getting data custodians to 
assume the existence of some super-user. First and foremost, DP’s requirements exist to ensure that the 
guarantees offered by custodians do not depend on what they have assumed users do not know. For 
instance, when designing their disclosure control strategies data custodians may very well underestimate 
the extent of the information already available to users prior to making their own releases. And if they 
do, then the protection guarantees offered will be weakened by what users actually do know.

Even when data custodians do have a good sense of what users already know in terms of a-priori 
information, their protection strategy could be compromised by a critical piece of information that 
comes to light after they make their releases. Thus, DP’s requirements exist to also provide protection 
against unforeseen risk factors rather than just against some conjured omniscient user.

Without knowing what the future holds, the beginnings of DP are reminiscent of those of probability 
sampling back in the first half of the 20th Century. As Olkin (1987) points out from a conversation 
held with survey pioneer Morris Hansen, survey practitioners initially found it difficult to comply 
with the requirements of probability sampling. The first probability sample designs often were too 
rudimentary to meet realistic survey needs and there were many issues (e.g., how to devise unbiased 
estimators, how to assess their variance and how to deal with out-of-scope units, domain estimation, 
and nonresponse) for which adequate answers only came later. Thus, we can expect a body of best 
practices to emerge from the lessons learned as DP is applied to specific contexts e.g., Hawes (2020).
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Currently, complex survey features such as clustering and hierarchical structures (e.g., family-related 
information on records pertaining to individuals) make it challenging to find DPε-compliant methods 
of any practical use in a survey context. Also, not only can it be difficult in certain circumstances to 
devise a useful non-trivial DP-compliant method but formally establishing its compliancy can prove 
to be a daunting task.

One can expect more flexible mathematical requirements to be proposed in the years to come 
allowing for formal disclosure protection guarantees to be used in a wider array of practical situations 
than what is currently possible under DP. For example, while we know of ways to implement a DP-
compliant method to release a count, it is not quite clear how to proceed for the total of a non-
dichotomous variable such as income. The wider the range of values a variable can take, the larger 
DP’s upper limit tends to become in order for it to hold for all possible outputs which can render 
a DP-compliant method all but useless in practice. Also, further guidance will be needed on how 
best to handle survey-specific features such as sample design information including survey weights. 
The flurry of DP-related papers published these last few years is a testament to the efforts being 
deployed to put forward formal disclosure protection guarantees beyond what the pioneering work 
of Cynthia Dwork, Frank McSherry, Kobbi Nissim and Adam Smith has provided already through DP.

Finally, even without seeking to achieve compliance, NSOs can still benefit from DP by reviewing 
their current disclosure control practices in light of its principles to identify and close gaps in the 
protection offered. For example, we know from a theorem of DP that a method needs to have a 
random component to be DPε-compliant. This suggests that an NSO rounding a count to the nearest 
pre-set base value would gain from using some random rounding method instead, thereby making 
its practices presumably less prone to disclosure than they were before.

4.2.2 K-Anonymity

K-Anonymity is one of the most well-known privacy preserving techniques and is an example of one of 
the traditional disclosure methods mentioned in the section on differential privacy. The K-anonymity 
method gives K-level of anonymity to data, which means the information for each record contained 
in the release cannot be distinguished from at least k-1 other records whose information are in the 
data. Records can be associated with each other by certain identifying attributes, such as age, gender, 
and location, in the case of say census or medical records. Breaches or attacks can occur when these 
attributes, called quasi-identifiers, can be linked with external data to identify unique records in the 
population (Machanavajjhala et al., 2007). K-Anonymity model distorts quasi-identifier values so that 
no record is uniquely identifiable from a group of k records. The Parameter k indicates the degree of 
anonymity (Sweeney 2002).

There are two main methods to achieve k-anonymity: suppression and generalisation. Suppression 
is a method of ensuring privacy by selectively hiding confidential information before disclosure. 
Cell suppression is the main method of data suppression. Under this methodology all sensitive 
cells are suppressed from publication, sometimes including non-sensitive cells as complementary 
suppression to obscure the values of the sensitive cells.

Generalisation coarsens an attribute to a more general value (Lefevre et al., 2005). This creates groups 
of individuals that share the same generalised attribute value. There are two types of generalisation 
that can be done: full domain vs local generalisation. Full domain generalises all values of an attribute 
to the same level. Local generalisation generalises values of an attribute to different levels.
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For an example a k-anonymity, refer to the example of records with sensitive medical information in 
Table 11.

Table 12 contains data on 12 individuals with a record of their medical condition. The medical 
condition of each individual is considered sensitive, meaning that an adversary must not be allowed 
to discover its value. Whereas neighbourhood (as defined by the first three digits of a postal code 
called Forward Sortation Area or FSA), age, and occupation are considered non-sensitive. In this 
example, the quasi-identifier is the combination of Postal Code, Age and Occupation attributes.

Table 11 Example of records with sensitive medical record information

Non-sensitive Sensitive

FSA Age Occupation Medical Condition

1 A1A 27 Teacher Heart Disease

2 A1B 28 Electrician Diabetes

3 A1C 29 Teacher Cancer

4 A1D 24 Doctor Cancer

5 C3E 35 Teacher Cancer

6 C3E 37 Electrician Diabetes

7 C3R 40 Doctor Heart Disease

8 C3O 40 Teacher Diabetes

9 C2R 50 Electrician Cancer

10 C4M 48 Doctor Heart Disease

11 C8S 49 Doctor Heart Disease

12 C8Z 50 Teacher Cancer

Table 11 contains an example of k-anonymity achieved by utilising generalisation and suppression 
(denoted by *) techniques. For instance, we aim to achieve 4-anonymity. This means that the values 
for FSA, age, and occupation of the individual records should be generalised in such a way that we 
can form equivalent classes with at least four records. The quasi-identifiers of these records should 
be indistinguishable from each other.
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Table 12 4-anonymous version of Table 11

Non-sensitive Sensitive 

FSA Age Occupation Medical Condition

1 A1* 2* * Heart Disease

2 A1* 2* * Diabetes

3 A1* 2* * Cancer

4 A1* 2* * Cancer

5 C3* ≤40 * Cancer

6 C3* ≤40 * Diabetes

7 C3* ≤40 * Heart Disease

8 C3* ≤40 * Diabetes

9 C** ≤50 * Cancer

10 C** ≤50 * Heart Disease

11 C** ≤50 * Heart Disease

12 C** ≤50 * Cancer

The main strengths of k-anonymity are its simplicity and potential to protect against re-identification 
attacks. Re-identification attacks can either happen through linking records in data sets or through 
multiple queries to the same database to obtain relational inferences.

However, k-anonymity assumes that each record in a data set represents a unique individual. If 
this is not the case, an equivalence class of K records does not necessarily link to K individuals with 
k-anonymity (Mendes et al., 2017).

Both attribute and identification disclosure are still at risk. There are three types of attacks that can be 
used against k-anonymity: unsorted matching attack, complementary release attack, and temporal 
attack (Sweeney 2002).

Unsorted matching attacks is based on the order in which the groups appear in the released tables. 
For instance, if the released tables have the same order of the generalised groups, then a direct 
matching of groups across table positions can reveal sensitive information. This can be prevented by 
randomly sorting the order of the groups for the released tables.

Complementary release attack is based on finding quasi-identifiable attributes that are a subset of 
the attributes in complementary data sets that have been released. By obtaining quasi-identifiers 
through multiple data sets that are published, re-identification attack is possible. This can be 
prevented by doing a thorough inspection of external information.

Temporal attacks are based on temporal inference. Since a k-anonymity solution of a data set at time 
t has no requirement to respect the k-anonymity solution of the same data set at time t+1, then 
joining the two k-anonymity solution data sets can release sensitive information. This is prevented 
by doing a thorough inspection of external information and adjust for potential quasi-identifiers as 
well.
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4.2.3 ℓ-Diversity

As mentioned above, there is still the potential for an attacker to identify information, even if 
k-anonymity is met. ℓ-Diversity is an extension of K-anonymity. It requires every equivalence class 
to abide by the ℓ-Diversity principle. An equivalence class is ℓ-diverse if at least ℓ “well-represented” 
values exist for the sensitive attributes (Machanavajjhala et al., 2007).

Continuing the example from the previous section, Table 13 reflects a 3-diverse version of Table 11.

Table 13 3-diverse table of medical condition data

Non-sensitive Sensitive

Postal Code Age Occupation Medical Condition

1 A1* ≤30 * Heart Disease

2 A1* ≤30 * Diabetes

3 A1* ≤30 * Cancer

4 A1* ≤30 * Cancer

5 C** ≥30 * Cancer

6 C** ≥30 * Diabetes

7 C** ≥30 * Heart Disease

8 C** ≥30 * Cancer

9 C** ≤50 * Heart Disease

10 C** ≤50 * Heart Disease

11 C** ≤50 * Cancer

12 C** ≤50 * Diabetes

Distinct 3-diversity means that each equivalence class should contain at least three distinct values 
for the sensitive variable “medical condition”: Heart Disease, Cancer, Diabetes. Thus, there should at 
least be three records in each equivalence class.

