

AGE AND SEX PATTERNS OF MORTALITY

MODEL LIFE-TABLES FOR UNDER-DEVELOPED COUNTRIES

UNITED NATIONS
Department of Social Affairs
Population Branch
New York
1955

UNITED NATIONS PUBLICATION

Sales No.: 1955. XIII. 9

Price: \$U.S. 2.00
(or equivalent in other currencies)

FOREWORD

Mortality data on more than one-third of the world's population is lacking and much of the demographic analysis needed in order to formulate plans for social and economic development is therefore seriously hampered. During recent years the combined efforts at the international and the national levels have resulted in significant improvements in remedying this situation. Estimates of mortality levels and of trends, however, are bound to remain the only recourse, as long as some countries have not developed efficient systems of census taking and of vital registration.

This report, which has been prepared in partial implementation of the recommendation of the Population Commission to intensify demographic studies of under-developed countries, is believed to offer a useful tool in this respect. The series of forty model life-tables, which cover the entire range of mortality variations that can be found today, provide a time- and labour-saving method of approximating the most probable mortality level, by sex and age groups, for any population for which the infant or, better still, the early childhood mortality rate is known with a certain degree of accuracy.

TABLE OF CONTENTS

Chapter Page
Introduction 1

1. The material and its limitations 1
(1) The life-table concept of mortality 1
(2) The basic material and its preparation 2
II. The mortality patterns. 3
(1) Preliminary considerations. 3
(2) The derivation of the mortality patterns. 5
III. The development of model life-tables. 13
IV. Model life-tables for males and females 16
V. Test of reliability of the model life-tables. 20
V1. Use of the model life-tables 25
Summary 28
Appendix Quinquennial life-table mortality rates 29

Introduction

Ideally, death should occur at the end of a more or less lengthy period of life when the biological energy vested in each individual has been spent and the continuing function of the body's vital organs has reduced them to a state of general deterioration. Under this pattern of mortality, deaths would tend to accumulate in the terminal period, probably at the ages between 70 and 90 years, with only a few exceptions of premature deaths at younger ages, besides those due to congenital conditions of purely genetic origin, and of delayed deaths at the terminal ages of senescence which may extend a little beyond 100 years.

The typical mortality curve throughout the life span of a human population departs radically from this ideal. Usually, it is not the old ages that claim most of the deaths of a generation, but rather the very young ones and especially those during the formative stage which extends from a few months before birth to approximately the fifth year after birth. The number of lives lost during this period, which is often termed "reproductive wastage", by far exceeds the number of deaths in any other interval of equal length in the life span. ${ }^{1}$ Furthermore, risks to life are close to the individual at all ages; no age is or can be entirely free from mortality.

The typical variation of mortality with advance in

[^0]age during the life span may be represented by a " U " shaped curve, which starts high at birth, declines rapidly towards a minimum around the twelfth year of age, and then increases slowly through adolescence and maturity until it reaches the second catastrophic maximum at the terminal period of senescence. Both sexes share this pattern with only slight variations, the mortality rates for females being, in most populations and age intervals, somewhat lower than the corresponding rates for males.

In modern nations improvements in conditions of living and standards of health are reflected in gradual shifting of mortality from earlier to later periods of life-a postponement of premature deaths-which brings the actual pattern of mortality closer to the ideal. Relative to their earlier levels the risks of mortality during infancy and childhood are reduced most substantially, but smaller relative improvements are also made during maturity and even at later ages. Thus the curve describing mortality risks by age sinks to a lower level, but its shape is not fundamentally affected. Quite generally, the relationships between the mortality rates of adjacent age groups retain a notable consistency at all levels of general mortality.

The purpose of the present report is to establish, as far as possible, relatively simple patterns of changes in mortality rates in different age groups during the transition from high to low mortality levels. The ultitimate aim is chiefly to facilitate mortality estimates for countries and regions of the world in which no adequate mortality statistics have so far been developed.

I. The Material and its Limitations

(1) The life-table concept of mortality. Two main systems of mortality measurements are in use; the first includes crude and age (and sex) specific death rates, and the second is derived from the life-table concept and its various functions. Each has its advantages and limitations and only consideration of the characteristics of each of the two systems can offer a satisfactory answer to the questions of "how fast" and "in what way" a given population is being depleted by death. When the problem is set in a national frame alone and attention is restricted to the situation within a limited period of time, crude and specific death rates, in combination with the corresponding crude and specific birth rates, usually suffice for an understanding of the depletion and replenishment of the population during the given period. However, comparisons of crude and/ or specific vital rates are not generally satisfactory
for a clear understanding of long term trends and international differences.

The principal limitation of crude rates is their dependence upon the age and sex composition of the population to which they relate. A similarity of crude death rates in two populations which differ markedly in their age structure fails to demonstrate the true difference in the mortality risks to which the two populations are exposed. By the same token, two dissimilar crude death rates may correspond to nearly the same mortality experience, if the age stratifications of the two populations diverge accordingly. ${ }^{2}$

In the life-table the single measure of mortality derived from the age-specific death-rates of a popula-

[^1]tion is the expectation of life at birth or its reciprocal, the life-table death rate. Since this measure is not dependent upon the existing age distribution of the population, it is totally devoid of the weaknesses of the crude rate. Basically, the life-table traces, through successive ages, the survivors of a cohort of births on the assumption that the age-specific mortality observed in the population during a given period remains unchanged. The average lifetime of this cohort is the expectation of life at birth. For the computation of the life-table, the age-specific death rates must first be converted to corresponding age-specific probabilities of dying. ${ }^{3}$

Since the intention of this report is to give an undisturbed picture of the successive levels of mortality as observed in various populations during the last fifty years, the life-table concepts of expectation of life and of mortality are used here instead of the crude death rate. It may be added that the momentous decline in mortality which occurred during this relatively short time period was by far the greatest ever recorded in demographic history.
(2) The basic material and its preparation. A sizeable number of national life-tables for the first half of this century, covering roughly the period between 1900 and 1950, have been officially published ${ }^{4}$ and assembled, in a condensed form, in the series of the United Nations Demographic Yearbooks, 1949-1954. From this material a selection of 158 life-tables was made for this study, the selection aiming to satisfy the following objectives:
(i) The widest possible geographic coverage;
(ii) An adequate spacing in time;
(iii) The exclusion, as far as possible, of periods with abnormally high mortality (such as that due to war losses, the influenza epidemic of 1918-1919, etc.); and
(iv) A uniform scale of age intervals.

The material included here is distributed by continents and time intervals as shown in table 1. This

[^2]material is not evenly distributed in space or time.
Some of the continents and the decades prior to 1920 are conspicuously under-represented. In spite of this limitation, the material seems to meet the requirement of representing satisfactorily the variation of levels of mortality experience throughout the world during the period under consideration. In fact, this body of 158 life-tables seems to cover nearly the entire range of present-day variations of human mortality in at least those populations of the world where the annual rate of growth is above zero.
The data suggest for example, that the very high mortality experienced in India prior to 1920 and especially during the decade 1911-1921 lies near the maximum mortality with which a population, even of high fertility, can sustain its numbers. The average increase of the Indian population between 1911 and 1921 amounted to only 0.09 per cent per year, which is indeed insignificant. The expectation of life at birth for this period, according to Davis's table, was in the neighbourhood of 20 years, ${ }^{5}$ and if this unofficial lifetable were included here, it could be taken to represent the approximate maximum level of mortality experience.
The lower limit of mortality experience during this fifty-year period is represented by a group of countries (Netherlands, Norway, Denmark, Sweden, New Zealand, Australia, etc.) in which mortality has reached a very low mark indeed. Obviously, it would be wrong to suppose that these are the lowest attainable levels of human mortality, but the work of several demographers ${ }^{6}$ implies that the present levels of mortality in these countries are not very far from the minimum that can be expected to be reached in the foreseeable future under the most favourable conditions.
With the broad generalization in mind that the material roughly describes the total range within which the mortality experience of the world's peoples is comprised today and can be expected to be comprised in the near future, the processing of the basic data proceeded as follows:
First, the life-table mortality rate for each quinquennial age group, that is, the probability that a

[^3]Table 1. The geographic and time distribution of the material

Continent	$\begin{gathered} \text { No. of } \\ \text { countries } \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { tables } \end{gathered}$	Period to which the life-tables refer (central-year)				
			$\begin{gathered} \text { Prior to } \\ 1909 \end{gathered}$	$\begin{array}{r} 1910- \\ 1919 \end{array}$	$\begin{gathered} 1920-0 \\ 1929 \end{gathered}$	$\begin{gathered} 1930- \\ 1939 \end{gathered}$	$\begin{gathered} 1040 \\ \text { and afler } \end{gathered}$
Africa	3	6	-	-	2	2	2
America, North.	6	17	1	2	2	3	9
America, South.	5	11	-	2	2	2	5
Asia	7	21	3	,	5	3	9
Europe	27	95	16	11	20	22	26
Oceania.	2	8	2	1	1	2	2
Total.	50	158	22	17	32	34	53

person just attaining age x will die before attaining age $x+5\left({ }_{5} \mathrm{q}_{x}\right)$, was computed on the basis of the number of persons surviving at the beginning of each age interval ($\mathbf{l}_{\mathbf{x}}$) in accordance with the formula:

$$
{ }_{5} q_{x}=\frac{l_{x}-l_{x+5}}{l_{x}}
$$

For the first quinquennial age group, (${ }_{5} \mathrm{q}_{0}$), two more values were computed, namely those for q_{0} and for ${ }_{4} \mathrm{q}_{1}$ in order to parallel the series of age-specific death rates presented in the statistical yearbooks of many countries.

Separate series of age-specific mortality rates (expressing the number of deaths occurring in the age interval per 1,000 living at the beginning of the interval) were computed for each sex and also for the two sexes combined. A simple technique was used for reconstructing the life-tables for both sexes combined, on the basis of the data given for each sex. In each case the corresponding sex ratio at birth was used to compute the radix of the male life-table. For example, when the sex ratio for a given country and period was 105 male per 100 female births, the starting popula-
tion of the male life-table $\left(\mathrm{l}_{0}\right)$ was set at 105,000 , that of the female table being 100,000 . By exposing this population to the male mortality rates at successive ages, a new series of the numbers dying within each age interval $\left({ }_{5} \mathrm{~d}_{\mathrm{x}}\right)$ was derived. These ${ }_{5} \mathrm{~d}_{x}$ values for males were then added to the corresponding figures for females and the $l_{\mathbf{x}}$ values for both sexes combined were constituted by successive additions of the ${ }_{5} \mathrm{~d}_{x}$ values, backward from the highest age with values for ${ }_{5} \mathrm{~d}_{\mathrm{x}}$, including as the last value the survivors at age 85 . Finally, the l_{x} values for both sexes, as derived above, were brought back to the conventional radix of 100,000 (in this example, by dividing each value by 2.05) and the mortality rates ($5 \mathrm{q}_{\mathrm{x}}$) for the two sexes combined were computed by the formula given above.

The results of this phase of the work, that is, the series of quinquennial life-table mortality rates for males, females, and both sexes, together with the corresponding values of expectation of life at birth and their reciprocal numbers, are shown in the appendix. The values given approximate closely the corresponding age-specific death rates for the given countries and periods when these rates are multiplied by the number of years contained in each age interval.

II. The Mortality Patterns

(1) Preliminary considerations. In the attempt to derive the patterns of transition from high to low mortality levels, attention will be focused on the relation between the variation in a particular age-specific rate and the mortality variations of another age-group with which it is to be compared. The particular agespecific rate thus chosen as the index should be not only readily available for many areas and time periods but also sensitive enough to reflect mortality changes as they occur in the other age groups.

A close examination of the material presented in the appendix reveals a remarkable consistency of the various functions. both within each life-table where mortality is compared by age groups and between different life-tables which represent many levels of general mortality. The familiar " U " shape in the curve of mortality by age is faithfully maintained at all levels of general mortality, from the situation corresponding to an expectation of life at birth of about twenty-two years-representing the maximum mortality included in the series- to those situations corresponding to an expectation of life around seventy years-representing the minimum mortality so far attained. High mortality rates of course are associated with low expectation of life at birth and vice versa. The range of the agespecific mortality rates, between the maximum and the minimum levels observed in the experiences included in this study, is shown in table 2.

The widest relative range of variation is observed in the brackets between the first and the fifteenth year of age; it is particularly wide in the age group 1-4. In contrast, mortality in old age differs little between
countries with high and low general mortality. Since mortality improvements towards the end of life proceed at the slowest and most irregular pace, the rates for these ages are hardly a sensitive index of the general decline in mortality.

An appropriate measure of the general transition from high to low mortality must therefore be sought in the lower age brackets, where the variations of mortality are relatively large. At the younger ages, the first year of life possesses several features which qualify it for this purpose. Infant mortality is easy to compute because of the readiness of the requisite data (the numbers of births and of infant deaths) which are routinely collected in very many countries. Furthermore, this index can be established by means of a sample survey in countries where vital statistics are not as yet adequately developed. But the main feature of the infant mortality rate is the sensitivity with which it reflects the social and economic improvements and the advances in public health and medicine upon which declines in general mortality mostly depend.

On the other hand, the recorded infant mortality rate frequently understates the true infant mortality for the area. In many less advanced countries, it is likely that infant deaths escape registration to a greater extent than deaths of adults. Unless this underregistration is balanced by a corresponding underregistration of births, the result is an erroneously low infant death rate. Many such examples can be cited in the series of life-tables used for this study. The same examples demonstrate the fact that a mortality rate covering the first five years of age usually yields more

Table 2. Minimum and maximum mortality rate (both sexes)
 BY AGE-GROUPS

Age group	Minimum mortality			Maximum mortality			Ratio of maximum to minimum rate
	Country and year		Rate	Country and year		Rate	
0-1	New Zealand,	1951-52	225	India,	1901-11	2874	128
1-4	"	،	50	"	"	2151	430
5-9	"	"	28	"	1891-1901	954	341
10-14	England-Wales	, 1950	24	"	"	640	267
15-19	Netherlands, 19	947-49	41	"	1901-11	718	175
20-24	"		54	"	"	878	163
25-29	New Zealand,	1951-52	62	"	"	1026	165
30-34	"	"	72	"	"	1182	164
35-39	Netherlands,	1947-49	94	"	"	1363	145
40-44	"	،	139	"	1921-31	1578	114
45-49	"	،	208	"	"	1794	86
50-54	"	"	326	"	1901-11	2027	62
55-59	Norway, 1945		454	Maurit	us, 1942-46	2471	54
60-64	" "		715	"	،	3203	45
65-69	"		1126	"	"	4023	35
70-74	" "		1801	"	"	5006	28
75-79	United States,	1950	3226	India,	1901-11	6447	20
80-84	"	"	4299	،	،	8009	19
${ }^{0} \mathrm{e}_{0} \ldots$. Netherlands,	1947-49	7045	"	1901-11	2295	31

consistent results than the infant mortality rate alone.
For these reasons the rate of infant mortality, later supplemented by the mortality rate for the first quinquennial age group (${ }_{5} \mathrm{q}_{0}$), was selected as the key index for this study. The rate for both sexes was selected in preference to that for either sex alone in view of its greater stability.

The relationship which exists between the mortality rates of these two age groups (q_{0} and ${ }_{5} \mathrm{q}_{0}$) and the general mortality (${ }^{\circ} \mathrm{e}_{o}$ or its reciprocal $1 /{ }^{\circ} \mathrm{e}_{o}$) is shown in table 3.

In spite of the rather erratic interrelationship which is observed between the percentage decline in infant (q_{0}) or early childhood mortality (${ }_{5} \mathrm{q}_{0}$) and the corresponding gains in life expectancy, there are two indications which clearly emerge from this comparison.

First, the gain in life expectancy corresponding to a one per cent decline of infant or early childhood mortality seems to become smaller as the level of general mortality declines; and second, this relationship seems to be more consistent when the comparison is made with mortality in the first quinquennial age group than with infant mortality alone.

The foregoing considerations may be summarized as follows: first, life-table mortality rates for successive age groups are interrelated fairly consistently at the various levels of general mortality; second, infant and early childhood mortality may serve as a satisfactory index to express this relationship. The next step is to develop the mathematical formulae for the relationship.

Table 3. Distribution of life-tables (Observations) and approximate mortality relationships at the various levels of life expectancy (both sexes)

${ }^{\text {a }}$ o in years	Number of observations ${ }^{\text {a }}$	Average			Years of life added to ${ }^{\circ} \mathrm{e}$. for each one per cent decline in	
		$1 /{ }^{\circ} \mathrm{e}$ 。	90	590	90	590
Under 300	3	408	2670	4178	-	-
30-349	8	304	2045	3329	036	041
35-39 9	7	265	1890	3188	063	113
40-449	14	236	1641	2616	035	026
45-49 9	14	211	1389	2087	033	025
50-549	24	192	1118	1645	024	022
$55-599$	34	174	814	1138	019	017
60-649	23	160	635	777	023	016
65 and over	23	148	389	484	013	013

${ }^{\text {a }}$ Eight tables, in which expectation of life at birth is not given, are omitted.
(2) The derivation of the mortality patterns. In a series of spot diagrams, the age-specific mortality rates for the 158 life-tables were plotted in successive pairs, with the lower age group on the x axis and the next higher age group on the y axis. To the observations for each pair of successive age groups, a second degree parabola of the type $y=a+b x+c x^{2}$ was fitted, by the method of least-squares. For the computation of the constants a, b and c the observations were grouped and summed at regular intervals of the x axis, and the average $x y$ values thus obtained were used as the guiding points for fitting the appropriate curve in each case. The series was begun with the pair of mortality rates for the ages $0-1$ and $0-4$. From this point on, all comparisons were made for quinquennial age groups, namely, ${ }_{5} \mathrm{q}_{0}$ with ${ }_{5} \mathrm{q}_{5},{ }_{5} \mathrm{q}_{5}$ with ${ }_{5} \mathrm{q}_{10}$, and so forth to the final pair of ${ }_{5} \mathrm{q}_{75}$ and ${ }_{5} \mathrm{q}_{80}$.