ℓ-Diversity increases privacy protection compared to K-anonymity (Li et al., 2007). It protects against 
attribute disclosure and addresses the vulnerability to unsorted matching attacks and background 
attacks (Machanavajjhala et al., 2007). However, there are downsides to ℓ-diversity. For starters, it 
may be difficult and not necessary, say if the sensitive attribute is binary like in the case of sex – male 
and female. The problem is exacerbated when there is a small number of one of the binary sensitive 
attributes (Li et al., 2007). In addition, ℓ-diversity may not be enough to prevent attribute disclosure 
in cases where the distribution of the sensitive variables is skewed or the sensitive variables are very 
similar to each other e.g., income values.
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4.2.4 t-Closeness

t-closeness provides privacy in cases where K-anonymity and ℓ-Diversity fail to do so (Li et al., 2007). 
t-closeness requires the distribution of the sensitive values in each equivalence class to be “close” to 
the corresponding distribution in the original table.

In other words, as presented by Li et al. (2007), t-closeness is based on the premise that a user has prior 
knowledge of the sensitive attributes of a record. By using the prior knowledge about the individual 
record’s sensitive attributes (β0), along with prior knowledge of the distribution of those sensitive 
attributes in the population, the user can form a belief for that individual record (β1). Then, once the 
user has access to the released table, they can use their knowledge to identify the corresponding 
class the record is in and to learn more about the distribution of those sensitive attributes in that 
class. This provides the user with more information on the individual record (β2).

t-closeness aims to reduce the difference between β1 and β2. To do so, it is assumed that the 
distribution of the sensitive attributes in the population is public knowledge. With t-closeness, 
information is released in such a way that a user can learn very little additional information about 
an individual record. This means that the goal of t-closeness, is to have the distribution of sensitive 
information in the population and that of any class, as close as possible.

Li et al. (2007) state that the t-closeness principle states is:

“An equivalence class is said to have t-closeness if the distance between the distribution of a 
sensitive attribute in this class and the distribution of the attribute in the whole table is no more 
than a threshold t. A table is said to have t-closeness if all equivalence classes have t-closeness.”

Methods to measure the difference in distribution include variational distance, Kullback-Leibler 
distance, and Earth Mover’s (EMD) distance.

t-closeness takes as input a table or data set T(A1,A2… AN), a parameter K specifying the minimum 
cluster or group size and a value for t. The output is a table , a set of clusters/groups satisfying 
K-anonymity and t-closeness. It works as follows (example from Soria-Comas et al. (2015) the Standard 
Microaggregation and Merging algorithm measures the distance using EMD):

1. Apply microaggregation to t with minimum cluster size K, store the output in Tʹ.
2. While distance between Tʹ and T is larger than t:

a. Choose the cluster in Tʹ with the greatest distance w.r.t. t and store this cluster in C.

b. Choose the cluster in Tʹ closest to C in terms of key variables, store this cluster in C’.

c. Merge C and C’ in Tʹ.

Continuing with the same example but add more categories to the sensitive variable Disease.
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Table 14 Table of medical condition data that has 0.25 -closeness with respect to Disease

Non-sensitive Sensitive

Postal Code Age Occupation Medical Condition

1 A1* ≤30 * Heart Disease

2 A1* ≤30 * Diabetes

3 A1* ≤30 * Pneumonia

4 A1* ≤30 * Bronchitis

5 C** ≥30 * Cancer

6 C** ≥30 * Diabetes

7 C** ≥30 * Heart Disease

8 C** ≥30 * Pneumonia

9 C** ≤50 * Heart Disease

10 C** ≤50 * Bronchitis

11 C** ≤50 * Cancer

12 C** ≤50 * Diabetes

Consider the sensitive variable of Table 14. The values of Disease are given as:

Q’= {Heart Disease, Diabetes, Pneumonia, Bronchitis, Cancer, Diabetes, Heart Disease, 
Pneumonia, Heart Disease, Bronchitis, Cancer, Diabetes}.

In the set Q, there are three instances of heart disease, three instances of Diabetes, two instances 
of Pneumonia, two instances of Bronchitis, and finally two instances of Cancer. Accordingly, the 
distribution of these categories over Table 14 is Q={ 3—12HD, 3—12D, 2—12P, 2—12B, 2—12C}. In the first equivalence 
class of Table 14: P1 {Heart Disease, Diabetes, Pneumonia, Bronchitis} there is one occurrence of each 
of “heart disease”, “Diabetes”, “Pneumonia” and “Bronchitis” yielding a distribution of P1={ 1— 4 , 1— 4 , 1— 4 , 1— 4 , 0}.  
Given that the Disease is a categorical variable, we will apply the EMD distance. We recall that EMD 
stands for Earth Mover’s Distance: E (P,Q)= 1—2 ∑i=1

m |pi−qi|, a measure that is equal to one-half of the 
Manhattan distance.

So, t-closeness for the Disease is calculated as follows:

E (P1,Q) =  1—2 [ | 1—4  −  3—12| + | 1—4  −  3—12| + | 1—4  −  2—12| + | 1—4  −  2—12| + |0 −  2—12| ] ≈ 0.166.

Then, P2={ 1— 4 , 1— 4 , 1— 4 , 0, 1— 4 } and E (P2,Q) =  1—2 [ | 1—4  −  3—12| + | 1—4  −  3—12| + | 1—4  −  2—12| + |0 −  2—12| + | 1—4  −  2—12| ] ≈ 0.166.

Finally, P3={ 1— 4 , 1— 4 , 0, 1— 4 , 1— 4 } and E (P3,Q) = 1—2 [ | 1—4  −  3—12| + | 1—4  −  3—12| + |0 −  2—12| + | 1—4  −  2—12| +| 1—4  −  2—12| ] ≈ 0.166.

Thus, t = max(0.166,0.166,0.166) = 0.166. For more detail on t-closeness, see Dosselmann et al. (2019).
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4.3 Other methods for disclosure evaluation

4.3.1 Peer Review

Peer review of disclosure methods, such as rounding, generalisation, suppression, or even differential 
private methods such as Laplace’s mechanism, is a fit for purpose exercise to determine and 
demonstrate whether or not confidentiality methods or privacy-preserving techniques are fit for use 
based on an NSO’s own legislative and operational frameworks.

For example, Statistics New Zealand’s disclosure control practices are based on New Zealand statute, 
international and national best practices. Disclosure risk according to Statistics New Zealand is based 
on these objectives:

• Maintaining privacy via confidentiality, by outputting zero ‘sufficiently accurate’ disclosures of 
individuals, or of particulars relating to individuals.

• Maintaining data quality via confidentiality, by using methods which introduce zero bias, or as 
little bias as possible, into the original data, and the original data’s means and other data set 
measures, where these means and measures are estimated using published ‘confidentialised’ 
data.

In practice, Statistics New Zealand endeavours to have zero tolerance for publishing accurate or 
discernible disclosures of counts of 1 or 2, or particulars relating to one- or two-unit records. This 
includes also potentially not disclosing counts of 0, and/or counts of 3, 4, or 5, as ‘coverage’ or 
‘protection’ for counts of 1 or 2, etc.

Some typical methods to achieve this end, either used by or under investigation for use at Statistics 
New Zealand, and which demonstrably introduce limited bias, include:

1. Random rounding to base 3.

2. Fixed, or consistent, random rounding to base 3.

3. P% rule-based suppression and aggregation.

4. Noised Counts and Magnitudes (NCM), which is also substantially a differentially private 
method, and hence could also be measured via its differential privacy parameters.

5. R-synthpop Classification and Regression Tree (CART) based non-1:1-mapped synthetic data, 
preserving univariate and bivariate inferential validity, which is also substantially a differentially 
private method, and hence could also be measured via its differential privacy parameters.

In summary, in terms of measuring disclosure risk, confidentiality methods which do not accurately 
disclose counts of 1 or 2, or particulars relating to one- or two-unit records, and which do not 
introduce bias, are fit for purpose.

International best practices for peer review can be found in the European Statistical System Code of 
Practice Peer Reviews: The National Statistical Institute’s guide, Version 1.3 (Eurostat, 2007).
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4.3.2 Feature mean Scaled Variance

A measure of disclosure risk suitable for data with a one-to-one mapping between the original and 
synthetic data is call feature mean scaled variance. This method is only suitable and fit-for-purpose for 
data with a 1:1 mapping between original data and synthetic data; and which is all ordinal data, e.g., 
Boolean variables, ordinal numerical variables, ordinal categoric variables.

In this measure, all variances between mapped original and synthetic data points are feature scaled 
(or normalised) to the range 0 and 1. These features scaled variances substantively report combinable 
inaccuracy values for the synthetic data compared to the original data. Value of around 0 refers to 
identical data. Values of around 0.5 or more refer to highly non-identical data.

Let’s look at an example of fictitious data in Table 15.

Table 15 Example of original data

Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

1 1 2 5 10 100 0.5 0.2 0.1 -1 -0.5

2 2 4 10 20 200 1 0.4 0.2 -2 -1

3 3 6 15 30 300 1.5 0.6 0.3 -3 -1.5

4 4 8 20 40 400 2 0.8 0.4 -4 -2

5 5 10 25 50 500 2.5 1 0.5 -5 -2.5

6 6 12 30 60 600 3 1.2 0.6 -6 -3

7 7 14 35 70 700 3.5 1.4 0.7 -7 -3.5

8 8 16 40 80 800 4 1.6 0.8 -8 -4

9 9 18 45 90 900 4.5 1.8 0.9 -9 -4.5

10 10 20 50 100 1000 5 2 1 -10 -5

The first step in calculating the feature mean scale variance is to normalise record 1 (x1) in field 1: 

x1 − min (field1) 
max (field 1) − min (field 1)

We do this for each record in each field and get the normalised values found in Table 16. We then 
conduct the same activity for the synthetic data, where Table 17 contains the synthetic data, and 
table 18 contains the normalised synthetic data. We then take the absolute difference of each record’s 
normalised values between the synthetic and original data. This then would produce Table 19, which 
is the feature mean scale variance between Tables 16 and 18.

An arbitrary safety floor threshold for publication purposes for this method is proposed to be in the 
value range (0.05, 0.2). In other words, for each unit record row in Table 19, if the average of fields 
{1…10} for that row is greater than the arbitrary safety floor threshold you choose in the value range 
(0.05, 0.2), then the corresponding synthetic unit record row in Table 17 is considered by this method 
to be sufficiently safe to release.



Synthetic Data for Official Statistics – A Starter Guide

58

Table 16 Normalised version of Table 15

Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9

2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8

3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.7 0.7

4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6

5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4

7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3

8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2

9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.1 0.1

10 1 1 1 1 1 1 1 1 0 0

Table 17 Synthetic version of Table 15

Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

1 1 2 5 10 100 0.5 0.2 0.1 -1 -0.5

2 0 4 10 20 200 1 0.4 0.2 -2 -1

3 0 0 15 30 300 1.5 0.6 0.3 -3 -1.5

4 0 0 0 0 0 2 0.8 0.4 -4 -2

5 2.5 5 12.5 25 250 1.25 0.5 0.25 -2.5 -1.25

6 0.3 1.8 7.5 21 270 1.65 0.78 0.45 -5.1 -2.85

7 0 3.5 17.5 52.5 700 0 0.35 0.35 -5.25 -3.5

8 7.2 14.4 36 72 720 3.6 1.44 0.72 -7.2 -3.6

9 7.2 14.4 36 72 720 3.6 1.44 0.72 -7.2 -3.6

10 0 0 0 0 0 0 0 0 0 0

Table 18 Normalised version of Table 17

Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9

2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8

3 0 0 0.3 0.3 0.3 0.3 0.3 0.3 0.7 0.7
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Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10

4 0 0 0 0 0 0.4 0.4 0.4 0.6 0.6

5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.75 0.75

6 0.03 0.09 0.15 0.21 0.27 0.33 0.39 0.45 0.49 0.43

7 0 0.175 0.35 0.525 0.7 0 0.175 0.35 0.475 0.3

8 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.28 0.28

9 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.28 0.28

10 0 0 0 0 0 0 0 0 1 1

Table 19 Absolute difference of normalised values or feature mean scale variance  
between synthetic and original data

Record 
index

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10 Average 
Variance

1 0 0 0 0 0 0 0 0 0 0 0

2 0.2 0 0 0 0 0 0 0 0 0 0.02

3 0.3 0.3 0 0 0 0 0 0 0 0 0.06

4 0.4 0.4 0.4 0.4 0.4 0 0 0 0 0 0.2

5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

6 0.57 0.51 0.45 0.39 0.33 0.27 0.21 0.15 0.09 0.03 0.3

7 0.7 0.525 0.35 0.175 0 0.7 0.525 0.35 0.175 0 0.35

8 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

9 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

10 1 1 1 1 1 1 1 1 1 1 1

One also has to choose another arbitrary utility ceiling threshold for the same unit records. This could 
be in the value range (0.2, 0.5); but work on an appropriate arbitrary utility ceiling threshold range 
for this method remains an open research question. But, in other words, for each unit record row in 
Table 19, if the average of fields {1…10} for that row is less than the arbitrary utility ceiling threshold 
you choose in the value range (0.2, 0.5), then the corresponding synthetic unit record row in Table 17 
is considered by this method to be of sufficient utility to release.

Exact thresholds here are a matter of risk appetite, both from a safety perspective and from a utility 
perspective. By analogy, Abowd (2016) suggests approximately 90% accuracy and 10% inaccuracy 
could be an appropriate target, hence how an arbitrary safety floor threshold of 0.1 is within the 
proposed safety floor threshold range (0.05, 0.2).

Table 18 Normalised version of Table 17 (continued)
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4.4 Tips to get started

Disclosure risk for synthetic data is still an area of development in the synthetic data community. 
Disclosure measures, risk, and tolerances are very organizational specific, context dependent, and 
based on NSO legal and operational frameworks. This makes it difficult at this point in time to make 
definitive recommendations on disclosure risk thresholds and methods.

Based on your own organization’s disclosure legislation, frameworks and practices, Figure 10 can 
guide the synthesiser on any disclosure measures and techniques they choose to apply to their 
synthetic data.

Figure 10 Decision tree to aid in disclosure control considerations
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If you decide to implement additional privacy preserving techniques, attribute disclosure and identity 
disclosure measures are still useful to evaluate the effectiveness of the techniques. Any disclosure 
measures or techniques must also be implemented with the utility of the data in mind. Methods to 
measure and evaluate the utility of synthetic data, with or without additional privacy techniques are 
discussed in the next chapter.

A variety of disclosure measures and privacy preserving techniques were explored in the HLG-MOS 
Synthetic Data Challenge 2022 (Bhagat et al., 2022).18 Though few of these methods have been 
formally implemented in NSOs, the measures and techniques from the challenge can serve as a 
baseline for future research on disclosure measures for synthetic data. 

18 See https://pages.nist.gov/HLG-MOS_Synthetic_Data_Test_Drive/index.html#privacy_evaluation_methods for 
a summary and results of the privacy evaluation measures and techniques used in the HLG-MOS Synthetic Data 
Challenge 2022.
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Chapter 5: Utility measures for evaluating  
synthetic data

The utility, or value, of a synthetic data set reflects how useful that data set is to the purpose or the 
use case for the data. As discussed in Chapter 2, synthetic data is often used either instead of the 
original data, or as a preliminary analysis to guide the final results which will be run on the original 
data. In both cases, the utility of synthetic data is based on how similar the conclusions are between 
the synthetic data and the original (confidential) data. This is equally important in the latter use case 
because preliminary analysis on the synthetic data will guide the final models used.

This guide recommends in Chapter 3 that the methods of creating synthetic data should depend on 
the use case, what the synthesiser wants to preserve and the type of original data. Once the synthetic 
data sets have been created, the utility can be evaluated.

There are two broad categories of utility measures: “broad”, “global” or “general” utility measures, as 
opposed to “narrow” or “specific” measures. In this guide, we will use the terms general and specific 
measures. Specific measures are useful when evaluating a specified analysis, however they are not 
useful for tuning – modifying synthesis methods to improve the utility – as the synthesiser often 
does not know the analysis that will be conducted using the synthetic data when tuning has to take 
place.

According to Raab et al. (2021), there are two main reasons we might wish to evaluate the general 
utility of synthetic data:

1. To compare different synthesis methods for the same data set in order to generate the most 
useful synthetic data set for the user.

2. To diagnose where the original and synthetic data distributions differ and thus tune the 
synthesis methods to improve the utility of the synthetic data.

For the first of these, a number of measures have been proposed that summarise the utility of the data, 
or sometimes of a subset of the data, by a single number. Two main methods have been proposed to 
compute these measures. The first, proposed by Karr et al. (2006) and Woo et al. (2009), is to combine 
the two data sets (original and synthetic) and to use the information in the records to predict their 
source. Several measures can be calculated from this approach some of which are calculated from 
the propensity score, the probability that a record is from the synthetic data. The second method 
used to compute a single comparative measure is to compare tables created from the synthetic data 
with those from the original. These two methods are related, as we will discuss below.