The results of this treatment are shown in figures 1-7. In general, the curve fitting on the seventeen pairs of mortality rates seems quite adequate, being in some cases very satisfactory and in others less conclusive. Up to about the twentieth year of age, the correlation is not as close as at the older ages; there is either too great a dispersion of the rates at the higher levels of mortality or a spurious deviation of the observations towards unrealistic levels of mortality. This latter phenomenon is particularly obvious in the upper part of the first diagram, where many observations, departing towards the left side of the theoretical curve, seem to indicate an impossibly low infant mortality rate for the given level of mortality in the age group under 5. The usual under-estimation of the mortality of the first year of life due to weaknesses in the registration of infant deaths, which is known to occur especially in countries of high mortality, may account for these irregularities.

A similar explanation may be given for the rather abnormal dispersion of the observations which is observed again in the upper part of the next three diagrams. Failure to state the exact age of the deceased, lack of accuracy in the census record of age composition of the population, and delayed or incomplete registration of deaths, all of which are apt to occur more often in countries with high than with low mortality, may be blamed.

The remaining diagrams, from the age group of 20-24 to the ages beyond 70 years, show a remarkable consistency of observations, with an arrangement throughout pointing to unmistakable patterns of transition from one mortality level and age group to the next level and group of the series. Only the last three diagrams, and particularly that of the age groups 75-79 and 80-84, contain evidence of spurious deviations with some unexpectedly low mortality values. But here again an under-estimation of mortality in old age is known to occur in many places, even in some countries that have good registration systems, and where levels of general mortality are not necessarily high.

Another factor to which some of the discrepancies
observed may be attributed is the random error of observations. Most if not all of the life-tables which were computed on a total population of less than 5 millions show evidence of instability in the mortality changes from one age group to another. Such divergences are most frequently found in the ages of late childhood, adolescence and early maturity, where the absolute numbers of deaths involved are of a low order of magnitude. The difference in stability of data derived from very large or relatively small populations is exemplified by the erratic data of some of the life-tables based on small populations (Cyprus, Malta, Israel, Finland) and the rather good consistency of the life-tables constructed for large populations like those of India, the United States, etc. The use of graduation methods in deriving the mortality curve in some lifetables and the absence of such adjustments in other life-tables account for only part of the observed differences.

Notwithstanding the various limitations mentioned above, the bulk of the observations do suggest definite mortality patterns, which in this study are arithmetically expressed in the formulae given at the bottom of each diagram. They are all equations of a seconddegree parabola, the three constants a, b and c of which denote, respectively:
(a) The xy values at the point of origin of the curve, which point was set arbitrarily at convenient values of x in each case;
(b) The increment on the y axis for each unit of increment on the x axis, which is always positive; and,
(c) A modifying factor of the b quantity, which is positive in certain age-groups and negative in others.

The point of origin of each regression curve was chosen at a level a little below but not very far from the lowest mortality rate observed in each pair of age groups. In view of the large representation of countries with low mortality, it was felt that such a practice would certainly cover the lowest limits of mortality among the populations of the world during the last fifty years. When these equations are converted to the natural scale of x_{0} (with origin at zero instead of the arbitrary origins), the constants of the seventeen equations become comparable, thus permitting comparisons of changing mortality in passing through the successive ages of the life span. The results are shown in table 4.

Naturally the major interest here is directed towards the series of B values, the variation of which offers a good generalization of the manner in which mortality changes with advancing age in view of the low values of C. For example, the mortality rate of age $0-1$ is multiplied by about 1.316 in order to arrive at the approximate mortality rate for the age group $0-4$. From this point on the comparisons are made between quinquennial age groups, and the numerical values of the

Figure 1. Relation of life-table mortality rates for consecutive age-groups and the corresponding second-degree parabolas

Figure 2. Relation of life-table mortality rates for consecutive age-groups and the corresponding second-degree parabolas

Figure 3. Relation of life-table mortality rates for consecutive age-groups and the corresponding second-degree parabolas

Figure 4. Relation of life-table mortality rates for consecutive age-groups ani the corresponding parabolas

Figure 5. Relation of life-table mortality rates for consecutive age-groups and the corresponding parabolas

Figure 6. Relation of life-table mortality rates for consecutive age-groups and the corresponding parabolas
(Circles denote obviously erratic observations)

Figure 7. Relation of life-table mortality rates for consecutive age-groups and the corresponding parabolas (Circles denote obviously erratic observations)

Table 4. The parameters of the regression curves at the natural scale (arbitrary origin eliminated)

Age groups	Arbitrary origin	The three constants converted to the natural origin at xo		
		A	B	C
0-1/0-4	20	2818	1315646	+0 000844
0-4 / 5-9	20	1340	0049239	+0000255
5-9 /10-14.	2	0419	0701595	-0 000560
10-14/15-19.	2	0338	1593816	-0 006433
15-19/20-24.	4	0905	1520755	-0003605
20-24/25-29.	4	0810	0960534	+0002347
25-29/30-34.	5	1622	0936750	+0002130
30-34/35-39.	5	2262	0974504	+0001593
35-39/40-44.	5	3748	1045576	+0 000740
40-44/45-49.	10	6305	1120402	+0 000080
45-49/50-54.	20	7829	1204309	-0 000432
50-54/55-59.	30	8331	1297160	-0 000714
55-59/60-64.	40	13230	1378100	-0 000870
60-64/65-69	70	18134	1441000	-0 000850
65-69/70-74.	120	28939	1451525	-0000628
70-74/75-79.	180	54637	1346507	-0 000380
75-79/80-84.	280	97706	1193500	-0000150

B constant describe a violently inflected curve for the first five or six age groups. The B constant declines sharply to levels below unity for the next two age groups, the lowest mortality of all ages being reached in the age group 10-14. Then the B constant increases to a maximum level when passing from the mortality of the 10-14 age group to that of 15-19 years and remains high for the next age group. The value then falls a little below unity for the next three age groups (up to the age of about 35 years), describing the familiar "plateau" of mortality at the ages of early maturity. From this age on, the B constant rises slowly, reaching a second maximum at an age around 65 and declines afterwards, approaching the level of unity at the terminal ages of the life span.
A similar but rather inverse variation is observed in the values of the C constant, the course of which alternates between positive and negative values. The constant is positive in the comparison of the first two
age groups, pointing to additional mortality risks, over and above those indicated by the B constant. It is negative during the latter part of childhood and also during puberty and becomes positive in early adulthood. From the age of 50 onwards, the C constant again becomes negative with its greatest deviation from zero at about the 60th year of age.

The systematic sequence of the numerical values of the B and C constants may be taken as additional evidence of the adequacy of the seventeen parabolas computed to express the patterns of mortality change between the successive age groups. These patterns are based on a world-wide experience of 158 lifetables representing practically all levels of general mortality and, by inference, all major variations of living conditions; they may now be used for the development of a series of model life-tables covering almost the entire range in which the mortality of populations of the world may vary today.

III. The Development of Model Life-Tables

In attempts to estimate the approximate mortality of a population with scanty or unreliable mortality data, use has sometimes been made of a life-table computed for the population of another country, where mortality levels and living conditions were presumed to resemble those of the population under consideration. This approach seldom if ever yields the desired results. As experience has repeatedly shown, differences in age-specific mortality rates are found even between countries with the same level of general mortality. Each population has its own peculiar agespecific death rates which will not necessarily apply to another population where mortality determinants of a different nature may be in operation. In this situ-
ation it is reasonable to seek an average mortality pattern, more or less free of individual pecularities, which roughly but generally corresponds to a given level of general mortality. Even so the result may not correctly express the actual mortality risks to which any particular population at the given level of general mortality is exposed. However, until a systematic study of the mortality of the particular population can be made, the average pattern may be used as an unbiased approximation.

This is the purpose for which the following series of model life-tables has been developed. Based on the previously computed typical patterns of mortality for the various age groups, this series of regularly spaced

Table 5. Life-table mortality rates for specified age intervals

$\begin{gathered} \text { Model } \\ \text { No. } \end{gathered}$	-eo	1/®o	Mortality rate for specified age group							
			0	1-4	0-4	5-9	10-14	15-19	20-24	25-29
1	7171	1395	2000	391	2383	266	228	394	503	570
2	7088	1411	2500	574	3060	308	257	439	570	636
3	6999	1429	3000	764	3741	354	290	491	648	713
4	6916	1446	3500	960	4426	401	322	540	720	785
5	6825	1465	4000	1163	5116	453	359	598	806	870
6	6738	1484	4500	1371	5809	505	395	653	887	952
7	6642	1506	5000	1586	6507	562	435	715	978	1043
8	6552	1526	5500	1808	7209	621	475	776	1068	1134
9	6452	1550	6000	2038	7916	684	519	844	1167	1234
10	6358	1573	6500	2274	8626	748	564	912	1267	1336
11	6263	1597	7000	2517	9341	816	611	984	1371	1442
12	6170	1621	7500	2768	10060	888	660	1058	1478	1552
13	6069	1648	8000	3027	10785	961	711	1135	1589	1667
14	5973	1674	8500	3291	11511	1040	765	1216	1705	1787
15	5873	1703	9000	3563	12242	1119	820	1298	1823	1910
16	5775	1731	9500	3843	12978	1203	878	1384	1945	2038
17	5672	1763	10000	4131	13718	1290	938	1472	2070	2170
18	5473	1827	11000	4731	15211	1474	1064	1657	2330	2446
19	5273	1896	12000	5365	16721	1670	1198	1851	2601	2738
20	5076	1970	13000	6031	18247	1881	1342	2057	2885	3048
21	4876	2051	14000	6734	19791	2109	1497	2276	3184	3377
22	4681	2136	15000	7472	21351	2349	1659	2501	3487	3688
23	4483	2231	16000	8248	22928	2603	1830	2735	3799	4069
24	4291	2330	17000	9063	24522	2875	2013	2981	4122	4439
25	4104	2437	18000	9918	26133	3164	2206	3237	4454	4825
26	3922	2550	19000	10816	27761	3466	2406	3496	4785	5215
27	3736	2677	20000	11758	29406	3786	2618	3766	5155	5656
28	3567	2803	21000	12743	31067	4124	2840	4041	5466	6033
29	3397	2944	22000	13777	32746	4480	3073	4324	5811	6455
30	3232	3094	23000	14858	34441	4855	3316	4612	6156	6884
31	3073	3254	24000	15991	36153	5250	3571	4903	6499	7315
32	2919	3426	25000	17176	37882	5659	3833	5198	6840	7749
33	2771	3609	26000	18416	39628	6089	4106	5492	7174	8180
34	2628	3805	27000	19714	41391	6544	4393	5789	7505	8612
35	2491	4014	28000	21069	43170	7011	4685	6089	7833	9045
36	2359	4239	29000	22489	44967	7504	4991	6386	8151	9471
37	2232	4480	30000	23971	46780	8019	5308	6681	8460	9887
38	2110	4739	31000	25523	48611	8558	5636	6973	8761	10298
39	1995	5013	32000	27144	50458	9113	5970	7256	9046	10691
40	1883	5311	33000	28839	52322	9693	6316	7534	9320	11072

model life-tables attempts to cover the entire range of mortality variations that are to be met in the world today. The series includes forty models, the first of which (No. 1) corresponds to a mortality level a little lower than the best so far attained by any population (both sexes) of an adequate magnitude. The next sixteen models in the series are spaced at intervals of five units along an increasing scale of life-table infantmortality rates from 20 to 100 infant deaths per 1,000 live born. The last twenty-three models are spaced at intervals of ten units of infant mortality rates from 100 to the rather catastrophic rate of 330 infant deaths per 1,000 live births. This last mortality experience, labeled in the series as model No. 40, represents an extremely heavy toll, requiring a fertility of about seven live births per woman in the reproductive ages, if the population is to survive and maintain its numbers. It is rather doubtful that such extreme mortality experience can be found today in any sufficiently large population except for short periods of time when major epidemics or famines are prevailing.

The technique used for the construction of these model life-tables is very simple. It is entirely based on the series of equations which were developed in fitting the seventeen second-degree parabolae to the original observations. In the first equation, in which the mortality of the age group $0-4$ is related to mortality at age zero, values of ${ }_{5} \mathrm{q}_{0}$ were computed to correspond to the values of $\mathrm{q}_{0}=20,25,30$, etc., up to $\mathrm{q}_{0}=100$ and thereafter for every tenth value beginning with $\mathrm{q}_{0}=110$ and ending at $\mathrm{q}_{0}=330$. From these two parallel series of q_{0} and ${ }_{5} \mathrm{q}_{0}$, the intermediate mortality of the age group ${ }_{4} \mathrm{q}_{1}$ was easily derived by computing the survivors at age one (l_{1}), to which the remaining numbers of deaths, corresponding to the age group 1-4, were referred.
The second equation in which the mortality of the age group 5-9 is related to that of ages $0-4$, gave the values of ${ }_{5} q_{5}$ corresponding to those of ${ }_{5} q_{0}$ computed from the first equation. Similarly, the newly computed mortality rates for each successive age group were used as the x factors, in order to arrive at the
$\mathrm{q}_{0},{ }_{4} \mathrm{q}_{1}$ and ${ }_{5} \mathrm{q}_{\mathrm{x}}$ IN FORTY THEORETICAL MODELS. BOTH SEXES

Mortality rate for specified age group										
30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84
703	921	1343	2133	3328	5073	8086	12910	20586	31573	45965
767	981	1407	2212	3423	5186	8241	13111	20844	31879	46295
843	1061	1491	2302	3530	5323	8412	13334	21145	32235	46690
911	1126	1560	2380	3625	5441	8562	13528	21381	32515	56997
993	1212	1645	2476	3743	5585	8748	13769	21688	32879	47391
1071	1287	1731	2571	3849	5721	8922	13993	21977	33224	47763
1164	1383	1837	2695	3997	5908	9164	14305	22367	33679	48266
1253	1474	1933	2796	4121	6056	9355	14550	22684	34053	48681
1352	1571	2035	2920	4263	6229	9571	14827	23026	34454	49117
1451	1673	2147	3043	4404	6402	9789	15105	23380	34868	49562
1555	1780	2259	3167	4557	6600	10040	15424	23784	35345	50075
1665	1893	2383	3302	4710	6784	10272	15719	24160	35777	50554
1781	2011	2506	3448	4886	7006	10551	16071	24598	36288	51105
1902	2135	2641	3594	5055	7208	10807	16394	25002	36751	51606
2029	2270	2786	3763	5250	7446	11107	16770	25470	37294	52201
2162	2405	2932	3920	5437	7678	11394	17129	25913	37805	52742
2295	2547	3084	4089	5636	7922	11692	17500	26372	38331	53324
2580	2846	3409	4460	6068	8444	12340	18301	27354	39460	54530
2889	3176	3769	4866	6545	9017	13046	19166	28400	40640	55797
3217	3524	4152	5294	7037	9611	13763	20036	29461	41834	57081
3566	3903	4571	5767	7588	10267	14559	20991	30595	43109	58432
3909	4280	4985	6236	8130	10907	15323	21898	31671	44307	59707
4328	4745	5503	6817	8795	11690	16244	22978	32934	45695	61181
4741	5203	6018	7404	9463	12466	17155	24032	34160	47026	62579
5178	5702	6575	8032	10175	13293	18105	25117	35394	48368	63989
5627	6212	7153	8682	10911	14136	19070	26202	36613	49671	65351
6140	6810	7838	9464	11793	15134	20187	27439	37996	51140	66883
6591	7340	8448	10155	12567	16011	21156	28495	39162	52366	68156
7096	7942	9143	10938	13441	16978	22215	29630	40390	53628	69462
7621	8577	9885	11784	14374	18004	23314	30789	41623	54923	70793
8154	9233	10664	12665	15342	19052	24421	31935	42850	56185	72087
8701	9910	11463	13575	16335	20118	25529	33061	44018	57536	73478
9250	10603	12295	14527	17369	21212	26639	34168	45161	58523	74477
9807	11313	13153	15502	18411	22295	27724	35230	46238	59602	75575
10378	12058	14062	16542	19520	23435	28841	36303	47310	60662	76649
10943	12800	14970	17582	20619	24546	29912	37312	48319	61655	77659
11503	13546	15894	18636	21730	25651	30947	38267	49247	62561	78565
12070	14309	16852	19737	22872	26767	31980	39204	50145	63435	79449
12610	15048	17786	20816	23983	27835	32942	40060	50966	64220	80231
13142	15781	18716	21885	25069	28868	33858	40858	51720	64941	80950

rates for the next higher quinquennial age group.
Having now the new series of estimated q_{x} values for all age groups corresponding to each successive level of q_{0}, the next step is to compute the expectation of life at birth (${ }^{\circ} \mathrm{e}_{\mathrm{o}}$) for each of the forty models. Several generalizations were adopted in order to expedite this phase of work, the most important of which were as follows:
(i) The years of life pertaining to each quinquennial age group, with the exception of the first ($0-4$) and the aggregated last age group of 85 years and over, were taken to equal the average of the two marginal l_{x} values multiplied by five, according to the formula:

$$
{ }_{5} L_{x}=2.5\left[1_{x}+1_{x+5}\right]
$$

(ii) The years of life pertaining to the age group of 85 years and over were assumed to equal the product obtained by multiplying the number of survivors at age 85 , by a factor
varying between 4.4 and 3.0 depending on the size of I_{85}, in the following order:

l_{sb}	Factor
15,000 and over.....	4.4
$10,000-14,999 \ldots \ldots$	4.0
$5,000-9,999 \ldots \ldots$	3.5
Less than $5,000 \ldots \ldots$	3.0

This assumption is based upon a survey of actual expectations of life at age $85\left({ }^{\circ} \mathrm{e}_{85}\right)$, which shows that the average years of remaining life at the various levels of I_{85} are approximately in accordance with the above distribution.
(iii) At all levels of mortality, uniform factors of separation were assumed in order to divide the deaths of infants and of children 1-4 years old into the parts occurring in the first half and in the second half of the time interval: namely, 75 per cent for the age $0-1$ and slightly over 50 per cent for the age group 1-4 years. Consequently, the number of
years of life pertaining to the survivors during the first year of life was computed from: $L_{0}=l_{1}+0.25\left(d_{0}\right)$, and the number of years lived by the survivors within the age group $1-4$ from : ${ }_{4} \mathrm{~L}_{1}=1.9 \mathrm{I}_{1}+2.1 \mathrm{I}_{5}$.