A single measure does not provide guidance as to what aspects of the synthetic data differ from 
the original. Thus, we need different strategies to fulfil the second of Raab’s requirements. Several 
methods have been suggested for this, sometimes making use of the utility measures discussed 
above for subsets of variables in the records.
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Table 20 Summary of utility measures

Method Measure or procedure Reference Measure acronym 

Specific Confidence interval overlap Karr et al. (2006)

Achieving specific outcomes Kaloskampis et al. (2020), 
Jordon et al. (2018) and 
Slokom et al. (2021) 

General 

Single 
measure from 
propensity 
score

Propensity score mean squared error Karr et al. (2006) and Woo 
et al. (2009)

pMSE

Kolmogorov- Smirnov Statistic 
comparing propensity scores for 
original and synthetic data 

Bowen et al. (2021) SPECKS

Other comparisons of propensity 
scores for original and synthetic data 
e.g., Wilcoxon signed rank statistic 

Raab et al. (2021) U

Percentage over 50% of combined 
records correctly predicted by the 
propensity score 

Raab et al. (2021) PO50

General 

Single 
measure from 
tables

Voas-Williamson statistic Voas and Williamson (2001) VW

Freeman-Tukey (FT) Voas and Williamson (2001) FR

Likelihood ratio statistic from tables 
and other members of the divergence 
family 

Voas and Williamson (2001) G

Jensen-Shannon Divergence Fuglede and Topsoe (2004) JSD

Bhattacharyya metric Bhattacharyya (1943) dBhatt

Mean absolute difference in densities Raab et al. (2021) MabsDD

Difference of correlation matrices Kaloskampis et al. 2019

Weighted mean absolute difference in 
densities 

Raab et al. (2021) WMabsDD

Methods for 
exploring 
utility 

Comparing histograms by visualisation 
and summary measures 

http://www.synthpop.org.uk 
and Kaloskampis et al. (2020)

Comparing cross-tabulations from 
marginal distributions

Raab (2011) and NIST (2021)

Comparing and visualising other 
summary statistics (e.g. Pearson 
Correlations) 

Beaulieu-Jones et al. (2019) 
and Kaloskampis et al. (2020)

Table 20 provides a summary of the methods discussed in this chapter classified as methods for 
specific utility, as single measures of general utility, either by propensity score or by tables, or as 
methods for exploring, summarising or visualising utility.
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5.1 Specific utility measures

Specific utility measures compare the results of statistical models fitted to the synthetic and the 
original data. To begin with, any statistical analysis can be used to create a utility measure, for example, 
difference in means of variables, differences in correlation, tables and cross-tabulations and even 
resulting analysis or outcomes. The most widely used of these is the confidence interval overlap that 
provides both a summary measure and a visualisation of the results from a statistical model from 
the two data sources. Other summary measures include various graphical comparisons as well as 
standardised differences in coefficients and an overall lack of fit measure that can be computed from 
the variance matrix of the coefficients.

5.1.1 Confidence interval overlap

As discussed in Chapter 2, one of the most popular use cases for synthetic data is testing analysis, 
where often a user of synthetic data is testing a linear or generalised linear regression. This activity not 
only produces coefficients but also confidence intervals. A measure to assess the utility of synthetic 
data for testing analysis is to evaluate how the confidence intervals of an estimate differ between 
the original and synthetic data (Karr et al., 2006). The confidence interval overlap measure is such a 
measure. Karr et al. (2006) suggest using the percentage overlap of confidence intervals (IO), defined 
for each coefficient βi as,

IOi = 0.5 [ min(uo, us)−max(lo, ls)  + min(uo, us)−max(lo, ls) ]     
uo– lo us – ls 

where the confidence interval for the original data is (uo; lo) and for the synthesised data (us; ls). The 
numerators in each of the terms in this equation are the overlap of the intervals which becomes 
negative when the intervals are disjoint. The average of the overlaps can then be used as a summary 
measure of utility. The IO measure takes a maximum value of 1 when the intervals are the same 
length, but lower when they are different lengths.
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Figure 11 Illustration of confidence interval overlap from logistic regression.

(Intercept) 0.197102 0.400261 -0.203160 -1.2463 0.6821

sexFEMALE 0.593279 0.224701 0.368578 2.0424 0.4790

age 0.008956 0.003104 0.005852 2.2534 0.4252

eduVOC -0.030571 -0.050985 0.020414 0.2058 0.9475

eduSEC 0.448646 0.393783 0.054862 0.5315 0.8644

eduHIGH 0.659803 0.688391 -0.028588 -0.2374 0.9394

sexFEMALE:age -0.003031 0.007702 -0.010733 -2.9877 0.2378

Measures for 5 syntheses and 7 coefficients

Mean confidence interval overlap: 0.6536

Mean absolute std. coef diff: 1.358

Mahalanobis distance ratio for lack-of-fit (target 1.0): 10.15

Lack-of-fit test: 71.02; p-value 0 for test that synthesis model is

compatible with a chi-squared test with 7 degrees of freedom.

sexFEMALE:age

eduHIGH

eduSEC

eduVOC

age

sexFEMALE

−4 0 4 8
Z value

C
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synthetic
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Figure 1: Comparison of intervals for fit f8 and original data.

While the lack-of-fit test indicates differences and there is clear evidence of bias for two of the

seven coefficients and some evidence for a third one, the general pattern of coefficients, illustrated

in Figure 1, is the same fore both intervals and would not mislead any decisions to be made on

17

Source: Raab and Nowok (2017)

Confidence interval overlaps are most often used to compare results for fitting statistical models to 
the original and synthetic data. It is recommended that a graphical display that compares the fit of the 
models should be the first step in evaluating the fits from the two sources. An example is Figure 11:  
Illustration of confidence interval overlap from logistic regression, from Raab and Nowok (2017)
which shows the output from the synthpop package for R (www.synthpop.org.uk).

5.1.2 Achieving specific outcomes

A key characteristic that synthetic data should have in order to be useful is for the results of the 
specific analysis or task at hand to be the same with the synthetic data as it is with the original data. 
These methods are only useful when that specific analysis or task is known. In its simplest form, 
a synthesiser would want to identify tasks relevant to the data set (e.g., a classification task), and 
then compare the task accuracy between the original and synthetic data. Task accuracy is a common 
method to evaluate deep learning models, where the same classification or decision needs to be 
implemented for the original and synthetic data. This measure is considered specific because it 
evaluates utility for a specific rather than a generic task. Task accuracy measures are useful because 
there can be cases for which more general utility measures indicate favourable levels of utility, but 
where results from the synthetic data may still not be the same as the original data for a particular 
task.

Standardised Coefficient Value

http://www.synthpop.org.uk
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For example, take the Adult Income data set from UCI repository that has 32,500 records of Americans 
with variables that include age, working status, education, and income (Kohavi and Becker, 1996). 
With this data, the task at hand is to see if income is above or below a certain amount, say make a 
prediction if an income is above or below $50,000. The first step is to build a model on the original 
data and determine the accuracy of the model. Next, conduct the same task with synthetic data. The 
same exercise on the original and synthetic data may result in different outcomes, which provides 
the synthesiser an assessment of synthetic data accuracy. Figure 12 illustrates such a classification 
task with the original data (red) and with synthetic data generated using GANs and three values of 
privacy loss (blue) (Kaloskampis et al., 2020). As shown in Figure 12, the synthesiser or user can now 
assess if the task using the synthetic has the utility necessary for their use case.

Figure 12 Classification accuracy trained on original Adult Income data set and synthetic  
data sets generated with GANs, with different values of privacy loss ε 
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Source: Kaloskampis et al. (2020).

Alternatively, a synthesiser may be interested in a broader evaluation and look at the performance of 
a machine learning algorithm as a whole. Such an evaluation involves comparing the performance 
metrics of predictive models trained on synthetic and on original data (called model compatibility).

This performance of machine learning models trained and tested on original and/or synthetic data 
is compared based on different scenarios (Heyburn et al., 2018, Jordon et al., 2018, Fekri et al., 2020, 
Slokom et al., 2021):

• Train on Real and Test on Synthetic data (TℛTS),

• Train on Synthetic and Test on Real (TSTℛ),

• Train on Real, Test on Real (TℛTℛ),

• Train on Synthetic, Test on Synthetic (TSTS), 

• Lastly, trained and tested on a mixture of real and synthetic data (TMTM).

ε ε ε
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In principle, these scenarios are transferable to the evaluation of synthetic data. However, it is 
important to consider whether (TℛTS) and (TSTℛ) actually yield meaningful information about 
how useful synthetic data is for a specific purpose. The reason is that, if the synthetic data provides 
synthetic users, then users in the training set (or test set) are different from those in the test set 
(respectively training set). So, it is critical to develop evaluation frameworks that are suitable for use 
in evaluating synthetic data.

Inspired by notations proposed by Jordon et al. (2018), let’s consider a data set, D, a task t, that is 
going to be performed on D. We split D into training set, DTrain, and testing set, DTest. Let A1..Ai..,AN 
be N machine learning algorithms that take as input a training set DTrain, and provides as output a 
prediction model Ai (DTrain). Also, we consider mt a performance metric for task t that takes as input 
a trained model, M, and a testing data set, DTest, and outputs a value in ℝ. G denotes a synthetic data 
generation method and DG, denotes the synthetic data set generated by G. As for the original data, 
we will split the synthetic data into a training set, DGTrain , and testing set, DGTest.

Jordon et al. (2018) proposed a metric called synthetic ranking agreement (for short SRA). SRA can 
be formulated as follows:

mt(Ai (DGTrain), DGTest) <mt(Aj (DGTrain), DGTest)  
=> mt(Ai (DTrain), DTest) <mt(Aj (DTrain), DTest) 

For all i, j Є {1, ..., N}, i≠j.