Under these assumptions, the approximate expectation of life at birth, which was independently computed for each of the forty model life-tables, varies from a minimum of 18.8 years to a maximum of 71.7. A parallel series of life-table general mortality rates $\left(1 /{ }^{\circ} e_{0}\right)$, which is also included in the table, varies between about 53 and 14 deaths per 1,000 total life-table population. The sequence in the series of these ${ }^{\circ} \mathrm{e}_{0}$ values, though not perfect, is nevertheless indicative of the general trend of life expectancy at progressively declining infant mortality rates. In this example, the average gains in life expectancy at successive levels
of infant mortality may be summarized as follows:

Level of
infant
mortality

Approximate increase in
per 10 units of decline ${ }^{\circ} \mathrm{e}_{0}$
in infant mortality $\left(\mathrm{q}_{0}\right)$

$300 \ldots \ldots$

$250 \ldots \ldots$$\quad$| (years) |
| :--- |

Thus, at a level of infant mortality between 100 and 150 per 1,000 , a decline of 10 per 1,000 produces a greater increase in expectation of life at birth than at either higher or lower levels of infant mortality. The mortality rates of the forty model life-tables computed for both sexes are shown in table 5.

IV. Model Life-Tables for Males and Females

Sex differentials in mortality are well known to follow a fairly typical pattern. If only because more boys than girls are born in the world every year and because all must eventually die, the annual number of male deaths would normally always exceed the number of female deaths. The actual excess of male mortality is all the greater because age-specific death rates are, as a rule, higher among males than among females and this difference produces a greater life expectancy of the female sex. With very few exceptions, this is the common finding throughout the world.

However, the question arises, whether the sex differentials at the various levels of mortality are constant or not and, if not, whether any patterns of changing differentials can be observed. This information could be used to estimate life-tables for each sex from the model life-tables of both sexes combined. In order to answer this question the life-table mortality rates shown in the appendix were averaged separately for each of the two sexes and also for both sexes in four groups according to the level of the expectation of life at birth for both sexes.

The result of this grouping ${ }^{7}$ is shown in table 6. It appears that the sex differentials do differ at the various levels of general mortality. The approximate pattern of these differences is shown by the ratios of the male and female rates to the rate for both sexes, taken as 100 , as given in the last two columns of each group in table 6. These ratios are plotted in figure 10, where three supplementary values, produced from the aver-

[^4]aging of intermediate cumulative summations, are also included.

The patterns thus derived, though not absolutely regular, can nevertheless be taken as indicative of the manner in which the sex differential in mortality changes as life expectancy at birth increases. They confirm the already known fact that sex differentials in mortality widen as life expectancy grows longer. With this generalization in mind, free-hand curves were drawn to illustrate the approximate trends. These indications were then used for the computation of parallel series of model life-tables for males and for females corresponding to the forty models previously prepared for both sexes combined. Appropriate values of sex-differential ratios were read from the curves at regular intervals of expectation of life at birth for both sexes combined, namely, at ${ }^{\circ}{ }^{\circ}{ }_{0}=67.5,62.5,57.5$, $52.5,47.5,42.5$ and at 35.0 and 25.0. Each of these readings was used for all the model life-tables with a life expectancy in the neighbourhood of the given value in accordance with the following scheme:

Finally, in order to eliminate the slightly disturbed sequence of ${ }^{\circ} e_{0}$ values in the model life-tables, by sex, at the merging points of the above groupings, the adjacent values were smoothed by the method of moving averages. The net result of these manipulations is

Figure 8. The widening sex differentials in mortality at increasing expectation of life

Table 6. Average life-table mortality rates by sex and age and sex differentials by
(For life-tables included

$\underset{\text { age }}{\text { group }}$	Average rate			Ratio to rate for both sexes$(=100)$		Average rate			Ratio to rale for both seves $(=100)$	
	Both sexes	Male	Female	Male	Female	Both sexes	Male	Female	Male	Female
	Group A					Group B				
0	3757	4208	3278	1120	872	7351	8123	6536	1105	889
1-4	932	1012	850	1086	912	2804	2890	2713	1031	967
5-9	462	532	403	1151	872	1071	1106	1029	1033	961
10-14	383	439	324	1146	846	825	833	813	1010	985
15-19.	661	764	554	1155	838	1412	1466	1356	1038	960
20-24	940	1090	783	1160	832	1964	2092	1820	1065	927
25-29	1029	1135	919	1103	893	2081	2143	2018	1030	970
30-34.	1150	1241	1056	1079	918	2237	2310	2162	1033	967
35-39.	1419	1540	1294	1086	912	2588	2739	2435	1058	941
40-44.	1933	2153	1707	1114	883	3162	3464	2854	1096	903
45-49.	2844	3239	2436	1139	856	4127	4658	3591	1129	870
50-54.	4267	4980	3544	1167	830	5705	6462	4899	1133	859
55-59.	6337	7484	5196	1181	820	8038	9195	6915	1144	860
60-64.	9648	11279	8131	1169	843	11763	13295	10318	1130	877
65-69.	14856	16860	13014	1135	876	17571	19452	15876	1107	904
70-74.	23065	25290	21139	1096	917	26456	28635	24585	1082	929
75-79.	35018	37392	33060	1068	944	38925	41333	36975	1062	950
80-84.	50560	53194	48595	1052	961	54390	56764	52518	1044	966
${ }^{0} \mathrm{e}_{0}$ (yrs.)	6763	6563	6937	-	-	5950	5791	6116	-	

Table 7. Male life-table mortality rates for the

$\begin{gathered} \text { Model } \\ \text { No. } \end{gathered}$	${ }^{\circ}{ }_{0}$	$1 /{ }^{\circ}{ }^{\circ}$	Mortality rate for specified age group							
			0	1-4	0-4	5-9	10-14	15-19	20-24	25-29
1	6925	1440	2250	424	2657	306	260	453	578	627
2	6848	1460	2812	623	3412	354	293	505	656	700
3	6766	1478	3375	829	4171	407	331	565	745	784
4	6688	1495	3937	1042	4935	461	367	621	828	863
5	6604	1514	4500	1262	5704	521	409	688	927	957
6	6522	1533	5062	1487	6477	581	450	751	1020	1047
7	6433	1554	5625	1721	7255	646	496	822	1125	1147
8	6359	1573	6157	1941	7960	695	527	872	1208	1238
9	6255	1599	6677	2163	8689	744	559	924	1294	1332
10	6167	1622	7215	2388	9402	793	592	976	1381	1430
11	6077	1646	7770	2642	10182	865	641	1053	1494	1543
12	5991	1669	8325	2906	10965	941	693	1132	1611	1661
13	5890	1698	8823	3146	11679	1007	732	1197	1717	1762
14	5806	1722	9299	3389	12391	1074	772	1263	1824	1864
15	5711	1751	9810	3634	13099	1141	812	1330	1932	1967
16	5620	1779	10355	3920	13886	1227	869	1419	2062	2093
17	5520	1812	10845	4200	14608	1313	920	1500	2175	2224
18	5336	1874	11962	4804	16122	1492	1033	1672	2424	2490
19	5147	1943	12960	5419	17641	1678	1150	1851	2679	2765
20	4958	2021	13993	6091	19158	1889	1287	2046	2956	3062
21	4768	2097	15008	6789	20679	2108	1428	2246	3237	3357
22	4582	2182	16006	7505	22168	2336	1576	2435	3500	3646
23	4393	2276	16995	8273	23693	2587	1736	2646	3788	3968
24	4210	2375	18020	9063	25258	2846	1902	2862	4081	4306
25	4030	2481	19017	9914	26830	, 3131	2083	3097	4377	4647
26	3857	2593	19989	10793	28409	3425	2269	3336	4683	5002
27	3676	2720	21000	11699	29994	3729	2461	3578	5000	5373
28	3514	2846	22050	12679	31688	4062	2670	3839	5302	5731
29	3350	2985	23100	13708	33401	4413	2889	4108	5637	6132
30	3190	3135	24150	14784	35130	4782	3117	4381	5971	6540
31	3035	3295	25117	15899	36819	5166	3353	4642	6258	6924
32	2886	3465	26052	17049	38516	5561	3593	4902	6539	7307
33	2740	3650	27040	18232	40222	5967	3839	5162	6815	7689
34	2602	3843	28080	19517	42012	6413	4107	5442	7130	8095
35	2468	4052	29120	20858	43818	6871	4380	5724	7441	8502
36	2339	4275	30160	22264	45641	7354	4667	6003	7743	8903
37	2215	4515	31200	23731	47482	7859	4963	6280	8037	9294
38	2095	4773	32240	25268	49340	8387	5270	6555	8323	9680
39	1982	5045	33280	26872	51215	8931	5582	6820	8594	10050
40	1874	5336	34320	28551	53107	9499	5905	7082	8854	10408

AGE, OBSERVED IN FOUR GROUPS OF LIFE-TABLES, AT VARIOUS LEVELS OF LIFE EXPECTANCY AT BIRTH
in each group, see text)

$\begin{gathered} \text { Age } \\ \text { group } \end{gathered}$	Average rate			Ratio to rate for both sexes $(=100)$		Average rate			Ratio to rate for both sexes ($=100$)	
	Both sexes	Male	Female	Male	Female	Both sexes	Male	Female	Male	Female
	Group C					Group D				
0	12516	13458	11522	1075	921	19934	20957	18847	1051	945
1-4	6878	6955	6799	1011	988	14955	14915	14996	997	1003
5-9	1929	1929	1929	1000	1000	4470	4412	4533	987	1014
10-14	1348	1277	1422	948	1055	2818	2673	3011	947	1069
15-19	2181	2165	2197	993	1007	3879	3686	4076	950	1051
20-24	2985	3115	2851	1044	955	5111	4929	5297	964	1037
25-29	3076	3109	3044	1011	990	5460	5207	5297	954	1052
30-34	3305	3371	3240	1020	981	5978	5750	6228	962	1042
35-39	3741	3939	3543	1053	947	6711	6668	6768	994	1009
40-44.	4427	4900	3948	1107	892	7707	8035	7382	1043	958
45-49	5442	6239	4638	1147	852	9054	9846	8242	1087	911
50-54	7232	8409	8000	1163	839	11170	12244	10086	1096	903
55-59	9899	11514	8346	1163	843	14390	15729	13084	1093	909
60-64	14288	16328	12403	1143	868	19477	20793	18262	1068	938
65-69	20570	22937	18490	1115	900	26684	28106	25455	1053	954
70-74	30447	33068	28316	1086	930	37341	38569	36371	1033	974
75-79.	43387	46070	41393	1062	954	49218	50668	48263	1029	981
80-84	58498	60824	56959	1040	974	63305	64576	62592	1020	989
${ }^{\circ} \mathrm{C}_{0}$ (yrs.)	5030	4870	5159	-	-	3677	3615	3739	-	-

SPECIFIED AGE INTERVALS IN FORTY THEORETICAL MODELS

Mortality rate for specified age group										
30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84
756	999	1497	2432	3877	6012	9461	14653	22542	33783	48263
825	1064	1569	2522	3988	6145	9642	14881	22824	34111	48610
906	1151	1662	2624	4112	6308	9842	15134	23154	34491	49025
979	1222	1739	2713	4223	6448	10018	15354	23412	34791	49347
1067	1315	1834	2823	4361	6618	10235	15628	23748	35180	49760
1151	1396	1930	2931	4484	6779	10439	15882	24065	35550	50151
1251	1500	2048	3072	4657	6930	10722	16236	24492	36036	50679
1339	1593	2147	3186	4787	7111	10891	16452	24771	36331	51040
1430	1690	2253	3309	4923	7276	11070	16679	25063	36631	51408
1523	1790	2362	3439	5065	7426	11257	16918	25367	36960	51792
1633	1905	2485	3579	5241	7656	11546	17275	25806	37466	52328
1748	2025	2621	3731	5417	7869	11813	17605	26214	37924	52829
1856	2140	2752	3884	5591	8083	12053	17907	26593	38326	53301
1967	2259	2891	4045	5772	8302	12299	18215	26983	38738	53788
2080	2384	3037	4215	5959	8526	12551	18531	27380	39159	54289
2216	2525	3196	4390	6171	8791	12875	18927	27856	39695	54852
2346	2668	3360	4579	6394	9046	13174	19272	28287	40148	55395
2625	2969	3704	4911	6862	9601	13839	20059	29243	41184	56548
2918	3287	4068	5401	7363	10189	14546	20891	30246	42266	57750
3238	3638	4481	5874	7913	10849	15302	21800	31300	43464	59004
3562	3998	4903	6360	8481	11525	16072	22720	32356	44661	60254
3893	4380	5353	6879	9081	12230	16832	23635	33424	45847	61464
4259	4804	5849	7454	9747	13010	17698	24650	34621	47120	62784
4646	5255	6379	8070	10457	13837	18613	25714	35868	48437	64143
5041	5721	6953	8748	11216	14714	19589	26788	37097	49723	65463
5457	6217	7570	9481	12035	15651	20615	27911	38377	51050	66823
5894	6742	8230	10268	12913	16647	21701	29085	39706	52418	68221
6327	7267	8870	11018	13761	17612	22743	30205	40924	53675	69519
6812	7863	9600	11868	14718	18676	23881	31408	42208	54969	70851
7316	8491	10379	12786	15740	19804	25063	32636	43496	56296	72209
7803	9115	11166	13729	16754	20897	26168	33734	44684	57524	73439
8294	9748	11968	14697	17789	22002	27271	34814	45848	58656	74568
8788	10391	12787	15689	18845	23121	28371	35876	46967	59693	75594
9317	11087	13679	16742	19976	24302	29526	36992	48088	60794	76709
9859	11817	14624	17865	21179	25544	30716	38118	49202	61875	77799
10396	12544	15569	18989	22372	26755	31856	39178	50252	62888	78824
10928	13275	16530	20127	23577	27960	32959	40180	51217	63812	79743
11466	14023	17526	21316	24816	29176	34059	41164	52151	64704	80674
11980	14747	18497	22481	26022	30340	35083	42063	53005	65504	81434
12485	15465	19465	23636	27200	31466	36059	42901	53789	66240	82164

Table 8. Female life-table mortality rates for the

ModelNo.	©e。	1/0e\%	Mortality rate for specified age grous							
			0	1-4	0-4	5-9	10-14	15-19	20-24	25-29
1	7398	1352	1750	358	2109	226	196	335	428	513
2	7309	1368	2188	525	2708	262	221	373	485	572
3	7214	1386	2625	699	3311	301	249	417	551	642
4	7124	1404	3063	878	3917	341	277	459	612	706
5	7028	1423	3500	1064	4528	385	309	508	685	783
6	6934	1442	3938	1254	5141	429	340	555	754	857
7	6832	1464	4375	1451	5759	478	374	608	831	939
8	6736	1485	4843	1680	6447	550	425	684	934	1036
9	6630	1508	5313	1917	7144	625	479	764	1041	1137
10	6530	1531	5785	2160	7850	703	536	848	1153	1242
11	6429	1555	6230	2391	8500	767	580	915	1248	1341
12	6331	1580	6675	2630	9155	835	627	984	1345	1443
13	6224	1607	7177	2910	9891	919	692	1075	1465	1575
14	6122	1633	7682	3198	10635	1006	759	1169	1588	1712
15	6017	1662	8190	3492	11385	1097	828	1266	1714	1853
16	5913	1691	8645	3766	12070	1179	887	1349	1828	1971
17	5804	1723	9137	4075	12839	1276	960	1453	1973	2126
18	5593	1788	10087	4625	14311	1464	1100	1648	2243	2412
19	5383	1858	11040	5311	15801	1662	1246	1851	2523	2711
20	5176	1932	12007	5994	17348	1885	1405	2077	2824	3047
21	4967	2013	12977	6702	18913	2118	1570	2310	3134	3385
22	4763	2100	14003	7461	20579	2370	1748	2572	3480	3745
23	4557	2194	14990	8249	22174	2631	1932	2832	3817	4136
24	4357	2295	15980	9063	23786	2904	2124	3100	4163	4572
25	4163	2402	16983	9950	25447	3206	2334	3379	4530	5006
26	3974	2516	17990	10868	27124	3519	2551	3664	4912	5462
27	3781	2645	19000	11817	28818	3843	2775	3954	5310	5939
28	3606	2773	19950	12807	30446	4186	3010	4243	5630	6335
29	3431	2915	20900	13846	32091	4547	3257	4540	5985	6778
30	3261	3067	21850	14932	33752	4928	3515	4843	6341	7228
31	3097	3229	22883	16117	35499	5343	3794	5167	6739	7708
32	2939	3403	23920	17340	37259	5771	4080	5493	7136	8189
33	2788	3587	24960	18600	39033	6211	4373	5822	7533	8671
34	2643	3784	25920	19911	40770	6675	4678	6136	7880	9129
35	2502	3997	26880	21280	42522	7151	4990	6454	8225	9588
36	2368	4223	27840	22714	44292	7654	5315	6769	8559	10039
37	2239	4466	28800	24211	46078	8179	5653	7082	8883	10480
38	2115	4728	29760	25778	47882	8729	6002	7391	9199	10916
39	1997	5008	30720	27415	49701	9295	6358	7691	9498	11332
40	1884	5308	31680	29127	51537	9887	6727	7986	9786	11736

shown in the series of models given for each sex in tables 7 and 8. These two tables together with the one (No. 5) giving model life-tables for both sexes combined may now be compared with the original body of
life-tables from which they were derived in order to test their efficiency in representing average variations of mortality by age-groups at the various levels of general mortality.