Thus, synthetic ranking agreement (SRA) is defined as:

KDD ’18, August 2018, London, UK James Jordon, Jinsung Yoon, and Mihaela van der Schaar

Denote by G a synthetic data generation method and let DG

denote the (synthetic) dataset generated by it. As above we will
split each synthetic dataset into training,DG

1 , and testing,DG
2 sets.

2.2 Synthetic Ranking Agreement (SRA)
�e property we are interested in can be formalized in the following
way:

mT(Ai (DG
1 ),DG

2 ) < mT(Aj (DG
1 ),DG

2 )
=⇒ mT(Ai (D1),D2) < mT(Aj (D1),D2) (1)

for all i, j ∈ {1, ...,k}, i � j.
To this end we de�ne the Synthetic Ranking Agreement (SRA)

of a synthetic data generation method, G.

De�nition 2.1. (SRA) Given k algorithms A1, ...,Ak as de�ned
above, a task T , a performance metric mT , a dataset D and a
synthetic dataset DG generated by G, we de�ne

Ri = mT(Ai (D1),D2) (2)
Si = mT(Ai (DG

1 ),DG
2 ) (3)

for each i = 1, ...,k so that Ri represents the performance of algo-
rithm i on the real data and Si on the synthetic data. �e Synthetic
Ranking Agreement of G is then de�ned as

SRA(G) = 1
k(k − 1)

k∑
i=1

∑
j�i
I
(
(Ri − Rj ) × (Si − Sj ) > 0

)
. (4)

�e SRA can be thought of as the (empirical) probability of a
comparison on the synthetic data being ”correct” (i.e. the same as
the comparison would be on the real data).

Of course, its value is dependent on the set of algorithms on
which the ranking is checked. Including more algorithms will
generally improve the metric, however, it is naturally impossible to
be exhaustive, not only because the number of existing algorithms
for any given task is large and hence would be time consuming to
train but also because new methods are constantly being developed.
Care should also be taken in balancing the classes of methods
compared - as noted above, ”di�erent” algorithms could merely be
variations of the same method, such as comparing 2-layer MLP with
3-layer MLP. However, inclusion of multiple variations of a single
method can arti�cially bias the metric - data generation methods
that are particularly invariant with respect to that method will have
a higher SRA than those that aren’t simply because the number
of incorrect orderings will be larger (despite the fact that all these
incorrect orderings are coming from the same ”method”). In this
paper, we use 12 di�erent prediction algorithms which we believe
represent many of the common classes of prediction algorithm:
Logistic Regression, Random Forests [3], Gaussian Naive Bayes
[13], Bernoulli Naive Bayes [13], Linear SVM [6], Decision Tree
[12], LDA [1], AdaBoost [9], Bagging [2], GBM [10], Multi-layer
Perceptron, XgBoost [4].

2.3 Privacy and SRA
A particularly interesting property of SRA is that it does not nec-
essarily require the synthetic data to be distributed the same as
the real data to be high. �is has particularly nice properties when
we consider the implications this has for privacy where training

synthetic data generation models to be too similar to the real data
can lead to privacy concerns.

Suppose that we have a dataset consisting of n feature-label pairs
(x,y) in which the label y is considered sensitive, but the features x
are not (for example the labely may represent a diagnosis). In order
to make the label private, we add noise to the label. For simplicity,
assume the label is binary and that the noise is that we ”�ip” the
label with probability p ∈ [0, 0.5). (We note that if we �ip with
p = 0.5 then the resulting data is completely random - the labels
are not at all correlated with the features.)

Intuitively, the privacy of the label increases with the noise p
(this can also be stated and proven more formally using a notion
of privacy referred to as di�erential privacy [7]). We now consider
the implications of measuring the quality of such data in terms
of our proposed metric and another popular metric: Training on
Synthetic data and Testing on Real data (TSTR) [8]. �is la�er
metric is formally de�ned as

TSTR(G) = 1
k

k∑
i=1

mT(Ai (DG
1 ),D2) (5)

We compare the two metrics across the range of p using the 12
predictive models given above on the MAGGIC dataset [11]. We
use AUROC as the performance metric. �e results can be seen in
Fig. 1 for p ∈ [0, 0.3].

We note that prediction of the label by training on the noisy data
is likely to be harder than from training on clean data. �e quality
of synthetic data as reported by TSTR is therefore going to decrease
as p increases. On the other hand, the relative performance of
di�erent algorithms on the noisy data does not necessarily change -
the performance of all methods will be lower due to the noise. �e
SRA as p increases is therefore not strictly decreasing as p increases,
as can be seen in Fig. 1 (from p = 0.10 to p = 0.15). �is would
suggest that the data generation method selected by SRA (which is
most useful in the competition se�ing) could have stronger privacy
guarantees (i.e. we can add more noise to the data) than the method
selected by TSTR.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Flipping Probability (p)

0.0

0.2

0.4

0.6

0.8

1.0

T
S
T
R
 
&
 
S
R
A
 
P
e
r
f
o
r
m
a
n
c
e

TSTR

SRA

Figure 1: Comparison of SRA with TSTR

Where Ri =mt(Ai (DTrain), DTest) , and Si =mt(Ai (DGTrain), DGTest), for each i = 1, .., N. So that Ri 
represents the performance of algorithm i on the original data and Si represents the performance of 
algorithm i on the synthetic data.

The SRA can be thought of as the (empirical) probability of a comparison on the synthetic data being 
“correct” i.e. the same as the comparison would be on the original data.

5.2 General utility measures giving a single measure

The statistical analyses for which the synthetic data will be used are typically not known when 
the synthesis is being carried out. Measures that compare the whole distribution of the synthetic 
data to that of the original data are referred to as general utility measures. As we mentioned in the 
introduction to this chapter, these are mostly based on two methods, firstly combining the original 
and synthetic data and calculating a propensity score, the probability that any record is synthetic, 
and secondly by comparing tables of original and synthetic data. As we will show below these two 
methods can be considered to be the same thing, but comparing tables allows some extra measures 
that are not available from the propensity score method.
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5.2.1 Measures from the propensity score

Karr et al. (2006) and Woo et al. (2009) evaluate the utility of synthetic data by combining the records 
of the original and synthetic data and measuring how well the data values predict the source of 
the records as original or synthetic. An indicator, say x, is assigned a value of 1 for the synthesised 
data and 0 for the original. A method such as logistic regression or any non-parametric predictive 
method can be used to attempt to derive the propensity score, p̂. Propensity score mean squared 
error measures the overall distribution similarity between the synthetic and original data. More 
specifically, the propensity score is the probability that x = 1, meaning that the record was from the 
synthesised data. If the distributions of the original and synthetic data are indistinguishable then all 
propensity scores are expected to be close to the proportion of synthetic records in the combined 
set; 0.5 if the two data sets have the same number of records. Several measures can be computed 
from p̂, four of which are listed in Table 20. The most commonly used is the propensity score mean-
squared error (pMSE) (Woo et al. (2009)).

To start calculating the pMSE, merge the original and synthetic data sets, adding an additional 
variable equal to one for all rows from the synthetic data set and equal to zero for all rows from the 
original data set. Second, for each record in the original and synthetic data, compute the probability 
of being in the synthetic data set, i.e. the propensity score. Any method to predict a binary variable 
is suitable for this method. Examples of such methods are: logistic regression, classification and 
regression trees, classification methods such a neural networks or random forest, or even from tables 
by calculating the proportions of synthetic to all records in each corresponding cell. Lastly, compare 
the distributions of the propensity scores in both data sets using

pMSE = ∑
i

 (p̂i−c)2/N

where c is the proportion of synthesised rows in the combined data = n2/N (Raab et al., 2021).

Table 20 presents many other propensity score based measures available in the literature and many 
synthetic data generation and evaluation packages such as synthpop. However, there are a few of 
these methods that are more frequently used in practice, namely propensity score mean squared 
error (S_pSME) as well as SPECKS and PO50.

SPECKS or Kolmogorov Smirnov statistic is the maximum distance between the cumulative 
distributions functions of the propensity score for the synthetic and original distributions. The 
formula for SPECKS based on propensity score measure is defined as:

SPECKS = supp̂ |Ft=0 (p̂i) − Ft=1 (p̂i)|
PO50 is the percentage above 50% of synthetic data records where the model used correctly predicts 
whether the record is original or synthetic data. The formula for P050 is: 

PO50 = 100∑
i

 [ti  (p̂i>c) + (1−ti) (p̂i  < c)] / ∑
i

 (p̂i≠c) − 50

where ti  is an indicator variable, i=1,…,N, taking the value 1 for rows from synthetic data and 0 for 
rows from original data.
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5.2.2 Measures from tables

General utility measures can also be obtained from tables, as proposed by Voas and Williamson (2001) 
for summarising differences between synthetic data and the original. They adapted measures used 
in computing chi-squared tests for tables. In particular they suggested what we refer to as the Voas-
Williamson statistic (VW) for comparing tables. It is similar to the usual Pearson chi-squared statistic 
(X2). We can write the counts for any table with k categories as yi (i = 1; 2; ..k) and the corresponding 
synthetic counts as si (i = 1; 2; ..k). If the total counts in each table are the same: ∑yi = ∑si = n then 
X2 = ∑i=1

k  (si − yi )2 / yi . A practical problem with this chi-squared statistic is that the contribution from 
a cell where the original data has a zero count, but is not a structural zero, is not defined.

Voas and Williamson propose the modification of this statistic by replacing yi with the mean of yi and 
si. Other statistics in the power-divergence family (Read and Cressie, 1988) could also be used, such 
as the deviance or the Freeman-Tukey measure (FT). Another related measure is the Jensen-Shannon 
Divergence (JSD) which can be considered as a modification of the likelihood ratio statistic to allow 
for zero values of yi. Further measures computed from tables include the mean absolute difference 
in density (MabsDD) which is calculated as:Replacement equation for page 70 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
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𝑛𝑛 |𝑘𝑘

𝑖𝑖=1
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|317917 − 318269| + |346947 − 346595|
318269 + 346595  =  0.00106 

 

Replacement equations table for page 80 
 

Method Formula Variable definitions 

pMSE 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 = ∑(�̂�𝑝𝑖𝑖 − 𝑐𝑐)2/𝑁𝑁
𝑖𝑖

 

 

�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 

C is the proportion of synthesised 
rows in the combined data  

𝑛𝑛1, 𝑛𝑛2, and N are the number of 
records in the original, synthetic and 
combined data, respectively 

𝑡𝑡𝑖𝑖 indicator variable, i=1,…,N, taking 
the value 1 for rows form synthetic 
data and 0 for rows from original data 

𝑦𝑦𝑖𝑖 the counts for any original table 
with k categories 

𝑀𝑀𝑖𝑖 the counts for any synthetic table 
with k categories 

𝑘𝑘 total number of cells in tables to be 
compared 

SPECKS 𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝 =  𝑀𝑀𝑠𝑠𝑝𝑝�̂�𝑝|𝐹𝐹𝑡𝑡=0(�̂�𝑝𝑖𝑖) − 𝐹𝐹𝑡𝑡=1(�̂�𝑝𝑖𝑖)| 

 

PO50 𝑆𝑆𝑃𝑃50 = 100
∑ [𝑡𝑡𝑖𝑖(�̂�𝑝𝑖𝑖 > 𝑐𝑐) + (1 − 𝑡𝑡𝑖𝑖)(�̂�𝑝𝑖𝑖 < 𝑐𝑐)]𝑖𝑖

∑ (�̂�𝑝𝑖𝑖 ≠ 𝑐𝑐)𝑖𝑖
− 50 

MabsDD 
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Other measures include the histogram overlap measure, Bhattacharyya metric or dBhatt 
(Bhattacharyya, 1943).

All of these measures can be generalised to the case where the synthetic data has a different number 
of records from the original, see Raab et al. (2021) for details.

5.2.3 Relationships between the measures

Comparing tables can also be framed as a prediction measure where the propensity score in the case 
of equal sample sizes is just p̂i  = si /(si + yi). Calculating this propensity score for an n-way table is 
identical to what would be obtained by using a logistic model with all (n-1)-way interactions. Several 
of the measures in Table 20 are linearly related. In particular, VW and pMSE are the same measure, 
as are the three measures SPECKS, PO50 and MabsDD and also dBatt ∝√FT  . Thus, there are fewer 
independent utility measures than Table 20 would suggest. Empirical investigations suggest that all 
of the measures are correlated with one another when compared for different synthetic data sets. 
For some subgroups, e.g., VW/pMSE, FT, JSD the correlations are so high as to suggest that they are 
essentially the same measure.

A small investigation of the ability of these measures to differentiate a poor synthesis from a good 
one suggested that VW/pMSE, FT, JSD performed slightly better than the other measures discussed 
here, but almost all gave satisfactory discrimination. These findings are based on recent empirical 
work by Raab et. al (2021), that would benefit from further development by other groups.
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5.2.4 Scaling of utility measures

It is helpful if the utility measures can be on a scale that makes them easy to interpret. For all the 
measures described here a large value indicates a lack-of utility. One method could involve scaling 
the measures by the maximum value they could take. For example, JSD is scaled in this way since 
its maximum value is 1.0. Other measures have an interpretation that helps to understand them, 
for example, it is easy to think of the percentage correctly predicted for PO50, and dBhatt has an 
immediate interpretation as the overlap of matching histograms.

Another approach to scaling utility measures is to express them relative to the value that would be 
expected if the model used to synthesise the data was the “correct” model. The expected value for 
the “correct” model can be termed the Null expectation. This approach can also be considered as 
scaling the measures compared to the expected stochastic error of the distribution. The target value 
for measures scaled in this way is 1.0. All the measures derived from the various chi-squared tests 
have known Null expectations, Snoke et al. (2018) derived the Null distribution of this quantity for 
the pMSE when it is estimated from a model with a fixed number of parameters. They also propose 
methods for obtaining the Null expectation for any of these measures by replication methods. A 
modification of one of the methods to use for DP synthetic data has been proposed by Bowen et al. 
(2021). This scaling by the Null expectation differs from the others in that it defines a target that a 
good synthesis should achieve. Although an absolute target would be 1.0, synthetic data that have 
proved to be useful can have values in the range from 3 to 10. Values above 10 signal potential 
problems with some part of the distribution being evaluated. This is reasonable as we do not believe 
that original data are generated exactly from a statistical model.

5.2.5 Models for the propensity score

The choice of model for the propensity score is crucial to its performance and a more important 
choice than that of the utility measure. Any method that can predict group ownership could be used. 
Those that have been used in practice are logistic models, which include the special case of models 
that define tables, and classification and regression tree (CART) models. The models that can be fitted 
are limited by the complexity that it is possible to fit from a finite sample of data. Logistic models with 
a large number of parameters may fail to converge and, even if convergence is achieved, will have 
many parameters that cannot be estimated from lack of information (aliased parameters). Similarly, 
a comparison of tables with more than a small number of variables will yield large tables, with most 
of their cells having zero counts, that may lead to computational problems. CART models, that select 
a partition of the data to describe the distribution, can cope with data sets with more variables. But 
such models also have computational limits, especially when dealing with categorical variables with 
many possible levels, as are often found in data from NSOs. A simple model may give an assurance 
of a good fit although only a very limited aspect of the distribution differences has been assessed.

5.2.6 One number is not enough to describe utility

A person creating synthetic data needs more than a single number to assess the utility of the data 
they have produced. If the utility appears unsatisfactory, they need to know which aspects of the 
distribution are causing the problem. Many strategies can be devised to explore these differences. 
Some of these are described in the next section, some using the utility measures described here 
for subsets of variables or for the partitioning of large synthetic data sets into smaller strata, often 
defined by geographic areas.
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5.3 Methods to explore aspects of utility

5.3.1 Univariate comparisons

The starting point of any evaluation of synthetic data is to examine how well the synthetic data 
reproduce the univariate distribution of each variable. Bar charts of categorical variables or histograms 
of numerical variables are the obvious first step. These may be accompanied by utility measures 
computed from the tabulation of each variable. The function to produce plots of each variable in the 
synthpop package can be accompanied by a table of a variety of utility measures. Kaloskampis et al. 
(2020) produce similar plots where they display the Bhattacharyya metric alongside the histograms, 
see Figure 13.

Figure 13 Comparison of histograms of the workclass variable of the Adult Income data set  
between original (red) and synthetic data sets (blue) generated with GANs, using  
different values of privacy loss ε. We denote the Bhattacharyya metric by dBhat

Source: Kaloskampis et al. (2020).
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5.3.2 Marginal comparisons

Several methods have been proposed for comparing low-level marginals between the original and 
synthetic data. Any of the utility metrics that can be computed from tables can be used after first 
forming categories from any continuous variables. To summarise results from marginals, Raab et al. 
(2020) propose the following steps.

1. Examine histograms that compare the original and synthetic data and also check the pMSE-
ratio for the univariate comparison of each variable.

2. Once these are satisfactory, continue by visualising the utility of all two-way relationships 
between variables.

3. If there is one variable of particular interest, for example, an outcome variable in an 
epidemiological study, then it might be worth checking and visualising all three-way 
relationships that involve that variable.