V. Test of Reliability of the Model Life-Tables

The three series, each containing forty model lifetables for both sexes, males, and females, are intended to approximate averages of life-table mortality rates by sex and age at the various levels of general mortality. They are not intended to represent exactly the life-table of any population for the simple reason that individual peculiarities in mortality, which occur in most if not all of the countries of the world, are eradicated from these series by the smoothing effect of the curve fittings. The only information conveyed by these models is the general form of the mortality curve by age and the most probable expectation of life at birth which corresponds to a given level of infant mortality, or better, early childhood mortality.

In this respect, these series of model life-tables ap-
pear satisfactory. A good test of their efficiency is offered by figures 9 and 10. Figure 9 shows the mortality rates of ten life-tables selected at about equal intervals from the series of models for both sexes, while figure 10 illustrates the average mortality rates by age, again for both sexes, obtained in the four groups of actual life-tables presented in table 6. When these diagrams are superimposed, a striking similarity in the general course of the curves becomes evident. This check provides assurance that any misjudgements in fitting the seventeen curves of figures 1 to 7 to the actual observations are not cumulative; for, if they were all in the same direction, they would have produced an increasing divergence of the model from the observed mortality curves.

Mortality rate for specified age group										
30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84
650	843	1188	1834	2779	4134	6711	11167	18630	29363	43667
709	898	1245	1902	2858	4227	6840	11341	18864	29647	43980
780	971	1320	1980	2948	4338	6982	11534	19136	29978	44355
843	1030	1381	2047	3027	4434	7106	11702	19350	30239	44647
919	1109	1456	2129	3125	4552	7261	11910	19628	30577	45021
991	1178	1532	2211	3214	4663	7405	12104	19889	30898	45375
1077	1265	1626	2318	3337	4815	7606	12374	20242	31321	45853
1173	1358	1723	2421	3467	4994	7835	12669	20613	31792	46336
1274	1455	1825	2531	3603	5182	8074	12975	20997	32277	46829
1378	1556	1932	2647	3743	5378	8321	13292	21393	32776	47332
1477	1655	2033	2755	3873	5544	8534	13573	21762	33224	47822
1582	1760	2145	2873	4004	5699	8731	13833	22106	33630	48279
1709	1886	2268	3012	4177	5916	9034	14216	22580	34218	48875
1841	2018	2398	3158	4356	6138	9344	14608	23065	34818	49487
1978	2156	2535	3311	4541	6365	9663	15009	23560	35429	50113
2108	2285	2668	3450	4703	6565	9913	15330	23970	35915	50632
2257	2441	2826	3626	4909	6828	10252	15775	24510	36575	51308
2551	2744	3136	3966	5304	7321	10880	16586	25508	37770	52552
2860	3065	3466	4331	5727	7845	11546	17441	26554	39014	53844
3210	3430	3846	4744	6200	8414	12276	18329	27671	40258	55202
3566	3807	4236	5171	6722	8998	13008	19230	28796	41506	56559
3976	4239	4687	5669	7294	9679	13919	20276	30043	42893	58082
4393	4681	5155	6185	7879	10366	14784	21288	31223	44232	59527
4836	5151	5657	6738	8469	11095	15697	22350	32452	45615	61015
5323	5690	6211	7330	9150	11883	16634	23446	33680	46987	62483
5840	6266	6807	7971	9885	12725	17626	24594	34958	48403	63993
6386	6878	7446	8660	10673	13621	18673	25793	36286	49862	65545
6855	7413	8026	9292	11373	14410	19569	26785	37400	51057	66793
7380	8021	8686	10008	12164	15280	20549	27852	38572	52287	68073
7926	8663	9391	10782	13008	16204	21565	28942	39750	53550	69377
8514	9365	10175	11620	13947	17219	22675	30123	40976	54905	70799
9110	10083	10979	12481	14908	18252	23789	31296	42178	56173	72127
9713	10815	11803	13365	15893	19303	24907	32460	43355	57353	73360
10297	11539	12627	14262	16846	20288	25922	33469	44388	58410	74441
10897	12299	13500	15219	17861	21326	26966	34488	45418	59449	75499
11490	13056	14371	16175	18866	22337	27968	35446	46386	60422	76494
12078	13817	15258	17145	19883	23342	28935	36354	47277	61310	77387
12673	14595	16178	18158	20928	24358	29901	37244	48139	62166	78257
13240	15349	17075	19151	21944	25330	30801	38057	48927	62936	79028
13799	16097	17967	20134	22938	26270	31657	38815	49651	63642	79736

Similar as may be the two sets of mortality curves shown in figures 9 and 10, they are not identical in every respect. For example, the curve of model lifetable No. 5 , which in its initial course is very close to the curve of group A, appears to under-estimate slightly the mortality experience of later ages. The reverse situation is observed in the model life-tables Nos. 17 and 22, which fall a little below the levels indicated by group life-tables B and C at the young ages, but correspond rather closely at the older ages. Finally, the course of model life-table No. 27 duplicates almost exactly the mortality curve of Group D.

Another check of the accuracy of the model lifetables, in estimating average mortality levels, is offered in the comparison shown in figure 11. In this spot diagram, actual observations are plotted as dots, the actual trend of the relation between the life-table functions ${ }_{5} q_{0}$ and ${ }^{\circ}{ }_{0}$, as shown in the average of groups, is represented by a broken line, and the theoretical trend of the same relation, as independently computed from the forty model life-tables (both sexes), is shown by a solid line. The two trends seem to agree fairly
well for levels of expectation of life at birth below 55 years but diverge at higher values for expectation of life. A closer look at the data reveals a rather atypical disruption of continuity in the observations at about this point, the course of early childhood mortality rates (${ }_{5} \mathrm{q}_{0}$) falling below the expected values for the model life-tables.

To what extent this discontinuity is due to shortcomings of the method used ${ }^{8}$ or is simply the result of inadequate representation of observations, is hard to say. In any case the rather simple formulae and the broad generalizations which were used for the preparation of these model life-tables permit only the description of an average and more or less general pattern of observations over the whole range of variations represented. Finer variations in the pattern, as well as peculiarities that may occur in individual populations, are necessarily glossed over.

[^5]

Figure 9. Model life-tables. Mortality rates by age-groups at selected levels of general mortality

Figure 11. Relation between life-table mortality rate of age-group under five (q_{0-4}) and complete expectation of life at birth

VI. Use of the Model Life-Tables

The main object of this study is to provide a tool with the aid of which the mortality level and its probable age variation in a population with scanty or unreliable mortality data can be estimated approximately. Such estimation can be based either on existing fragmentary mortality data, or data that can be collected in a special survey. The mortality of the first year of life, or better, that of the first quinquennial age group, may adequately serve as the starting point for this work because of its sensitivity in reflecting changes in general mortality levels.

In most countries of the world data on births and deaths are now compiled and annual series of crude birth and death rates and also infant mortality rates are published. With a critical analysis it is possible to scrutinize these data as to their degree of completeness and accuracy and make appropriate corrections to strengthen their validity. Where the mortality rate during early childhood (up to the fifth year of age) is also available, it can advantageously be included in the information which then can be used to estimate approximately the life-table functions of the population by means of the model life-tables presented here.

For a first approximation, the model life-table with the nearest infant or early childhood mortality rate may be taken as an indication of the mortality rates by sex and age and also of the life expectancy pertaining to the population in question. Better results may be obtained by interpolating the values between two adjacent model life-tables or even by computing new values on the basis of the equations given in table 4, starting with the observed data on infant or early childhood mortality. Though the findings are not expected or intended to be exact, they will normally approximate, in the sense of an over-all pattern, the mortality conditions of the particular population. This approximation might appear rather crude compared to a conventional life-table, based on correct population and mortality data for the particular country, but as long as such correct data are lacking, approximations of the nature suggested here can be used advantageously. With proper use of these sets of model life-tables, mortality conditions, as they are reflected by life-table functions, may be estimated for most if not all of the major populations of the world today.

A secondary but also useful application of the model life-tables consists in the comparative study of the validity of existing life-tables. Among the many dozens of life-table mortality rates given in the appendix, there are examples in which the mortality rates depart sharply from the expected levels and the general shape of the age-mortality curve is conspicuously distorted. In some cases the mortality of the very young ages is in complete disaccordance with the mortality given for later ages; in others the sequence of the age-specific mortality rates is erratic and the minimum rate is found not at the usual age,
around the twelfth year, but in another age group.
Although there is some variability in life-tables, due to peculiar conditions affecting various populations, it may very well be surmised that at least the major discrepancies shown by the four life-tables taken as examples in figure 12 are spurious. In fact, the small populations on which two of these life-tables are based and the known inadequacy of vital registration in the countries of the other two examples allow considerable doubt as to whether these life-tables reflect faithfully the true mortality risks by age to which the respective populations were exposed.

The series of model life-tables can also be utilized to make population projections, provided that, for the country and period in question, the appropriate lifetables can be secured, either by direct observation or by interpolation among the corresponding models. The life-tables quinquennial mortality rates can easily be transformed into survival rates $\left({ }_{5} \mathrm{P}_{\mathrm{x}}\right)$ with the aid of which the census population in each five-year age group may be projected to the next age group five years later. There are, however, two main problems to be solved before the projection is attempted. The first consists in predicting the fertility rates for the period to be covered. The second difficulty springs from the fact that successive models, referring to successive levels of declining mortality (reading the tables from the bottom up), do not necessarily correspond to equal time intervals. A country with mortality corresponding to, say model No. 20 may need five years to bring its mortality into conformity with model No. 19, while some other country, with higher mortality at present, may achieve an equal improvement in a much shorter time.

It is difficult to define an exact scale of mortality declines per unit of time which would fit past trends and future expectations. Past experience has been far from uniform, the declines in mortality being different in various countries depending on the rate at which measures of public health and social development have been introduced. The future, on the other hand, is more or less unpredictable. Nevertheless, the existing body of knowledge, when submitted to a detailed and critical analysis, may offer valuable hints with respect to probable future developments.

The problem of making population projections is discussed in other reports ${ }^{9}$ and very little needs to be said here. During the period of about fifty years (19001950) which is covered by this report, there have been substantial declines in mortality, as may be seen in all countries for which the appendix contains two or more life-tables. In these countries the annual gains

[^6]

Figure 12. Comparison of life-table mortality rates in selected countries and certain model life-tables

Figure 12. Comparison of life-table mortality rates in selected countries and certain model life-tables
in years of expectation of life at birth for both sexes have been as follows:

	Annual gain in ${ }^{\circ} \mathrm{e}_{0}$ (years)		
	Average	Minimum	Maximum
Twenty years around:			
1910.	032	nil	059
1920	038	nil	066
1930	037	014	066
1940.	037	013	056

Two countries, namely, Ceylon and Japan, were left out of this comparison because of their unusually large gains in life expectancy immediately after the years of World War II. The contrast in the trend of the expectation of life at birth between countries with
initially low and high mortality is better illustrated in figure 13.

In the upper part of the diagram, the expectation of life at birth for fifteen countries with relatively low mortality levels (Australia, Belgium, Canada, Denmark, England-Wales, Finland, France, the Netherlands, New Zealand, Norway, Scotland, Sweden, Switzerland, Union of South Africa and the United States) was plotted separately for each sex, at the central year of the period to which the life-tables referred. A trend line was drawn among these observations by averaging the readings in, the trend line of each individual country, at five-year intervals, with the following result:

	Average expectation of life at birth in fifteen countries of low mortality										
	1900	1905	1910	1915	1920	1925	1930	1935	1940	1045	1950
Male	496	510	525	540	556	572	589	606	624	642	660
Female..	526	540	555	570	586	603	621	640	660	681	701
Difference.	30	30	30	30	30	31	32	34	36	39	41

The familiar widening of the sex differentials in mortality is clearly evident in this presentation. The decennial increments in life expectancy, by sex, take the following approximate form:

Time period	Decennial increase in ${ }^{\circ} \mathrm{eo}$ (years)	
	Male	Female
1900-1909.	29	29
1910-1919.	31	31
1920-1929.	33	33
1930-1939.	35	39
1940-1949.	36	41

An acceleration of the improvement in mortality experience is evident in this rather crude comparison of unweighted averages, which are based on a small and unequally distributed sample of observations. At most this comparison suggests that gains in life expectancy among countries with relatively low mortality are proceeding rather smoothly and favour, for the time being, the female sex. However, the picture shown in the lower part of figure 13 is quite different. Here, the increase in life expectancy, which was proceeding at a very slow rate during most of the period under consideration, assumed spectacular proportions
towards the end of the period, in two of the three countries shown in the figure. Naturally, two examples are not enough to support any kind of generalization. However, they should make it very clear that countries with presently moderate or high mortality levels may now achieve a transition to lower mortality in a much shorter time interval than would previously have been feasible. ${ }^{10}$

The difference in life expectancy between successive model life-tables presented in this report averages roughly one year for model Nos. 1 to 17 and about two years for Nos. 18 to 40. Past experience has shown that countries with relatively moderate or low mortality levels were adding on the average about onethird to one-half of one year to their expectation of life at birth per calendar year. With this basic information and the use of collateral data, this series of model life-tables may serve a good purpose in making population projections. However, the main function of these models is to define levels of average mortality rates by sex and age, for countries lacking complete or accurate mortality data.

[^7]

Summary

This report presents a series of patterns of lifetables in transition from high to low levels of mortality. These are based upon 158 national life-tables covering the period from 1900 to 1950. The life-table functions ${ }_{5} \mathrm{q}_{\mathrm{x}}$ (probability that a person just attaining age x will die within the ensuing five years) was computed for each life-table contained in the appendix, separately for each sex and also for both sexes. For each pair of adjacent ${ }_{5} q_{\mathrm{x}}$ values (both sexes) a second degree parabola was fitted to the observed values. The results were used to build up a series of forty model lifetables, covering, at about equal intervals, the entire range of mortality variations encountered in the world today.

The first series of models, constructed for both sexes combined, was used, with data on sex differentials in mortality at the various age groups, to prepare cor-
responding series of model life-tables for males and for females separately. Finally, each of the three series was supplemented by the corresponding values of expectation of life at birth, (${ }^{\circ} \mathrm{e}_{\mathrm{o}}$) computed separately for each model life-table.

The results are consistent with average levels and trends of human mortality as observed in the various countries of the world during the past fifty years. They may be used for various purposes, the most important of which are: (a) to estimate the most probable life expectancy and the life-table sex-and-age-specific mortality rates of populations for which only fragmentary mortality data exist, (b) to test the accuracy of existing sex-and-age-specific mortality rates, and (c) to give a systematic sequence of mortality changes for making population projections.

Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth Expectation of life and total death rate for both sexes is the average of the two sexes.

Country	Sex	Expectatiot of of ife		Mortality rates by aze eroups																		
		-0	1/\%	$0-1$	$1-4$	0.4	5.9	10	15-19	20-24	25-29	30-34	35-38	40-44	45-49	50.54	55.5	00.64	65.69	70-74	75-79	80.84
	${ }^{\text {BS }}$	3856 3565	2593	16651	22721	355 358 11	2951	${ }_{20}^{2688}$	2512	31 40 40 70	3684 4588	41 49 49	4713	5322 6318	63 78 78	7835 97 95	10244	13055 16824	18695	29063 348 16	${ }_{497}^{434} 83$	617 674 68
	$\stackrel{M}{\text { F }}$	3565 4148	28 24 11	1747	222 232 49	358 353 18	38 1960 19	4083 1288	29 20 50	40 20 27 10	4588 2805	49 34 34	54 39 39	6318 43 43 8	78 50 40	6073	129 78 785	-	15110	25133	39790	58894
Union of South Africa....... 1920-1922 (Europeans)	BS	5739	1742	8106	3912	11701	1113	986	1386	1968	2236	2666	3174	3924	4991	6278	8692	12335	18079	26331	37423	52292
	M	5561	1798	8784	3924	12363	1195	1044	1483	2103	2280	2723	3530	4526	5906	7297	10045	13996	19706	288 84	392 359 0	530 417
		5918	1690	7388	3901	10993	1028	926	1286	1828	2191	2606	2804	3308	4067	5266	7375	10768	16601	24097		
1925-1927	BS	5963	1677	6875	3359	10003	1038	851	1177	1635	1852	2252	2879	3383	4351	5899	8339	11756	17382	25665	37670	51149
	M	5778	1731	7444	3386	10578	1145	904	1265	1839	1945	2375	32.59	3920	5202	6834	9663	13453	18836	277 234	400 77	$\begin{array}{ll}531 & 58 \\ 492 & 05\end{array}$
	F	6148	1626	6276	3330	9397	926	795	1086	1424	1756	2125	2488	2839	3495	4974	7055	10160	16063			
1935-1937	BS	6100	1639	6011	2681	8531	952	736	1036	1553	1605	1840	2419	3138	4534	${ }_{64}^{64} 82$	${ }^{85} 86$			$\begin{array}{l\|l\|} 255 \\ 284 & 90 \end{array}$		
	$\underset{\mathrm{F}}{\mathbf{M}}$	5895 6306	1696 1586	6641 5348	2789 2580	9235 7790	976 9 9	738 693	1204 863	18 129 98	17 148 14 18	1937 17 10	2589 22 85	35 27 27 56	52 37 76	73 71 51 1	10202 70 20	$\begin{aligned} & 14028 \\ & 10405 \end{aligned}$	$\begin{aligned} & 19931 \\ & 157 \\ & \hline 95 \end{aligned}$	$\begin{array}{l\|l\|l\|} 284 & 93 \\ 231 & 10 \end{array}$	$\begin{aligned} & 40652 \\ & 34882 \end{aligned}$	54454 503 11
1945-1947		6604	1514	3718	1184	4858		436	654	896	1016	1227	1672	2438	3754	5614	7988	11395	16234	23532	33920	47550
	M	63.78	1568	4127	1249	5324	652	475	749	1048	1082	1335	1817	2711	4317	6664	9743	13997	19430	26991	378 309 27	525 44136
	F	6831	1464	3291	1118	4372	514	394	555	718	947	1115	1523	2159	3183	4558	6267					
Mauritius ${ }^{\text {. 1942-1946 }}$									5494		9466	9991	10811	12971	15623	19209	247 305	320 32 387 15		$\begin{aligned} & 50064 \\ & 550 \\ & \hline 0 \end{aligned}$		
	M	3225	3101	19576	11025	28443	3093	2552	47.16	7236	8698	9946	11556	14970	19013	23648	305 43	38715 272	$\begin{aligned} & 47032 \\ & 36110 \end{aligned}$	$\begin{aligned} & 55001 \\ & 475075 \end{aligned}$	$\begin{aligned} & 64178 \\ & 49361 \end{aligned}$	70241 615
America, North Canada ${ }^{\text {b }}$ 1930-1932	F	3383	2956	17197	12045	27171	3116	2445	6274	9867	10270	10039	10017	10874	12230	15109	19855					
						10008	990		1210	1631	1791	1905	2258	2697			7108	10395	15719	23859	36205	50753
	M	6000	1667	8695	2488	10967	1082	805	1250	1634	1685	1768	2165	2689	3563	5207	7543	11012	16708	25144	374 350 35	52034 49586
	F	6210	1610	6931	2223	9000	895	763	1170	1627	1900	2044	2355	2706	3370	4561	6664	9768	14730	22604		
1940-1942	BS	6462								1141			1746	2278	3162	4632	6870	10182				
	$\stackrel{\text { M }}{\text { M }}$	62 665	1589 15 15	62 69 49	15 14 14 14 10	7785	$\begin{array}{r}791 \\ \hline 616\end{array}$	639 482	876 726 7	12 10 10	12 12 12 26	13 13 13 72	1781 1710	2432 2119	3466 2850	5208 4042	7732 60	115 88 45	$\begin{aligned} & 17192 \\ & 13927 \end{aligned}$	$\begin{aligned} & 25681 \\ & 213557 \end{aligned}$	$\begin{aligned} & 38000 \\ & 33458 \end{aligned}$	$\begin{array}{r} 52685 \\ 47995 \end{array}$
1947	BS	6711	1490	4615	923	5495	488	421	702	880	937	1051	1378	2019	2928	4249	6387	9826 114 18	14811	219 57	324 347 185	46973 49088
	. $\cdot \mathrm{M}$	6518 6905	1534 1448	5198 40 0	1015 844 8	6160 4813	578 396	$\begin{array}{r}493 \\ \hline 348 \\ \hline\end{array}$	784 617	971 787	1035 837	1128 9 74	1504 1248	2166 1869	34 24 24 46	49 31 41 41	75 524 52 17	$\begin{array}{r}11478 \\ 82 \\ \hline 18\end{array}$	116999 127 9	242 293	34485	${ }_{453}^{468}$
1951	BS	6858						348		704		870		1747	2720		6371	9588	14033	21298	32522	
	M	6633	1508	4325	795	5086	460	420	687	911	901	1011	1294	1977	3178	5080	7823	11591 7659	164 11849	239 189 64	35477 300 98	49950 449
	F	7083	1412	3423	656	4057	331	274	389	490	565	726	1026	1510	2252	3244	4926	7659				
El Salvador. 1949-1951		5117	1954		9707	18037	3133	1220		${ }_{29} 294$	33 36 65	3905	4011	5109		${ }_{77} 698$	8510	131 130 130 130	161 162 166	$\begin{array}{ll}246 & 01 \\ 257 \\ 257\end{array}$	301 314 314 00	37292 387 2
	$\stackrel{\mathrm{M}}{\mathrm{F}}$	49 524 40	$\begin{aligned} & 2002 \\ & 1908 \end{aligned}$	9762 86 63	98 98 98 11	18692 173 18	31066 3201		2119 1809	33 24 24	36 29 298 48	3956 3856	$\begin{array}{r}43 \\ 37 \\ \hline 10\end{array}$	5349 4869	6218 51 51	7713 6290	9218 7819				29016	38792 359
Guatemala.1939-1941(Department of Guatemala only)																	15927		27580			
	M	3597	2780	15954	20729	33376	4282	1977	2628	3892	4752	5551	6664	8190	10298	13169	17045	22181	28852	37261	473 97	595 59660
	F	3709	2696	14628	20961	32523	4129	2215	2619	4130	4890	5419	6187	7320	8974	11376	14819	19682	26384	35296		
Mexico...................................... . 1930	BS	3325	3007														13345	18976	24085		42803	
	M	3244	3083	22369	20798	38515	5455	2856	3644	5059	${ }_{5}^{55} 87$	6253	7112	8422	9883	11729	$\begin{array}{llll}141 \\ 126 & 14 \\ 12\end{array}$	$1 \begin{array}{ll}18752 \\ 191 \\ 195\end{array}$	23043	345 379 23	41612	${ }_{607}^{58123}$
	F	3407	2935	19675	21406	36869	5479	2698	3412	4675	5157	5826	6427	6815	8001	10318	12611	19185	25070	37950		
1940	BS	3885	2574		16053						4937							18421	24166	35017	42433	
	M	3792	2637	16639	15883	29879	3893	2080	3046	4547	5320	6178	7139	8363	9802	11559	14181 113 18	19017	250 230 238 1	34970	41930	542 588
	F	3979	2513	15012	16231	28806	3864	1923	2981	4287	4537	5038	5700	6549	7555	9104	11323	17876	23391	35044		
United Statesf. .1900-1902																			20828	29114	41076	
	M	4788	2089	13574	6801	19452	2201	1389	2185	3306	37 3589	4233	4878	55 83	67 59 59	${ }_{8}^{84} 55$	116 37	155 139 139	219929	302 280 515	42665	${ }_{533} 575$
	F	5070	1972	11267	6327	16881	2080	1331	2182	3101	3580	3994	4337	4875	5780	7460	10290	13775	19713	28015		
1909-1911	BS	5155		11462																		
	M	4986	2006	12495	5471	17282	1776	1216	1830	2687	2996	37 37 16	${ }_{3}^{46} 32$	5533	6820	885	12056	${ }^{167} 12$	${ }_{2}^{2295} 51$	316 2915 0	437 4004 42	57638
	F	5324	1878	10377	5028	14883	1632	1093	1685	2379	2811	3273	3781	4366	5460	7091	10210	14362	20505			

: Excluding dependencies.
'1900-1911 data relate to the death registration area of 1900; 1919-1921 data relat
for BS 1900-1902, $1909-1911$ and 1950 based on official life-tables for both sexes. total life-table mortality rate, for all ages.
Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth Expectation of life and total death rate for both sexes is the average of the two sexes

[^8]d Data relate to seven Department.

- Excluding aborigines, $1920-1947$. total life-table mortality rate, for all ages.
Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth
Expectation of life and total death rate for both sexes is the average of the two sexes.
 total life-table mortality rate, for all ages.
Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth. Expectation of life and total death rate for both sexes is the average of the two sexes.