Figure 14 illustrates the output from step 2 for four syntheses of the same original data. Plot (a) is 
from a default parametric synthesis, showing that there was a problem with the variable “weight”. 
Plots (b) and (c) show how reordering and stratifying the synthesis improves the utility. Plot (d) shows 
that synthesising from a CART model, with no adjustment, gives better utility than any parametric 
model.
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Figure 14 Visualisations of the utility of all two-way relationships between variables.
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(a) parametric synthesis
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(b) reordered parametric
    synthesis
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(d) CART synthesis

Two-way pMSE ratios

Source: Raab et al. (2021)

An example of marginal comparisons can be found in results from the 2018 National Institute of 
Standards and Technology’s Differential Privacy Synthetic Data Challenge. During the challenge, 
a method based on three-way marginals to evaluate utility was evaluated. Marginal distribution 
metrics work well for discretised data, since one can easily consider all possible k-way margins of the 
full cross-classification of discrete variables. Numerical (integer or floating point) data can function 
under these metrics as well by discretisation. One implementation of a k-way marginal metric is to 
consider the total absolute deviation across cells of a marginal table based on two “versions” of a 
data set. After normalising the total absolute deviation by dividing the total of the table, one obtains 
a metric on how close the chosen margin is between the two data versions. This method is quite 
flexible and allows variations such as fixing certain dimensions to more finely assess differences for 
certain variables or constructs (Ridgeway et al., 2021).
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Diving into an example, we consider creating synthetic data for a subset of the 1940 Census 
Demonstration Data (Ruggles et al., 2018) and assessing the synthetic data using k-way marginals. 
We take the subset of records for the District of Columbia, and synthesise the following variables:

• Binary sex (SEX)

• Age (AGE)19 

• Major race category (RACE)

• Ethnicity (HISPAN)

We use two models for synthesis: a naïve model that simply permutes the values of each of the 
columns above (PERM), and a model based upon sequentially fit classification trees (TREE). The effect 
of both models is to produce a new data set that has the same scheme as the original but with 
potentially modified entries in each row. We then use marginal metrics to assess the relative quality 
of PERM and TREE in reproducing the original data.

A natural starting point, and indeed often the ending point for much exploratory data analysis, is to 
consider the one-way marginal metrics for each column. The margins for sex under each data model 
are presented in Table 21.

Table 21 The margins for sex under the PERM and TREE data models

 Original 1940 PERM TREE 

Male 318,269 318,269 317,917 

Female 346,595 346,595 346,947 

Source: Derived from Ruggles et al. (2018).

To get the sex marginal score under TREE, we take the absolute differences in the number of males 
and females under TREE, sum them, and divide by the total number of persons:

Replacement equation for page 70 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ | 𝑀𝑀𝑖𝑖

𝑛𝑛 − 𝑦𝑦𝑖𝑖 
𝑛𝑛 |𝑘𝑘

𝑖𝑖=1
𝑘𝑘   

 

Replacement equation for page 75 
 

|317917 − 318269| + |346947 − 346595|
318269 + 346595  =  0.00106 
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Method Formula Variable definitions 

pMSE 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 = ∑(�̂�𝑝𝑖𝑖 − 𝑐𝑐)2/𝑁𝑁
𝑖𝑖

 

 

�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 

C is the proportion of synthesised 
rows in the combined data  

𝑛𝑛1, 𝑛𝑛2, and N are the number of 
records in the original, synthetic and 
combined data, respectively 

𝑡𝑡𝑖𝑖 indicator variable, i=1,…,N, taking 
the value 1 for rows form synthetic 
data and 0 for rows from original data 

𝑦𝑦𝑖𝑖 the counts for any original table 
with k categories 

𝑀𝑀𝑖𝑖 the counts for any synthetic table 
with k categories 

𝑘𝑘 total number of cells in tables to be 
compared 

SPECKS 𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝 =  𝑀𝑀𝑠𝑠𝑝𝑝�̂�𝑝|𝐹𝐹𝑡𝑡=0(�̂�𝑝𝑖𝑖) − 𝐹𝐹𝑡𝑡=1(�̂�𝑝𝑖𝑖)| 

 

PO50 𝑆𝑆𝑃𝑃50 = 100
∑ [𝑡𝑡𝑖𝑖(�̂�𝑝𝑖𝑖 > 𝑐𝑐) + (1 − 𝑡𝑡𝑖𝑖)(�̂�𝑝𝑖𝑖 < 𝑐𝑐)]𝑖𝑖

∑ (�̂�𝑝𝑖𝑖 ≠ 𝑐𝑐)𝑖𝑖
− 50 

MabsDD 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑ | 𝑠𝑠𝑖𝑖
𝑛𝑛1

−𝑦𝑦𝑖𝑖 
𝑛𝑛2

|𝑘𝑘
𝑖𝑖=1

𝑘𝑘  

 

 

 

 

To get the overall 1-marginal score under TREE, we perform the same computation for the other 
three 1-way margins and then take the average with results shown in Table 22.

19 Though we synthesize the full range of ages, the marginal evaluations are on a recode of age into three bins  
for children (0-17), adults (18-64), and older adults (65+)
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Table 22 Overall 1-marginal score under TREE model

Item Value

Sex 1.06E-03 

Age 8.00E-04 

Race 3.55E-04 

Ethnicity 1.99E-04 

Average 6.03E-04 

Source: Derived from Ruggles et al., 2018.

Since scores are more sensible when larger is better, we can use the transform:20

((2 − raw_score)/2) x 1000

To map the raw scores to (1000, 0), so that now a score of 1000 means perfect recreation of the 
margin, and a score of 0 means the margin is maximally perturbed.21

We can then compare these overall 1-way marginal scores across our two models, as shown in Table 23.

Table 23 Comparison of 1-way marginal scores between models

Model Raw Score Adjusted Score 

TREE 6.03E-04 999.7 

PERM 0.00E+00 1000 

Source: Derived from Ruggles et al., 2018.

The PERM method exactly recreates the 1-way margins since it samples the columns without 
replacement. But we see that TREE comes close, which becomes important when we consider 
marginals beyond one dimension.

We now consider the 3-way marginal metric. This is calculated exactly as above, except now we 
consider the deviations of the cells for all 3-dimensional margins. Here we see a change, as shown in 
Table 24.

20 Derived from the worst case: changing a table with counts of form [0 N] to [N 0] for a raw score of 2/N.

21 This score was used for the NIST 2018 Differential Privacy Synthetic Data Challenge: https://www.nist.gov/ 
ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic

https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
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Table 24 Comparison of 3-way marginal scores between models

Model Raw Score Adjusted Score 

TREE 2.29E-03 998.85 

PERM 3.61E-02 981.93 

Source: Derived from Ruggles et al., 2018.

The TREE model now outperforms PERM. In this simple case, where the variables may not have 
especially strong dependencies, a naïve model such as PERM can still perform well, but as 
dependencies and dimensionality increase, this will not occur, and the job of the data synthesiser 
becomes a more delicate task.

We can extend marginal metrics to give finer detail. For instance, we can restrict margins to only those 
containing a set of variables (e.g., all tables that contain “AGE” as a margin). We can also consider the 
cell differences between different categories of a variable (e.g., compare scores restricted to cells 
associated with males versus those associated with females). In this way, we can build up a picture of 
where two data sets differ the most. This is especially helpful in assessing synthetic data when certain 
use cases may need preservation.

In the 2018 NIST Differential Privacy Synthetic Data Challenge example, all three-way marginals 
from their large data set would have been too many to compute, so a subsample of all possible 
marginals was used. Each was evaluated by calculating the MabsDD, that was then rescaled to give a 
“human-readable NIST score” defined as 1000 (1 − MabsDD / 2) that ranges from 0 to 1000, with 1000 
representing exact agreement between the tables. The utilities can be examined to identify which 
variables contribute most often to the tables with low scores. This scoring method was also used to 
assess the utility of geographic subsets of the data.

5.3.3 Comparing other statistics

Many other statistics could be compared between the synthetic and original data. In their evaluation 
of the 2018 NIST synthetic data challenges, Bowen and Snoke (2021) propose a range of such 
measures as well as some of the other utility measures discussed here. They also propose methods 
of combining and visualising these different measures.

Beaulieu-Jones et al. (2019) have used a range of utility measures to evaluate DP synthetic data 
created from a clinical trial data set. They compare a number of relevant outcomes and present 
results graphically. In particular, they present the Pearson correlations (often referred to as correlation 
coefficient) between variables as heatmaps. Kaloskampis et al. (2020) have used the same method 
to present the correlations, as shown in Figure 15. As the visual comparison is often impractical, 
Kaloskampis et al. (2019) proposed a quantitative measure stemming from these visualisations, 
based on the difference of the underlying correlation matrices. This method could be useful, for 
example, in the process of hyperparameter optimisation of a synthetic data generation algorithm.
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Figure 15 Pairwise Pearson correlation heatmaps for original Adult Income data set and synthetic 
data sets generated with GANs, with different values of privacy loss ε 

Source: Kaloskampis et al., 2020

This synthesis uses a differentially private method where the parameter ε determines the degree of 
privacy loss that increases as ε decreases. This method provides a means to quantify the comparison. 
This could be an alternative to examining two-way marginals. The marginals have the disadvantage 
of ignoring the ordering of variables in the utility measure. However, marginals have the advantage 
of being defined for categorical data as well as continuous or ordered variables.