Constry	Sex	Expecation of itie		Mortasity rates by ase croups																		
		\cdots	1/ヶe*	0.1	1.4	0.4	s-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	.50	$60-64$	$65-6$	70.74	75-79	80.84
Japan' (continued) 1926-1930	$\begin{aligned} & \mathrm{BS} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 4568 \\ & 4482 \\ & 4654 \end{aligned}$	$\begin{aligned} & 2189 \\ & 2231 \\ & 21 \\ & 21 \end{aligned}$	$\begin{array}{ll} 132 & 30 \\ 140 & 10 \\ 124 & 14 \end{array}$	$\begin{aligned} & 8786 \\ & 8760 \\ & 8814 \end{aligned}$	$\begin{aligned} & 20854 \\ & 215 \\ & 20133 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 28 \\ & 22 \\ & 70 \end{aligned}$	$\begin{aligned} & 1681 \\ & 1410 \\ & 1960 \end{aligned}$	$\begin{aligned} & 4138 \\ & 3775 \\ & 4514 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \\ & 46 \\ & 49 \\ & 50 \\ & 68 \end{aligned}$	$\begin{aligned} & 42 \\ & 39 \\ & 39 \\ & 49 \\ & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & 40 \quad 27 \\ & 36 \\ & 36 \\ & 44 \\ & 22 \end{aligned}$	$\begin{aligned} & 4356 \\ & 4031 \\ & 4701 \end{aligned}$	$\begin{aligned} & 5085 \\ & 5240 \\ & 59 \\ & 49 \\ & 19 \end{aligned}$	$\begin{array}{ll} 62 & 12 \\ 70 & 32 \\ 53 & 36 \end{array}$	$\begin{aligned} & 8362 \\ & 9748 \\ & 6910 \end{aligned}$	$\begin{array}{r} 11582 \\ 13798 \\ 9330 \end{array}$	$\begin{aligned} & 16752 \\ & 200 \\ & 13588 \\ & 139 \end{aligned}$	$\begin{aligned} & 240 \\ & 284 \\ & 2804 \\ & 203 \\ & 29 \end{aligned}$	$\begin{aligned} & 34011 \\ & 39056 \\ & 29942 \end{aligned}$	$\begin{aligned} & 46947 \\ & 52047 \\ & 53204 \\ & 43 \end{aligned}$	$\begin{aligned} & 62372 \\ & 66780 \\ & 59770 \end{aligned}$
1935-1936	$\begin{aligned} & \mathrm{BS} \\ & \mathbf{M} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 4827 \\ & 4692 \\ & 49 \\ & 63 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 20 \\ & 20 \\ & 20 \\ & \hline 15 \end{aligned}$	$\begin{array}{r} 106 \\ 113 \\ 113 \\ 99 \\ 99 \\ 17 \end{array}$	7700 7789 7608	$\begin{aligned} & 17509 \\ & 182 \quad 09 \\ & 187 \\ & 167 \end{aligned}$	$\left.\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned} \mathbf{0 0} \right\rvert\,$	$\begin{aligned} & 1533 \\ & 1299 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 3911 \\ & 3680 \\ & 4150 \end{aligned}$	$\begin{aligned} & 4784 \\ & 48 \\ & 47 \\ & 47 \\ & \hline 7 \end{aligned}$	$\begin{array}{ll} 41 & 84 \\ 42 & 01 \\ 41 & 66 \end{array}$	$\begin{aligned} & 38 \\ & 37 \\ & 37 \\ & 39 \\ & 39 \\ & 70 \end{aligned}$	$\begin{aligned} & 4048 \\ & 3900 \\ & 4204 \end{aligned}$	$\begin{aligned} & 46 \\ & 48 \\ & 48 \\ & 71 \\ & 44 \\ & 49 \end{aligned}$	5876 68 60 50 50	$\begin{array}{ll}80 \\ 92 \\ 94 & 73 \\ 6618\end{array}$	(11083	$\begin{aligned} & 15734 \\ & 18997 \\ & 12659 \end{aligned}$	$\begin{aligned} & 22672 \\ & 27014 \\ & 278 \\ & 188 \\ & 79 \end{aligned}$	$\begin{aligned} & 3253 \\ & 37675 \\ & 28490 \end{aligned}$	$\begin{aligned} & 45872 \\ & 5810 \\ & 423 \\ & 40 \\ & 40 \end{aligned}$	623 660 600 601 6014
1947	$\begin{aligned} & \text { BS } \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 5201 \\ & 5006 \\ & 53996 \end{aligned}$	$\begin{aligned} & 1923 \\ & 1998 \\ & 1895 \end{aligned}$	$\begin{aligned} & 8144 \\ & 8598 \\ & 7664 \end{aligned}$	$\begin{aligned} & 6814 \\ & 6873 \\ & 67 \\ & 68 \end{aligned}$	$\begin{aligned} & 14403 \\ & 14880 \\ & 13899 \end{aligned}$	$\begin{aligned} & 1599 \\ & 1675 \\ & 15 \\ & 19 \end{aligned}$	$\begin{array}{ll} 9 & 53 \\ 9 & 37 \\ 9 & 72 \end{array}$	2243 22 23 22 23	$\begin{aligned} & 39 \\ & 49 \\ & 42 \\ & 38 \\ & 36 \\ & \hline 8 \end{aligned}$	$\left.\begin{array}{ll} 40 & 33 \\ 44 & 32 \\ 36 & 19 \end{array} \right\rvert\,$	$\begin{aligned} & 38 \\ & \hline 80 \\ & 41 \\ & 37 \\ & 35 \\ & \hline 03 \end{aligned}$	$\begin{aligned} & 39 \\ & 42 \\ & 42 \\ & 43 \\ & 35 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 4360 \\ & 4828 \\ & 3885 \end{aligned}$	$\begin{aligned} & 5266 \\ & 6042 \\ & 4487 \end{aligned}$	7174 8835 80 60	rer102 122 18 82 41 41	$\begin{aligned} & 15390 \\ & 18520 \\ & 12507 \end{aligned}$	$\begin{aligned} & 22301 \\ & 26643 \\ & 18580 \end{aligned}$	$\begin{aligned} & 31605 \\ & 36736 \\ & 27643 \end{aligned}$	$\begin{aligned} & 436 \\ & 481 \\ & 487 \\ & 402 \\ & 47 \end{aligned}$	582 619 17 561 18
IV 1949-III 1950	$\begin{aligned} & \mathrm{BS} \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 5640 \\ & 5619 \\ & 5661 \end{aligned}$	$\begin{array}{r}17 \\ 178 \\ 1780 \\ 17 \\ \hline 80\end{array}$	$\begin{aligned} & 6177 \\ & 6576 \\ & 5758 \end{aligned}$	$\begin{aligned} & 4005 \\ & 4054 \\ & 3956 \end{aligned}$	$\begin{array}{r} 9935 \\ 10363 \\ 9486 \end{array}$	$\begin{array}{ll} 11 & 01 \\ 11 & 46 \\ 10 & 55 \end{array}$		$\begin{aligned} & 1452 \\ & 1386 \\ & 15 \end{aligned}$		3082 33 28 28 1	$\begin{array}{ll} 29 & 08 \\ 30 & 73 \\ 27 & 38 \end{array}$	$\begin{array}{ll} 30 & 51 \\ 32 & 91 \\ 28 & 05 \end{array}$	$\begin{aligned} & 34 \\ & 37 \\ & 37 \\ & 39 \\ & 39 \\ & 54 \end{aligned}$	4294 483 37 7	5953 67 51 51 69	$\begin{array}{r}89 \\ \hline 89 \\ 108 \\ 72 \\ 72 \\ \hline\end{array}$	$\begin{aligned} & 13329 \\ & 15525 \\ & 11238 \end{aligned}$	$\begin{aligned} & 19879 \\ & 23470 \\ & 16626 \end{aligned}$	$\begin{aligned} & 280 \quad 21 \\ & 32074 \\ & 246 \\ & 242 \end{aligned}$	$\begin{aligned} & 390 \\ & 430 \\ & 4320 \\ & 359 \\ & \hline 53 \end{aligned}$	53447 57438 507 87
Thailand............................... 1947-1948	$\begin{aligned} & \text { BS } \\ & \mathbf{M} \\ & \mathrm{F} \end{aligned}$	5030 4880 5190	1988 2053 19 15	79 817 77 7700	58 61 61 54 54	$\begin{array}{ll} 133 & 09 \\ 138 \\ 138 & 04 \\ 127 & 70 \end{array}$	$\begin{array}{ll} 31 & 08 \\ 32 & 08 \\ 30 & 02 \\ 30 & 07 \end{array}$	1936 20 18 18 14		$\begin{array}{ll} 31 & 81 \\ 32 & 98 \\ 30 & 55 \end{array}$	40 44 48 38 8	44 45 43 49 43 11	$\begin{aligned} & 53 \\ & 56 \\ & 56 \\ & 49 \\ & 49 \\ & 49 \end{aligned}$	$\begin{aligned} & 6134 \\ & 6778 \\ & 5457 \end{aligned}$	$\begin{aligned} & 7097 \\ & 8313 \\ & 58 \end{aligned}$	$\begin{array}{r} 8765 \\ 10412 \\ 7106 \end{array}$	$\begin{array}{r}103 \\ 118 \\ \hline 89 \\ 89 \\ \hline 10\end{array}$	$\begin{aligned} & 14060 \\ & 15895 \\ & 12395 \end{aligned}$	$\begin{aligned} & 17968 \\ & 193 \\ & 196193 \\ & 196 \end{aligned}$	$\begin{aligned} & 26733 \\ & 29643 \\ & 24221 \end{aligned}$		
Cyṗrus [U.K.]............................. 1948-1950	$\begin{aligned} & \text { BS } \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 6620 \\ & 6360 \\ & 6880 \end{aligned}$	15 15 15 14 14 51 51	67 68 68 65 67	22 2488 24 20 20	$\begin{aligned} & 8826 \\ & 9178 \\ & 8451 \end{aligned}$	5139 6 4 4 4	$\begin{array}{r}353 \\ 3 \\ 3 \\ 3 \\ 3 \\ \hline 14 \\ \hline\end{array}$		$\begin{array}{r}753 \\ 928 \\ \hline\end{array}$	756 904 598	12 12 12 7 7 71	11 11 11 12 12 78 10	20 28 28 12 12 26	$\begin{aligned} & 3041 \\ & 4333 \\ & 1722 \end{aligned}$	$\begin{aligned} & 3405 \\ & 4480 \\ & 2387 \end{aligned}$	37 44 44 30 13	$\begin{array}{ll} 73 & 45 \\ 83 & 23 \\ 64 & 10 \end{array}$	$\left\lvert\, \begin{gathered} 139 \\ 2087 \\ 208 \\ 7543 \end{gathered}\right.$	$\begin{aligned} & 19925 \\ & 20800 \\ & 19221 \end{aligned}$	$\begin{aligned} & 290 \quad 20 \\ & 31544 \\ & 270 \end{aligned}$	52203 54319 50639
	$\begin{aligned} & \text { BS } \\ & \mathbf{M} \\ & \mathrm{F} \end{aligned}$	$\begin{aligned} & 4010 \\ & 3914 \\ & 4106 \end{aligned}$	2494 2555 2455	$\begin{array}{ll} 211 & 73 \\ 232 & 78 \\ 189 & 85 \end{array}$	114 111 118 118 48 18	$\left\lvert\, \begin{array}{lll} 302 & 28 \\ 317 & 82 \\ 285 & 74 \end{array}\right.$	33 32 32 32 34 1	2010 17 23 23 8	28 28 28 30 30 19	37 37 37 37 37 14	3853 3634 4078	4152 38 48 44 10	4814 47 49 49 06	$\begin{aligned} & 5637 \\ & 5979 \\ & 5978 \end{aligned}$	67 75 75 59 59 16	$\begin{aligned} & 8961 \\ & 9933 \\ & 7974 \end{aligned}$	(12396	$\begin{aligned} & 17862 \\ & 18572 \\ & 17168 \end{aligned}$	$\begin{aligned} & 25783 \\ & 26141 \\ & 25440 \end{aligned}$	$\begin{array}{ll} 363 & 69 \\ 365 & 21 \\ 362 & 25 \end{array}$	$\begin{aligned} & 50471 \\ & 507 \\ & 507 \\ & 502 \\ & 36 \end{aligned}$	$\begin{aligned} & 64556 \\ & 65163 \\ & 63976 \end{aligned}$
1930-1933	BS M F	$\begin{aligned} & 5650 \\ & 5450 \\ & 5850 \end{aligned}$	1770 18 17 17 09	10427 11540 9245	2771 2887 2682	$\begin{aligned} & 12909 \\ & 14067 \\ & 11679 \end{aligned}$	$\begin{aligned} & 1363 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{array}{r}809 \\ 818 \\ 799 \\ \hline 9\end{array}$	[1313 14 12 12 46 6	18 18 19 17 17 07	19 20 206 18 18	2227 24 19 19 18	26 29 29 29 76	3389 39 28 28 17	4578 5284 38 8 1	6312 74 78 52 0	$\begin{array}{r} 9019 \\ 10460 \\ 7629 \end{array}$	$\begin{aligned} & 13167 \\ & 14944 \\ & 11506 \end{aligned}$	$\begin{aligned} & 19868 \\ & 21628 \\ & 18286 \end{aligned}$	$\begin{aligned} & 298 \\ & 315 \\ & 315 \\ & 283 \\ & 289 \end{aligned}$	$\begin{aligned} & 43537 \\ & 45567 \\ & 41866 \end{aligned}$	59715 61668 582 8
1949-1951	$\begin{aligned} & \text { BS } \\ & \mathbf{M} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 6445 \\ & 6190 \\ & 6700 \end{aligned}$	$\begin{aligned} & 1552 \\ & 1615 \\ & 1492 \end{aligned}$	$\begin{aligned} & 6705 \\ & 7518 \\ & 5838 \end{aligned}$	$\begin{array}{ll} 11 & 97 \\ 12 & 35 \\ 11 & 58 \end{array}$	$\begin{aligned} & 7822 \\ & 8660 \\ & 6928 \end{aligned}$	$\begin{array}{r}457 \\ 5 \\ 5 \\ 3 \\ \hline 9 \\ \hline\end{array}$	376 437 312	$\begin{array}{r}674 \\ 8 \\ 8 \\ 517 \\ \hline 17\end{array}$	9 94 11 7 7 26	$\begin{array}{rl} 10 & 11 \\ 11 & 70 \\ 8845 \end{array}$	($\begin{array}{r}11 \\ 11 \\ 13 \\ 9 \\ 9\end{array}$	14 16 12 12 04	2006 2316 1690	(3061 3680 24 24	$\begin{aligned} & 4755 \\ & 5953 \\ & 3551 \end{aligned}$	$\begin{array}{ll} 70 & 38 \\ 89 & 41 \\ 51 & 72 \end{array}$	$\begin{array}{r} 10637 \\ 13121 \\ 82 \\ 89 \end{array}$	$\begin{aligned} & 16496 \\ & 19320 \\ & 13978 \end{aligned}$	$\begin{aligned} & 25398 \\ & 28434 \\ & 228 \\ & 282 \end{aligned}$	$\begin{aligned} & 38314 \\ & 41172 \\ & 360 \\ & 97 \end{aligned}$	$\begin{array}{ll} 543 & 56 \\ 572 \\ 572 \\ 523 & 20 \end{array}$
Belgium.................................. . $1891-1900$	$\begin{aligned} & \text { BS } \\ & \mathbf{M} \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & 4711 \\ & 4539 \\ & 4884 \end{aligned}$	2123 22 20 20	155 168 162 142 18	80 80 81 78 78 74	$\begin{aligned} & 22356 \\ & 236 \\ & 209 \\ & 206 \end{aligned}$	2198 21 21 22 29	13 13 12 12 13 28	20 20 20 20 20	$\left.\begin{aligned} & 29 \\ & 30 \\ & 30 \\ & 22 \\ & 29 \\ & 11 \end{aligned} \right\rvert\,$	$\begin{array}{ll} 31 & 69 \\ 31 & 57 \\ 31 & 82 \end{array}$	35 36 36 34 9	$\begin{aligned} & 4214 \\ & 4463 \\ & 39 \end{aligned}$	$\begin{array}{ll} 50 & 37 \\ 57 \\ 57 & 13 \\ 43 & 59 \end{array}$	$\begin{array}{lll} 58 & 59 \\ 68 & 71 \\ 48 & 60 \end{array}$	$\begin{aligned} & 8007 \\ & 9505 \\ & 6561 \end{aligned}$	$\begin{array}{\|ccc} 106 & 54 \\ 123 & 01 \\ 91 & 01 \end{array}$	$\begin{aligned} & 14818 \\ & 16728 \\ & 130 \\ & 182 \end{aligned}$	$\begin{aligned} & 21823 \\ & 23883 \\ & 200.42 \end{aligned}$	$\begin{aligned} & 32982 \\ & 35265 \\ & 31103 \end{aligned}$	$\begin{aligned} & 44487 \\ & 46789 \\ & 426 \\ & 34 \end{aligned}$	60439 62996 58828
1928-1932	$\begin{aligned} & \text { BS } \\ & M \\ & M \end{aligned}$	$\begin{aligned} & 5790 \\ & 5602 \\ & 5979 \end{aligned}$	$\begin{aligned} & 1727 \\ & 1785 \\ & 1672 \end{aligned}$	($\begin{array}{r}89 \\ 100 \\ 78 \\ 78 \\ 785\end{array}$	2948 3148 27 27 48	[116 $\begin{aligned} & 112 \\ & 129 \\ & 103 \\ & 1084\end{aligned}$	1094 11 103 103	812 807 816 816	15 15 15 15 15 13		19 20 20 19 19	2214 23 2089 18	$\begin{aligned} & 25 \\ & 27 \\ & 27 \\ & 23 \\ & 23 \\ & 55 \end{aligned}$	$\begin{array}{ll} 31 & 57 \\ 35 \\ 35 & 04 \\ 28 & 10 \end{array}$	4121 4658 35 87	5700 6500 4910	82 84 94 71 188	$\begin{aligned} & 12341 \\ & 13918 \\ & 10849 \end{aligned}$	$\begin{aligned} & 18729 \\ & 20755 \\ & 16882 \end{aligned}$	$\begin{aligned} & 283 \\ & 30692 \\ & 263 \\ & 264 \end{aligned}$	$\begin{aligned} & 41943 \\ & 442 \\ & 40 \\ & 400 \\ & 87 \end{aligned}$	$\begin{aligned} & 59199 \\ & 60743 \\ & 58020 \end{aligned}$
1946-1949	$\begin{aligned} & \text { BS } \\ & M \\ & \mathbf{M} \end{aligned}$	$\begin{aligned} & 6465 \\ & 6200 \\ & 6730 \end{aligned}$	$\begin{aligned} & 1547 \\ & 1613 \\ & 1486 \end{aligned}$	$\begin{aligned} & 5686 \\ & 6403 \\ & 4927 \end{aligned}$	$\begin{aligned} & 1095 \\ & 1180 \\ & 1087 \end{aligned}$	$\begin{aligned} & 6719 \\ & 7507 \\ & 5884 \end{aligned}$	$\begin{array}{ll} 521 \\ 5 & 89 \\ 4 & 51 \end{array}$	$\begin{array}{r}4 \\ 4 \\ 4 \\ 4 \\ 3 \\ \hline 8\end{array}$	$\begin{array}{ll} 719 \\ 813 \\ 6 & 13 \end{array}$	1159 1402 906	1293 1498 1080	[14.60	$\begin{aligned} & 1687 \\ & 20 \\ & 20 \\ & 13 \\ & 48 \end{aligned}$	$\begin{aligned} & 2345 \\ & 2899 \\ & 1783 \end{aligned}$	$\begin{aligned} & 3413 \\ & 4302 \\ & 45 \end{aligned}$	$\begin{aligned} & 5026 \\ & 6319 \\ & 37 \\ & \hline 72 \end{aligned}$	$\begin{aligned} & 7179 \\ & 8912 \\ & 5519 \end{aligned}$	$\begin{array}{r} 10676 \\ 12747 \\ 8763 \end{array}$	$\begin{array}{ll} 158 & 37 \\ 182 & 11 \\ 137 & 41 \end{array}$	$\begin{aligned} & 245 \\ & 295 \\ & 22724 \\ & 222 \\ & 72 \end{aligned}$	$\begin{aligned} & 368 \\ & \begin{array}{l} 408 \\ 400 \\ \hline 85 \\ 342 \end{array} \\ & 31 \end{aligned}$	52687 56066 5606 50274
Bulgaria..1899-1902 (Excluding Southern Dobruja, 1925-1928)	$\begin{aligned} & \text { BS } \\ & \mathrm{M} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 4016 \\ & 3999 \\ & 4093 \end{aligned}$	2490 2501 2498	$\begin{aligned} & 15484 \\ & 165 \\ & 143 \\ & 143 \end{aligned}$	$\begin{aligned} & 15888 \\ & 164 \\ & 164 \\ & 153 \\ & 151 \end{aligned}$	$\begin{array}{ll} 289 & 12 \\ 302 \\ 275 & 23 \\ 32 \end{array}$	$\begin{aligned} & 57 \\ & 50 \\ & 58 \\ & 50 \\ & 57 \\ & \hline 7 \end{aligned}$	3056 28 28 38 10 10	$\begin{aligned} & 36 \quad 07 \\ & 3380 \\ & 3839 \end{aligned}$	$\begin{aligned} & 5571 \\ & 5021 \\ & 6133 \end{aligned}$	$\begin{aligned} & 5073 \\ & 45 \\ & \hline 54 \\ & 56 \end{aligned}$	$\begin{aligned} & 5269 \\ & 4814 \\ & 5745 \end{aligned}$	$\begin{aligned} & 55 \\ & 52 \\ & 52 \\ & 52 \\ & 59 \\ & \hline 73 \end{aligned}$	$\begin{aligned} & 6074 \\ & 5812 \\ & 6354 \end{aligned}$	$\begin{aligned} & 6855 \\ & 6726 \\ & 6991 \end{aligned}$	$\begin{aligned} & 8079 \\ & 8112 \\ & 8045 \end{aligned}$	$\begin{array}{r\|} 100 \\ 10196 \\ 10196 \\ 97 \end{array}$	$\left\lvert\, \begin{array}{ll} 129 & 87 \\ 132 & 96 \\ 126 & 57 \end{array}\right.$	$\begin{aligned} & 17555 \\ & 17830 \\ & 17262 \end{aligned}$	$\begin{aligned} & 238 \\ & \begin{array}{c} 238 \\ 238 \\ 238 \\ 238 \\ 58 \end{array} \end{aligned}$	$\begin{aligned} & 29312 \\ & 288 \\ & 297 \\ & 298 \end{aligned}$	$\begin{aligned} & 36121 \\ & 34982 \\ & 37338 \end{aligned}$
1925-1928	$\begin{aligned} & \text { BS } \\ & \begin{array}{c} M \end{array} \end{aligned}$	$\begin{aligned} & 4628 \\ & 4592 \\ & 4664 \end{aligned}$	$\begin{array}{lll} 21 & 61 \\ 22 & 21 \\ 21 & 24 \\ 24 \end{array}$	$\begin{aligned} & 16046 \\ & 17145 \\ & 148 \\ & 148 \end{aligned}$	$\begin{aligned} & 113 \\ & 1136 \\ & 112 \\ & 114 \\ & 148 \\ & \hline 80 \end{aligned}$	$\begin{aligned} & 25597 \\ & 26487 \\ & 24651 \end{aligned}$	$\begin{array}{r} 2895 \\ 2851 \\ 2851 \\ 29 \end{array}$	$\begin{aligned} & 1637 \\ & 1539 \\ & 17 \\ & 41 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & 25 \\ & 28 \\ & 28 \\ & 43 \end{aligned}$	$\begin{aligned} & 3910 \\ & 35 \\ & 32 \\ & 42 \\ & \hline 25 \end{aligned}$	$\begin{aligned} & 32 \\ & 26 \\ & 26 \\ & 34 \\ & 38 \\ & 59 \end{aligned}$	$\left.\begin{aligned} & 3311 \\ & 29 \\ & 37 \\ & 37 \end{aligned} \mathbf{0 9} \right\rvert\,$	$\begin{aligned} & 36 \\ & 36 \\ & 34 \\ & 34 \\ & 39 \\ & \hline 9 \end{aligned}$	$\begin{array}{ll} 41 & 78 \\ 41 & 07 \\ 42 & 55 \end{array}$	$\begin{aligned} & 5019 \\ & 5178 \\ & 4846 \end{aligned}$	$\begin{aligned} & 6352 \\ & 6793 \\ & 5876 \end{aligned}$	$\begin{aligned} & 8463 \\ & 9213 \\ & 76 \\ & 73 \end{aligned}$	$\begin{aligned} & 11796 \\ & 128 \\ & 107 \\ & 107 \\ & 19 \end{aligned}$	$\begin{aligned} & 16910 \\ & 18012 \\ & 15785 \\ & 157 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 254 \\ & 246 \\ & 246 \\ & \hline 20 \end{aligned}$	$\begin{aligned} & 35040 \\ & 34823 \\ & 35257 \end{aligned}$	$\begin{aligned} & 42432 \\ & 43020 \\ & 41847 \end{aligned}$
Crechoslovakia'. 1899-1902	$\begin{aligned} & \text { BS } \\ & \mathbf{M} \\ & \hline \mathbf{F} \end{aligned}$	$\begin{aligned} & 4030 \\ & 3889 \\ & 4171 \end{aligned}$	$\begin{aligned} & 2481 \\ & 2571 \\ & 2397 \end{aligned}$	$\begin{aligned} & 22952 \\ & 248 \\ & 247 \\ & 209 \\ & 54 \end{aligned}$	$\begin{array}{\|l\|l\|} 100 & 25 \\ 9989 \\ 190 & 89 \\ 100 \end{array}$	$\begin{aligned} & 30676 \\ & 323 \\ & 289 \\ & 2898 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & 25 \\ & 28 \\ & 27 \\ & 68 \end{aligned}$	$\begin{aligned} & 1551 \\ & 1343 \\ & 1763 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \\ & 25 \\ & 54 \\ & 27 \\ & 21 \end{aligned}$	$\begin{aligned} & 3869 \\ & 3960 \\ & 37 \\ & 75 \end{aligned}$	$\begin{aligned} & 4010 \\ & 30 \\ & 38 \\ & \hline 95 \\ & 41 \end{aligned}$	$\begin{aligned} & 4265 \\ & 4172 \\ & 4361 \end{aligned}$	$\begin{aligned} & 48 \quad 26 \\ & 5074 \\ & 4572 \end{aligned}$	$\begin{aligned} & 5606 \\ & 6290 \\ & 4905 \end{aligned}$	$\begin{aligned} & 6704 \\ & 78 \\ & 78 \\ & 58 \\ & \hline 85 \end{aligned}$	$\begin{array}{r} 8749 \\ 10105 \\ 7413 \end{array}$	$\begin{aligned} & 12011 \\ & 13408 \\ & 134087 \end{aligned}$	$\begin{aligned} & 17309 \\ & 18372 \\ & 16321 \end{aligned}$	$\begin{aligned} & 248 \\ & 248 \\ & 258 \\ & 259 \\ & 239 \\ & 68 \end{aligned}$		$\begin{aligned} & 49379 \\ & 500 \\ & 509 \\ & 487 \\ & 51 \end{aligned}$	$\begin{aligned} & 63819 \\ & 648 \\ & 648 \\ & 628 \end{aligned}$
1929-1932	$\begin{aligned} & \mathrm{BS} \\ & \mathrm{M} \\ & \hline \mathrm{~F} \end{aligned}$	$\begin{aligned} & 5355 \\ & 5192 \\ & 5518 \end{aligned}$	$\begin{aligned} & 1874 \\ & 1926 \\ & 1812 \end{aligned}$	$\begin{array}{ll} 136 & 99 \\ 148 & 69 \\ 124 & 57 \end{array}$	$\begin{aligned} & 3674 \\ & 3755 \\ & 3595 \end{aligned}$	$\begin{aligned} & 16870 \\ & 18066 \\ & 15600 \end{aligned}$	$\begin{aligned} & 1504 \\ & 1499 \\ & 1509 \end{aligned}$	$\begin{aligned} & 945 \\ & 9418 \\ & 974 \end{aligned}$	$\begin{aligned} & 1595 \\ & 1629 \\ & 1561 \end{aligned}$	$\begin{array}{ll} 21 & 40 \\ 22 & 44 \\ 20 & 34 \end{array}$	$\begin{array}{ll} 21 & 82 \\ 22 & 83 \\ 21 & 03 \\ 59 \end{array}$	$\begin{aligned} & 2382 \\ & 2451 \\ & 2451 \\ & 2312 \end{aligned}$	$\begin{aligned} & 2813 \\ & 30 \\ & 30 \\ & 2619 \end{aligned}$	$\begin{aligned} & 3444 \\ & 3876 \\ & 3002 \end{aligned}$	$\begin{aligned} & 4505 \\ & 5151 \\ & 3852 \end{aligned}$	$\begin{aligned} & 6271 \\ & 7183 \\ & 5389 \end{aligned}$	$\begin{aligned} & 8826 \\ & 99 \\ & 77 \\ & 77 \end{aligned}$	13114 14401 11884	$\begin{aligned} & 19930 \\ & 21140 \\ & 18809 \end{aligned}$	$\begin{aligned} & 299 \\ & 312 \\ & 312 \\ & 287 \\ & \hline 95 \end{aligned}$	$\begin{aligned} & 43090 \\ & 439 \\ & 449 \\ & 41488 \\ & 414 \end{aligned}$	$\begin{aligned} & 58647 \\ & 60685 \\ & 56979 \end{aligned}$

[^9]${ }_{1}^{\text {are less reliable than for later periods. }}$ Figures for $1901-1905$ for territory of Austria under the Empire.