5.4 Tips for getting started

When getting started with evaluating synthetic data based on utility, start simple. Methods such as 
comparing univariate distributions or task accuracy (if the task is known) between the synthetic and 
original data can determine a primary baseline. From there, keep in mind why you want to measure 
utility. Is it to compare synthesis methods or is it to improve your synthesis, often referred to as tuning? 
Figure 16 illustrates some of the decisions that can help to choose types of utility methods to use.
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Figure 16 Utility measure decision tree

After you have determined why you want to measure utility, keep in mind your end-user and the 
requirements of your final synthetic data file. If the synthetic data is for a specific task or type of 
analysis, then specific utility measures can be the first choice. General utility measures can be useful 
for both comparing synthesis methods and for tuning a synthesis in respect of deficiencies identified. 
For the latter, marginal comparisons based on propensity scores can be useful to fine-tune your 
synthesis.

Keep in mind that although a large number of general utility measures have been suggested, some 
are equivalent to each other, and all appear to be highly correlated when compared across different 
data sets. For measures derived from discriminating between the synthetic and the original data, 
via a propensity score, the method of discrimination is more important than the utility measure 
chosen. We argue that a utility measure that provides only a single number is not useful in tuning 
the synthesis method to improve utility.
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5.4.1 Some helpful equations

Table 25 presents equations for some of the more common utility measures used in practice (Raab 
et al., 2021).

Table 25 Formulas for select utility measures

Method Formula Variable definitions

pMSE

Replacement equation for page 70 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ | 𝑀𝑀𝑖𝑖

𝑛𝑛 − 𝑦𝑦𝑖𝑖 
𝑛𝑛 |𝑘𝑘

𝑖𝑖=1
𝑘𝑘   

 

Replacement equation for page 75 
 

|317917 − 318269| + |346947 − 346595|
318269 + 346595  =  0.00106 

 

Replacement equations table for page 80 
 

Method Formula Variable definitions 

pMSE 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 = ∑(�̂�𝑝𝑖𝑖 − 𝑐𝑐)2/𝑁𝑁
𝑖𝑖

 

 

�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 

C is the proportion of synthesised 
rows in the combined data  

𝑛𝑛1, 𝑛𝑛2, and N are the number of 
records in the original, synthetic and 
combined data, respectively 

𝑡𝑡𝑖𝑖 indicator variable, i=1,…,N, taking 
the value 1 for rows form synthetic 
data and 0 for rows from original data 

𝑦𝑦𝑖𝑖 the counts for any original table 
with k categories 

𝑀𝑀𝑖𝑖 the counts for any synthetic table 
with k categories 

𝑘𝑘 total number of cells in tables to be 
compared 

SPECKS 𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝 =  𝑀𝑀𝑠𝑠𝑝𝑝�̂�𝑝|𝐹𝐹𝑡𝑡=0(�̂�𝑝𝑖𝑖) − 𝐹𝐹𝑡𝑡=1(�̂�𝑝𝑖𝑖)| 

 

PO50 𝑆𝑆𝑃𝑃50 = 100
∑ [𝑡𝑡𝑖𝑖(�̂�𝑝𝑖𝑖 > 𝑐𝑐) + (1 − 𝑡𝑡𝑖𝑖)(�̂�𝑝𝑖𝑖 < 𝑐𝑐)]𝑖𝑖

∑ (�̂�𝑝𝑖𝑖 ≠ 𝑐𝑐)𝑖𝑖
− 50 

MabsDD 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑ | 𝑠𝑠𝑖𝑖
𝑛𝑛1

−𝑦𝑦𝑖𝑖 
𝑛𝑛2

|𝑘𝑘
𝑖𝑖=1

𝑘𝑘  

 

 

 

 

p̂i  is the predicted probabilities, i=1,…,N, 
that row comes from synthetic data

C is the proportion of synthesised rows in 
the combined data 

n1, n2 and N are the number of records in 
the original, synthetic and combined data, 
respectively

ti indicator variable, i=1,…,N, taking the 
value 1 for rows form synthetic data and  
0 for rows from original data

yi the counts for any original table with  
k categories

si the counts for any synthetic table with  
k categories

k total number of cells in tables to be 
compared

SPECKS

Replacement equation for page 70 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ | 𝑀𝑀𝑖𝑖

𝑛𝑛 − 𝑦𝑦𝑖𝑖 
𝑛𝑛 |𝑘𝑘

𝑖𝑖=1
𝑘𝑘   

 

Replacement equation for page 75 
 

|317917 − 318269| + |346947 − 346595|
318269 + 346595  =  0.00106 
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𝑖𝑖

 

 

�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 
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MabsDD 
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�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 

C is the proportion of synthesised 
rows in the combined data  

𝑛𝑛1, 𝑛𝑛2, and N are the number of 
records in the original, synthetic and 
combined data, respectively 

𝑡𝑡𝑖𝑖 indicator variable, i=1,…,N, taking 
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∑ (�̂�𝑝𝑖𝑖 ≠ 𝑐𝑐)𝑖𝑖
− 50 
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 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
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𝑛𝑛1

−𝑦𝑦𝑖𝑖 
𝑛𝑛2

|𝑘𝑘
𝑖𝑖=1
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Method Formula Variable definitions 

pMSE 𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 = ∑(�̂�𝑝𝑖𝑖 − 𝑐𝑐)2/𝑁𝑁
𝑖𝑖

 

 

�̂�𝑝𝑖𝑖 is the predicted probabilities, 
i=1,…,N, that a row comes from 
synthetic data 

C is the proportion of synthesised 
rows in the combined data  

𝑛𝑛1, 𝑛𝑛2, and N are the number of 
records in the original, synthetic and 
combined data, respectively 

𝑡𝑡𝑖𝑖 indicator variable, i=1,…,N, taking 
the value 1 for rows form synthetic 
data and 0 for rows from original data 

𝑦𝑦𝑖𝑖 the counts for any original table 
with k categories 

𝑀𝑀𝑖𝑖 the counts for any synthetic table 
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𝑘𝑘 total number of cells in tables to be 
compared 

SPECKS 𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝 =  𝑀𝑀𝑠𝑠𝑝𝑝�̂�𝑝|𝐹𝐹𝑡𝑡=0(�̂�𝑝𝑖𝑖) − 𝐹𝐹𝑡𝑡=1(�̂�𝑝𝑖𝑖)| 

 

PO50 𝑆𝑆𝑃𝑃50 = 100
∑ [𝑡𝑡𝑖𝑖(�̂�𝑝𝑖𝑖 > 𝑐𝑐) + (1 − 𝑡𝑡𝑖𝑖)(�̂�𝑝𝑖𝑖 < 𝑐𝑐)]𝑖𝑖

∑ (�̂�𝑝𝑖𝑖 ≠ 𝑐𝑐)𝑖𝑖
− 50 

MabsDD 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑ | 𝑠𝑠𝑖𝑖
𝑛𝑛1

−𝑦𝑦𝑖𝑖 
𝑛𝑛2

|𝑘𝑘
𝑖𝑖=1

𝑘𝑘  

 

 

 

 

Source: Raab et al., 2021.

5.4.2 Some helpful tools

Table 26 highlights two common available and used open-source tools to calculate utility measures 
highlighted in this chapter.

Table 26 Common open-source packages to evaluate utility

Method Tool

Task accuracy for deep learning models Synthetic Data Vault (https://sdv.dev/)

pMSE

synthpop (https://www.synthpop.org.uk/)
SPECKS

PO50

MabsDD

https://sdv.dev/
https://www.synthpop.org.uk/
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In addition, various utility measures were explored in the HLG-MOS Synthetic Data Challenge 2022 
(Bhagat et al., 2022). The utility measures summary and results website22 of the challenge provides 
a list of the utility measures and some accompanying open-source packages that were used to 
evaluate synthetic data utility during the challenge (Bhagat et al., 2022).

22 See https://pages.nist.gov/HLG-MOS_Synthetic_Data_Test_Drive/index.html#utility_evaluation_methods  
for the summary and results of the utility measures evaluated in the HLG-MOS Synthetic Data Challenge 2022.
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Producers of official statistics face a complicated task in managing users’ access to the data 
they collect, as they must maintain the confidentiality of the individuals or businesses who 
have provided their data to them, while being under pressure to release ever more detailed 
datasets in order to provide greater analytical insight to those who wish to use such data.

Traditionally, national statistical offices have provided trusted users (such as academics) with 
access to some micro-level data at the level of individuals or businesses, while publishing 
aggregate statistical tables to other users. This approach is not a perfect solution to managing 
access to data, as many users will not obtain the amount of detail they are seeking, while 
vetting and managing trusted users is time consuming, and does not guarantee that they will 
never misuse or lose the data they access.

However, there is another way of providing users with analytical insight, by providing them 
with Synthetic Data, which may be advantageous for certain use case scenarios. Synthetic 
data can be simulated in such a way as to have many of the same properties as the original 
dataset, and to allow derivation of the same results and insights, but with a much lower risk of 
revealing information about individuals to which that data relate.

If you are involved in managing users’ access to official statistics, and would like to have 
another option for dealing with your data access dilemmas, this guide will give you what you 
need to get started.
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