[^10]Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth. Expectation of life and total death rate for both sexes is the average of the two sexe

Country	Years	Sax	Expecation of oflife		Mortality rates by age zroups																		
			\bullet e	$1 /{ }^{\circ}$	$0-1$	1-4	0.4	5.9	10-14	15-19	20-24	25-29	30-34	35-39	40.44	45.49	50.54	55.59	60-64	65-69	70.74	75.79	$80-84$
Denmark (excluding Faroe Island	.1901-1905	BS	5455	1833		3650	15000	1541	1279	1791	2255	2358	2738			4750	6170	8444	11942	17957	27027	39120	54753
		${ }_{\text {M }}$	5290	1890	13070	3727	16310	1541	1177	1707	2349	2290	2684	${ }_{32}^{3188}$	4174	5314	7099	9754	13405	19725	29019	41142	57431
		$\stackrel{\mathrm{F}}{\mathrm{F}}$	5620	1779	10410	3583	13620	1540	1399	1872	${ }_{21} 63$	$24 \quad 22$	${ }_{27}^{278}$	3090	3554	${ }_{41} 61$	5233	7157	10550	16326	25261	37422	52634
	1911-1915	BS	5770	1733	10026	2660	12419	1073 10	852	1447	1905	2036	2345	${ }^{28} 04$	3254							$\begin{aligned} & 39664 \\ & 400 \\ & \hline 88 \end{aligned}$	
		$\underset{\mathrm{F}}{\mathrm{M}}$	5620 59 20	1779 1689	111 88 88 78	2788 25 28	136 111 1181 81	$\begin{array}{r}1089 \\ 1058 \\ \hline 10\end{array}$	811 889	14 1463	1957 1851	2030 20 42	23 23 23 68	28 28 28 57	34 31 31 103	$\left.\begin{aligned} & 4783 \\ & 37 \\ & 37 \end{aligned} \right\rvert\,$	63 50 50			$\begin{aligned} & 18644 \\ & 15929 \end{aligned}$	27318 24928	$\begin{aligned} & 40988 \\ & 38500 \end{aligned}$	56555 54922
	1921-1925	BS	6110	1637	8330	2033	10194	771	673	1176	1543	1614	1721	2064	2561	3454	4864	6935	10617	16480	25040	37972	55293
		M	6030	1658	9364	2169	11330	791	683	1148	1579	1582	1592	1895	2431	33 35 35	48 48 48 8	7091	111 100 108	16778	25224	38756 37180	562 16 543 8
		F	6190	1615	7238	1893	8994	750	663	1206	1506	1647	1853	2238	2697	3570	4858	6772	10035	16174			
	1931-1935	$\stackrel{\text { BS }}{\text { M }}$	6290 6200	15 16 16 16	7254 814	1516	8660 9678	587 6 6	479 4 5	908 960	$\begin{array}{ll}12 & 23 \\ 13 & 02\end{array}$	13 13 13 13 124	1494 14 14	18 169 16 18	$\begin{array}{ll}23 & 27 \\ 22 & 27\end{array}$	$\begin{array}{ll}32 & 14 \\ 32 & 03\end{array}$	4666 48 48 18	69 71 71 64	10481 10926	16404 169 158	257 261 263 250	39117 395 387	${ }_{551}^{548} 9$
		F	6380	1567	6308	1359	7581	547	4	854	1142	1449	1586	1965	2430	3224	4506	6634	10023	15800	25380	38720	54643
	1941-1945	BS	6666				5834	438	382	670	1005	1073	1140	$\begin{array}{lll}14 & 14 \\ 14 \\ 14 & 23\end{array}$						$\begin{aligned} & 148 \\ & 154 \\ & 159 \end{aligned}$			
		$\underset{\mathrm{F}}{\mathrm{M}}$	65 67 78	1515	$\begin{aligned} & 5525 \\ & 4175 \end{aligned}$	1085 986	65 50 50 72	$\begin{array}{r}488 \\ 4 \\ 3 \\ \hline\end{array}$	$\begin{array}{r}4 \\ 4 \\ 4 \\ 3 \\ \hline\end{array}$	$\begin{array}{r}754 \\ 583 \\ \hline\end{array}$	11 85 88	11 9 981 81	$\begin{array}{lll}11 \\ 11 & 46 \\ 11\end{array}$	14 14 14 11	19 18 18 19	2791 2613	$\begin{aligned} & 4189 \\ & 3810 \end{aligned}$	$\begin{array}{ll} 64 & 08 \\ 55 & 77 \end{array}$	$\begin{aligned} & 9733 \\ & 8888 \end{aligned}$	$\begin{aligned} & 15457 \\ & 14335 \end{aligned}$	$\begin{array}{ll} 240 \\ 231 & 65 \end{array}$	$\begin{array}{r} 36570 \\ 35334 \end{array}$	53680 52264
	1946-1950		6895	1450	4020	742	4732	294	258	449	680	774	909	1141	1566	2436	3562	5388	8632	13646	22061	33788	50322
		M	6780	1475	4534	794	5284	299 3	304	- 525	- 813	867	- 949	1163	1662	2595	3902	5940	${ }^{93} 9306$	14375	22887 212 218	34758 328 17	${ }_{4}^{515173}$
		F	7010	1426	3470	686	4132	225	209	369	539	677	868	1119	1466	2269	3209	4817	7944	12912			
Finland m	1901-1910			2141	12413	9756	20958	3881	2392	2872	3343	3538	3612	4066	4593	5413	${ }_{74}^{74} 16$	10104	14650				
		M	4533	2206	124450 134 113		22169 196 1	3818 39 98	$2{ }_{21}^{21} 21$		35 31 11	3519 35 58	36 36 35 88	4062 40 40	4881 42 48	6134 4670	8737 6076	11638 859	168 125 6	$\begin{aligned} & 231 \\ & 187 \\ & 182 \end{aligned}$	$\begin{array}{ll} 3333 \\ 293 & 36 \\ 29 \end{array}$	$\begin{aligned} & 478 \\ & 436 \\ & 65 \end{aligned}$	62189 592
		F	4810	2079	11310	9427	19671	3948	2671	3083	3111	3558	3588	40.70	4294	4670	6076	8590	12539				
	1911-1920			2162		8349	18572	3277	2235	3856	5233	4848	4708	4983	5595	${ }_{6} 661$	7943	10831	14586				
		$\stackrel{\text { M }}{\text { F }}$	4341 49 4 12	23 20 204 36	12090 101 100	8480 8215	19545 17540	3239 3315	2032 24	48 42 36	67 67 37 13	58 59 37 27	5420 4013	58 4138 18	6798 4460	8188 5197	9913 6182	$\begin{array}{r}13693 \\ 83 \\ \hline 8\end{array}$	$\begin{aligned} & 17502 \\ & 122 \\ & 27 \end{aligned}$	$\begin{aligned} & 24141 \\ & 18853 \end{aligned}$	$\begin{aligned} & 34220 \\ & 29777 \end{aligned}$	$\begin{aligned} & 47932 \\ & 436 \\ & 49 \end{aligned}$	621 598 59
	1921-1930			1890				1741	1639	2680			3347	3723	4365	5421	7045	9743	14070	19946	29072	41234	54539
		M	5068	1973	9983	4879	14375	1798	1518	2675	4404	3763	3519	4115	4929	6441	8521	12354	16936	23171	31757 269 86	43147 398	53797 550
		F	5514	1814	8282	4542	12448	1681	1765	2686	3121	3175	3171	3323	3799	4406	5607	7281	11515	17248	26986	39855	
	1931-1940								1198	2109		2805	2843	3252	3907	4963	67 80 80	${ }^{92} 63$	13103	18914			
		$\stackrel{\text { M }}{\text { M }}$	544 59 59	1836 1679	7685 7665 665	318 30 30	10735 9118	14 15 13 13 90	1198 11 12	21 22 19 80	238 32 24 7	38 30 20 89	38 31 250 40	32 37 27 27 14	48 29 29 76	6188 37 7	85 50 50	$\begin{array}{r}117 \\ 69 \\ 69 \\ \hline 1\end{array}$	160 102 68	220 163 160	$\begin{aligned} & 30092 \\ & 25391 \end{aligned}$	$\begin{aligned} & 39945 \\ & 37792 \end{aligned}$	$\begin{aligned} & 49520 \\ & 51044 \end{aligned}$
	1941-1945													3022	3728	4739		9110	13234	19196		40794	54245
		${ }_{\text {M }}^{\text {M }}$	5462	1831	69 69 50	2980	${ }_{97} 95$	${ }_{15}^{14} 92$	1225	2288	31 31 9	2971	3105	3705	4757	${ }_{61}^{41} 90$	${ }_{85}^{68} 8$	12225	17216	23862	32760	447 35	${ }_{5} 55635$
		F	6114	1636	5730	2766	8338	1344	1018	1802	2198	2318	2288	2330	2702	3323	4314	6291	9856	15562	24938	38314	53459
	1950-51		Data not		3880	822	4670	463	376	641	1105	1275	1524	1735				8165	12347	18602	27760		
		M	available		4361	872	5195	562 355	416 4 3	772	1387	+15 77	1884	2155	3288	47 29 20	7678 34 8	$\begin{array}{r}111 \\ 52 \\ 58 \\ \hline 8\end{array}$	163 52	23300 147 19	319 2465 18	45135 3868	591548
		F	at the U.N.		3357	768	4099	355	333	500	804	952	1146	1294	1656	2264	3481	5298	8764	14749			
France ${ }^{\text {- }}$.	. . 1898-1903	BS	4700	2128	15022	6967	20942	2292	1610	2545	3536	3667	4001	4542	${ }_{51}^{51} 91$	6528	7584	10488	15095	21868	32966	47816	62619 6538
		M	4531 4869	${ }_{20}^{22} 28$	16326 13649	71 6780	$\begin{array}{ll}223 & 08 \\ 195 & 04\end{array}$	2250 23 26	1483 17 17	24 29 29	37 3 3 41 41	3669 3663	41 31 41 49	4932 4147	58 45 45 24	72 57 59 98	89 625 65	118 92 96	$\begin{aligned} & 16669 \\ & 13647 \end{aligned}$	23704 20239	351 311 15	50749 454 12	603 86
	1908-1913		5045	1982	12302	5403	17040	1631	1263	2186	3175	3309	3648	4146	4898	${ }_{60}^{60} 07$	7794	10214	14577	215	32045	46312	61116
		$\stackrel{\text { M }}{ }$	4849 524	${ }_{2}^{20} 62$	133 111 115	5485 5319	18149 15882	1587 1675	11 1388 13 8	2226	34 29 29	3433 3183	$\begin{array}{r}39 \\ 39 \\ \hline 19\end{array}$	${ }_{36}^{46} 68$	56 41 41 1	7076 49 49	9228 6420		167 126			49285	64562 58788
								1675		2226	2900			3628				8484					
	1920-1923			1847	9849	3858	13327	1345	1078	2126	3019	3056	3139	3573	4147	5188 59 56	6870	94 70	12647	19428	29731	44972	59660
		$\underset{\mathrm{F}}{\mathrm{M}}$	5219 56 69	19 178 17 83	108 88 88	39 37 36	14342 122 55	13 13 13 10	10 11 11	2065 2188	3266 27		3318 29 29	3965 3175	47 35 6			111 78 78	$1 \begin{array}{ll}156 & 11 \\ 115 & 04\end{array}$			${ }_{424}^{482} 12$	640 5661 803
	1928-1933																						
		$\begin{aligned} & \mathrm{BS} \\ & { }_{\mathrm{M}} \end{aligned}$	$\begin{aligned} & 56 \\ & 51 \\ & 50 \end{aligned}$	1785	81 90 918	3097	11836	1093	886	1790	2602	2686	3115	3816	4854	6289	8331	11258	157	22629	32927	47425	63772
		M	5902		7162	2836	9795	1064	929	1910	2470	2412	2401	2708	3228	4117	5389	744	10897	16834	26217	39801	56655

* Prior to 1921 , excluding South Jutland.
1 Figures based on survivors out of 10,000 born alive.

Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth Expectation of life and total death rate for both sexes is the average of the two sexes.

[^11][^12]Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth. Expectation of life and total death rate for both sexes is the average of the two sexes.

Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth Expectation of life and total death rate for both sexes is the average of the two sexes.

Country	Years	Sex	Expecatation of itife		0-1	$1-4$	0.4	5-9	10.14	15-19	20-24	Morality rates by ase zroups						55-59	60-64	5.6	70-74	75-79	80-84
			¢ ${ }_{0}$	1/\% 0_{0}								25-29	30-34	35.	40-44	45-49	50.54						
Norway (continued).	.1911/12-1920/21	BS	5716	1749	6388	3087	9278	1650	1488	2975	4118	4072	3737	3672	3861	4403	5411	7221	10077	14753	22245	33706	48648 508 45
	,191201	M	5562	1798	7028	3222	10024	17504	1376	3195 27	47 48 44	4507	4026	37 35 35	3887 39 37	4715 4088	5843 4976	79 79 64 1	110 91 91 58	15935	235 210 16	355 325 320	50845 46766
		F	5871	1703	5705	2946	8483		1607		3463		3442	3569	3732	4088	4976		9155	13618			
	1921/22-1930/31	BS			4975	1794	6680	874	898	1930	2744	2692	2518	2624	2968	3671	4794	6485					
	(21/22-1930	$\stackrel{\text { M }}{\text { M }}$	$\begin{aligned} & 6098 \\ & 60 \\ & 63 \end{aligned}$	1640 1566	55 44 10	19 16 16	7317 6007	944 802	871 928	1968 1890	3035 2442	2907 2469	2691 23	2787 2486	31 28 28	3909 3429	5136 44 47	71 8 8 18	$\begin{array}{r} 105 \\ 84 \\ 84 \\ 69 \end{array}$	$\begin{aligned} & 15168 \\ & 13084 \end{aligned}$	$\begin{aligned} & 22981 \\ & 200 \\ & 59 \end{aligned}$	$\begin{aligned} & 340 \\ & 3092 \\ & 30 \end{aligned}$	4936 456
	1931/32-1940/41			1519	4213	1234	5295	661	607	1139	17.17	1840		2038	2364	3024		5855	8727	13419	20847	32538	47525
	1931/32-1940/41	${ }_{\text {M }}$	6410	1560	4727	1336	6000	734	${ }_{6}^{6} 52$	1270	2023	2099	2146	2290	2676	3311	4512	6466	9662	14782	22176	$\begin{array}{lll}339 & 27 \\ 312 & 81\end{array}$	49225 46046
		F	6760	1479	3668	1127	4754	583	559	1003	1399	1573	1618	1781	2045	2734	3832	5246	7804	12105	19604	31281	
	1945-1948								423			1243	1276	1398	1788	2347	3275	4538	${ }_{71} 70$	${ }_{122}^{124}$			
	185-1948	M	6780 7170	1475	3585 28 28	1175 868	4718 3647	681 4829 4	5128 3 3	909 607	1362 8 8	1531 9	1572 988	1632 11 11	2029 15	2705 1982	3806 27	51 38 38 9	8004 6303	12289 10268 12	$\begin{aligned} & 19459 \\ & 16630 \end{aligned}$	305 270 26	${ }_{417}^{46}$
Poland ${ }^{\text {d }}$.	.1931-1932 ${ }^{1}$								1298							4926	6959	9930	14352	${ }^{21296}$	31125	43777	58992
	.1931-1932	${ }^{\text {M }}$	4820	2075	16920	5766	21710	1763	1222	1909	2791	2719	2838	3286	4092	5605	8090	11325	16128	${ }^{234} 75$	337 388 284	46583 414 18	${ }_{569} 617$
		F	5140	1945	14040	5468	18740	1760	1378	1931	2577	2872	31.75	3492	3691	4228	5812	8548	12647	19291	28844		
	$1948{ }^{1}$																5307	7710	11027	16368			
		$\stackrel{\mathrm{M}}{\mathrm{M}}$	5560 6250	$\begin{aligned} & 17.99 \\ & 16.09 \end{aligned}$	12570 10190	2651 2695	14800 12610	862 966 7	770 634	1302 9	2081 12 12	21 14 14 00	21 15 15 64	2504 1796	3191 2078	44 27 8	6728 3922	97 57 571	$\begin{array}{r}13355 \\ 89 \\ \hline 1\end{array}$	19733 134 181	$\begin{aligned} & 29159 \\ & 217 \\ & 217 \end{aligned}$	$\begin{array}{\|l\|l\|l} 383 & 29 \\ 333 & 80 \end{array}$	
		F																					
Portugal.	.1939-1942	BS	5070	1972					1129					3156	3748	4547	5895	8349	12275	18873	29575		
		$\stackrel{\text { M }}{ }$	4860	2058 18	13694	9236 89 89	216 202 202	${ }_{15}^{1688}$	${ }_{11}^{11} 08$	17 169 169	24 24 21	2633 2293	3074 2364	3680 2616	4536 2946	5651 34 1	7300 45 48	10269 65	14794 9981	22391 158 19	339 260 77	$\begin{array}{ll} 481 & 12 \\ 402 & 44 \end{array}$	62238 557 83
		F							1151														
	1949-1952	BS	5801	1724	9880	5527	14861	989	623	1016	1558	1732	1866	2146	2718	3528	4786	${ }_{6}^{67} 40$	10127	15741	25476	374 41 425 3	54208 580 50
		$\stackrel{M}{\mathrm{M}}$	5552 60	18 1653	104 92 92 51	5598 54 52	15476 14199	1020 9 96	657 586	1086 941	1753 1351	1972 1480	21 15 15	2569 17	33 20 20	4491 2548	61 34 34	85 50 50	$\begin{array}{r}12413 \\ 79 \\ \hline 9\end{array}$	189 16	29481 221 8	(1)	51728
Spain	. 1900																9043	12798	18716	28040	42437	60165	
		${ }_{\text {M }}$	3390	2950	21045	21150	37744	4249	2122	3303	53.71	5614	5334	5434	6149	7589	10070	13918	19747	28815	42946	605 597	76131 75656
		F	3570	2801	19084	20834	35942	4385	2411	3523	4573	4812	5046	5217	5252	5998	7986	11671	17705	27297	41963		
	1910													4544		5995	7797	112.73	16944	25199	37130	53858	
		M	4090	2445	16024	15974	29438	3220	1631	2700	3826	3524	3572	4537	5488	${ }_{5}^{66} 16$	8664	12379	18224	26323	375 362 8	538 538 538	70377 70838
		F	4260	2347	14093	15849	27708	3208	1865	2736	3529	3781	4066	4551	4791	5327	6877	10122	15647	24093	36686		
	1920	BS	4120	2427												5989	7714	10777	15840	23942	36447	53073	
		M	4030	2481	16713	15729	29813	3442	1735	2984	4092	. 3802	3947	4574	5496	6846	8946	12255	17461	25752	$\begin{array}{lll}387 & 47 \\ 343 \\ 53\end{array}$	557 507 501	72266 68218
		F	4210	2375	15454	15768	28785	3412	2041	2823	3792	4129	4151	4381	4594	5069	6415	9259	14232	22214			
	1930	BS	5000	2000	11653	9071	19667	1866	1241	2040	2731	2805		3441	4077	4990	${ }_{6} 6601$	9427	14054	21320	$\begin{array}{llll}324 & 87 \\ 351\end{array}$	${ }^{482} 71$	659 677 69
		$\stackrel{\mathrm{M}}{\mathrm{F}}$	48 5160	2066 1938	123 1085 18	9209 89 6	20426 188 52	1933 17 1	11 13 13 1	2138 1936	2840 2618	27 28 28	3102 29 10	37 31 31 67			7934 5256	111 77 82 04	16234	238 190 49	351 302 70	506 464 28	64699
	1940										2929						7834	10925	15550	22128			
		M	4710	2123	11827	7674	18593	1801	1046	2214	3613	4100	3986	4636	5933	7817	10535	14406	19746	27029	371 85	S15 88	680 61104
		F	5320	1880	11110	7533	17806	1664	1173	1693	2208	2160	2272	2914	3421	4064	5355	7907	12168	18517	27890		
Sweden	.1901-1910																	7394		15449	23669		
		${ }_{\text {M }}$	5453	1834	9255	4688	13509	1999	1450	2269	3186	3059	2986	3275	3960	4849	62 49 49	82 68 8	11509	167 167 142	250 79.	380 346 44	${ }_{5}^{548} 512$
		F	5698	1755	7598	4455	11715	2012	1688	2347	2752	2958	3030	3304	3562		4950	6578	9363	14233	22346		
	1911-1920									2527	3509	3508	3413	3396	3668	4230	5384	7249	10240	15398			
		M	5560	1799	7643	3639	11004	1758	1373	2547	3967	3726	3555	3486	3760	4543	5884 4877	${ }_{80} 828$	${ }^{112} 14$	${ }_{142}^{165} 6$	25167	377 346 88	${ }_{508}^{543} 45$
		F	5838	1713	6112	3468	9368	1720	1532	2505	3032	3283	3267	3304	3574	3910	4877	6471	9281	14273			
	1921-1930																						
		M	6097	1640	6572	2229	8557	${ }^{10} 17$	869 96	1655 1617	23 20 20	$\begin{aligned} & 22 \quad 29 \\ & 2088 \end{aligned}$	$\begin{aligned} & 2213 \\ & 2165 \end{aligned}$	2390 23	28 27 27 19	3706 3383	49 48 48	70 60 68	10443 8893	$\begin{aligned} & 15586 \\ & 13947 \\ & 18 \end{aligned}$	$\begin{aligned} & 23774 \\ & 21779 \end{aligned}$	$\begin{array}{ll}36216 \\ 344 & 93\end{array}$	-526838
		F	6316	1583	5052	1969		958	932	1617	2050	2088	2165	2330	2719	3383	4513		8893				

[^13]- Figures for 1931-1932 pertain to territory of 1923-1938. total life-table mortality rate, for all ages.
Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the 1_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth. Expectation of life and total death rate for both sexes is the average of the two sexes

Coustry	Years	Sax	Expectation of life		Mortality rates by azc eroups																		
			cor	1/e.e	0.1	$1-4$	0.4	5.9	10.14	15-19	20-24	25-29	30	35-30	40.44	45-49	50-54	55-59	so-s	65.69	70.74	75-79	80.84
Sweden (continued).	.1931-1940	BS	6523	1533	4496	1318	5755	687	631	1163	1602	1569	1623	1871	2351	3180	4459	6359	9572	14898	23412	36356	52901
		M	6376	1568	5080	1437	6444	754	660	1210	1718	1622	1658	1944	2491	3667	4804	6875	10344	15776	243 225 229	373 51 354	540 518 73
				1512	3878	1195	5027	617	${ }_{6} 63$	1115	1482	1514	1585	1796	2207	2989	4105	5827	8794				
	1941-1945	BS	6838	1462	3025	871	3870	511	433	829	1260	1176	1212	1407	1825	2581	3761	5585	8495	13391	21439	337 88	49888
		M	6706	1491	3415	951	4334	598	496	918	1527	1294	1283	1535	1938	2794	41 319	6194 4965	92 77 72	${ }_{125}^{142} 76$	222 206 62	34989 326 46	51266 48626
			6971	1434	2611	788	3378		367	734	982	1054	11.38	1275	1709								
	1946-1950	BS							277		772	789	882	1094	1449	2245					$\begin{aligned} & 21659 \\ & 22616 \end{aligned}$		510 521 58
	,	$\frac{\mathrm{M}}{\mathrm{F}}$	6904 7158	$\begin{aligned} & 1448 \\ & 1397 \end{aligned}$	26 20 20 16	$\begin{aligned} & 626 \\ & 484 \end{aligned}$	3272 25 27	417 243 14	308 345 24	6 6 3 88 88	933 602 1	9806 667	881 780	11 10 10	1545 1349	24 20 45	38 30 98	5958 4668	$\begin{aligned} & 9341 \\ & 7476 \end{aligned}$	$\begin{aligned} & 14630 \\ & 12243 \end{aligned}$	$\begin{aligned} & 22616 \\ & 207 \\ & \hline 65 \end{aligned}$	$\begin{array}{ll}354 & 10 \\ 331 & 07\end{array}$	500 500 11
Switzerland.													3019	3570	4438	5801	7918	11195	16206	23668	34364	48658	65673
	1910-1911	${ }_{\text {M }}$	5065	1974	12831	3885	16190 161	1505	10 10 32	1790	2361	2678	3161	3891	5004	6689	9207	12933 95	18370	260 215 215	36416 326	495 479 47 27	646 664 664
		F	5389	1856	10427	3754	13790	1440	1233	1998	2525		2874	3243	3866	4912	6654	9538	14220	21592	32672		
	1920-1921		5599	1786	8067	3100	10917	1442	1073	1681	2090	2336	2642	3128	3906	5148	7117	10225	15055	22369	33040	47535	64956
		M	5448	1835	9051	3158	11923	1449	1088	1669	2009	2276	2688	${ }^{33} 28$	4313 3480	58 44 44	8174 6042	117 87 82	169 132 16	24545 20366	350 312 38	48589 466 4	65462
		F	5750	1739	7016	3039	9842	1435	1059	1692	2176	2400	2592	2920	3480	4434							
	1929-1932	BS	6111	1636	5030	1710	6654	882	690	1244	1812	1877	2045	2353	2978	${ }_{42} 50$	${ }_{75}^{62} 73$	$\begin{array}{r}9166 \\ \hline 10856\end{array}$	13338	20134	301 324 324 1	440 465 460	60016 61844
		$\stackrel{\mathrm{M}}{\mathrm{F}}$	5917 6305	1690 1586	56 44 44 4	1765 1653	7285 59 59	922 841 8	737 640	13 11 11 7	1942 1677	1831 1822	2236 18	26 20 20	3477 24 70	5033 3463	75 50 50	10856 7540	154 114	17994	28305	421	
	1933-1937										1569	1603	1747	2088		3832	5632	8315		19110	28583		
	193-1937	${ }_{\text {M }}$	6070	1647	5242	1737	68.88	857	638	1197	1705	1679	1870	2341	3150	4524	6731	9914	14572	21359	30935	449 399 09	60710 56016
		F	6460	1548	4083	1465	5488	724	553	954	1430	1525	1620	1830	2289	3133	4539	6760	10623				
	1939-1944	BS	6482	1543	4174	1292	5412	647	538	875	1269	1365	1396	1632	2206	3220	4822	7265	11264	17454	272 209 209	40254	567 35
		M	6268 6696	1595 1493	4696 36	1398 1182	6028 4766	764 567	6 4 4 4 1	1028 717	1500 1032	13 11 1195 18	1531 12 59	18 14 14 50	2550 1859	38 26 6	56 39 59	$\begin{array}{r}87 \\ 58 \\ 56 \\ \hline 8\end{array}$	$\begin{array}{r}13244 \\ 93 \\ \hline 1\end{array}$	15171	24843	37332	54236
U.K.: England and\}Wales.	1901-1910			1982								2252				605		11274		21496			
		${ }_{\text {M }}$	4853	2061	14434	7208	20602	1656	1007	1532	2059	2421	3119	3979	5081	${ }_{5}^{67} 37$	9128	${ }_{120}^{122} 22$	17421	238 194 194	339 298 298	462 49	59003 54365
		F	5238	1909	11743	6888	17822	1730	1062	1429	1733	2083	2652	3336	4135	5291		10007	13740	19415			
	1910-1912	BS	5342	1872	10928	5927	16207	1667	971	1357	1706	1965	2437	3137	4045	5362	7318	10326	14534	20732	30140	42396	56186
		M	5150	1942	12044	6058	17372	1679	955	1393	1858	2115	2629	3430	4484	6027	83 63 64 94	11696 90	16479	231 88	329 278 19		53975
		F	5535	1807	9767	5794	14995	1655	986	1320	1552	1814	2243	2844	3607	4707	6394	9022	12738	18561	27819		53975
	1920-1922	BS	5765	1735	7995	4310	11960	1439	933	1335	1730	1914		2680	3306	4253	${ }_{6}^{60} 13$	85 96 76	127 124 145 128	188 213 21	282 314 314 28	409 445 45 35	55504
		M	55968	1798	8996	4449	13045	1451	-9 988	13 129 129	1816 16	2011 18 18	23 20 20	2976 23 77	3746 2862	4793 3713		${ }^{97} 313$		213 49	35617 258 18	38073	53102
		F	5968	1676																			
	1930-1932	BS		1644		2814	8976	1093	735	1205	1514		1736	2152	2807	3930	5497	7946	11907	18239	27850	41168	56323
		M	5874	1702	7186	2958	9931	1161	745	1262	${ }_{13}^{169}$	1641	1814	$\begin{array}{r}23 \\ 19 \\ 48 \\ \hline\end{array}$	3185 24	45 3 17 09	6355 4646	91 67 67	13708 10196	21017 157	31586 246 8	43894 378	533 80
		F	6288	1590	5455	2666	7976	1024	727	1147	1398	1522	1658	1948	2426	3309	4646			15706			53380
	19501			1452	2997		3542	303	235				824	${ }^{10} 67$	1536		4136	6565 8361	103 132 13	157 195 192 20	240 285 25	367 414 434	523 576 0
		M	6650	1504	3370	569 5 56	39 31 31	375 27 27	272 197	513 394	695 5 5 58	806 680	877 769	11 9 9 77	1746 1319	3156 21	51 31 1	83 47 48 8	132 75 76	123 37	20360	331 22	48940
		F	7120	1404											1319								
Northern Ireland	. 1925-1927			1793	8209	4358	12209	1251	1040	1690	2242	2570	2821	3159	3958	5305	7332	10133	14429	20455	28360	38240	${ }_{5}^{504} 41$
		M	5542	1804	9094	4521	13204	1242	933	1519	2048	2308	2528	2886	3732	5182 54 54	$\begin{array}{r}7295 \\ 73 \\ \hline 8\end{array}$	10173	146	19896	27185	${ }_{361} 44$	47405
		F	5611	1782	7271	4189	11155	1261	1150	1867	2443	2845	3128	3448	4198	5436	7370	10091	14187	19896	27185	36144	
Scotand.	. . 1920-1922																						
	..192-1922	M	5308	1884	10597	5579	15585	1472	1056	1524	1934	2250	2640	${ }^{31} 88$	3910	5196	7278	$\begin{array}{r}10718 \\ 868 \\ \hline 8\end{array}$	${ }_{1} 12878$	227 179 81	$\begin{array}{ll}333 & 44 \\ 26681\end{array}$	46881 397 90	601894
		F	5635	1775	8266	5236	13069	1471	1045	1494	1930	2278	2731	3134	3492	4345	5974						
	1930-1932				8348																		
		M	5600	1786	9346	3989	12962	1325	842	1283	${ }_{15}^{1699}$	1786	2091	2834 2459	3726 29 87	$\begin{aligned} & 4898 \\ & 39 \\ & \hline 19 \end{aligned}$	$\begin{aligned} & 6412 \\ & 53 \\ & 32 \end{aligned}$	$\begin{aligned} & 9504 \\ & 7764 \end{aligned}$	14288 113 90	$\begin{aligned} & 21993 \\ & 16977 \end{aligned}$	326429	${ }_{399}^{46811}$	${ }_{556} 818$
		F	5950	1681	7304	3719	10751	1156	813	1280	1535	1755	2091	2459	2987								

[^14]Number of deaths during specified age interval per 1000 persons alive at the beginning of each age interval. Expectation of life at birth and (its reciprocal) total life-table mortality rate, for all ages.
Source: U.N. Demographic Yearbooks 1953 and 1954.
Note: Number of deaths and death rates reconstructed from the l_{x} values; those for both sexes reconstructed on the basis of the corresponding sex ratio at birth. Expectation of life and total death rate for both sexes is the average of the two sexes

[^15]
[^0]: ${ }^{1}$ United Nations, Foetal, infant and early childhood mortality. Document ST/SOA/Series A. Population Studies No. 13 (2 parts); see also V. Valaoras, "Fœtal, perinatal and infant mortality", paper presented to the World Population Conference, Rome, 30 August-10 September 1954 (United Nations document E/CONF. 13/101).

[^1]: ${ }^{2}$ See also: United Nations Demagraphic Yearbook, 1951, introductory chapter, pp. 9-12 (United Nations publication, Sales No. 1952.XIII.1).

[^2]: ${ }^{3}$ See: L. J. Reed and M. Merrell, "A short method of constructing an abridged life-table", American Journal of Hygiene, vol. 30, p. 33, Sept. 1934; J. N. Greville, "Short methods of constructing abridged life-tables', Record of the American Institute of Actuarians, vol. 32, p. 29, June 1943.
 ${ }^{4}$ With the single exception of the life-tables for Greece 1940, which were computed in 1942 by Dr. V. G. Valaoras on the basis of the population census of 1940 and data on deaths for the same year.

[^3]: ${ }^{5}$ Kingsley Davis, The population of India and Pakistan. Princeton University Press, 1951, p. 240.
 ${ }^{6}$ See for example: Jean Bourgeois-Pichat, "Essai sur la mortalité 'biologique' de l'homme'. Population, 7° année, 1952, No 3, juillet-septembre, pp. 381-394.

[^4]: 7 Group A includes 21 life-tables with an expectation of life at 65 years and over. Group B includes 51 life-tables with an expectation of life between 55 and 64.9 years. Group C includes 34 life-tables with an expectation of life between 45 and 54.9 years. Group D includes 23 life-tables with an expectation of life below 45 years. A few life-tables with erratic q_{x} functions were omitted.

[^5]: ${ }^{8}$ The fitting of a third degree parabola to the observations relating the ${ }^{5} q_{0}$ and ${ }^{\circ}{ }^{\circ}$ ofunctions produces a slightly smoother result.

[^6]: ${ }^{9}$ See, for example, United Nations, The population of Central America (including Mexico), 1950-1980. Document ST/SOA/ Series A. Population Studies No. 16; The population of South America 1950-1980. Document ST/SOA/Series A. Population Studies No. 21.

[^7]: 10 See also: George J. Stolnitz, "A century of international mortality trends: I", Population Studies, vol. IX, No. 1, July 1955, pp. 24-55.

[^8]: - 1900-1911 data relate to the death registration area of 1900; 1919-1921 d
 1900-1902, 1909-1911 and 1950 based on official life-tables for both sexes

[^9]: ${ }^{n}$ Figures relate to territory as of period specified and refer to Japanese nationals only. Figures for 1899-1903 and 1909-1913

[^10]: Figures for 1899-1902 are for Bohemia and Mor
 excluding territory ceded by Hungary in 1947.

[^11]: 1 Figures based on survivors out of 10,000 born alive.
 $=$ Excluding Alsace--

 Frraine, $1898-1913$.
 ${ }^{2}$. Fxcluding Alsace-Lorraine, 1898-1913. . . World War I. Figures for 1924-1934 for territory of 1937, i.e. excluding the Saar.

[^12]: P. Figures for 1920 probably for territory as of that date. Figures for 1926-1930 excluding the Dodecanese
 a See footnote ${ }^{4}$.
 ${ }_{r}^{\text {a }}$ [Including territory ceded to Czechoslovakia in 1947

[^13]: Figures based on survivors out of 10,000 born alive.

[^14]: Figures based on survivors out of $\mathbf{1 0 , 0 0 0}$ born alive.

[^15]: 1 Figures based on survivors out of 10

 - Ercluding full-blooded aborigines.

