Distr. UIMTED A/CONF.10/L. 14
21.April 1955

ORIGINAL: RUSSIAN

INTERNATIONAL TECHNICAL CONFERENCE ON THE CONSERVATION OF THE LIVING RESOURCES OF THE SEA

Item 10 of the provisional agenda
Rome - 18 April 1955

INTERNATIONAL TECHIICAL CONFERENCE ON THE CONSERVATION OF THE LIVING RESOURCES OF THE SEA

Types of scientific information required for
a fishery conservation programme

The Secretary-General has the honour to comunicate, the following paper, submitted by the Union of Soviet Socialist Republics, by Professor P. A. Moiseev, Director of the Pacific Research Institute of Fisheries and Oceanography, Vladivostok, Union of Soviet Socialist Republios.

FLUCTUATIONS IN THE COIALRCIAL FISH POPULATION OF THE NORTHWEST PECIFIC IIN RELATION TO METEOROLOGICAL AND OCEANOGRAPHIC CONDITIONS, FISHERY OPERATIONS AND OTHER FACTORS
by
P. A. Moiseev

A/Conf:10/L. 14°

Page 2

1. The North-West Pacific, including the Bering Sea, the Sea, of Okhotsk and the Sea of Japan is an extensive commercial fishing area (more than 5 million square kilometres) with very varied fauna and flora.
2. Approximately 800 species of fish are found there and more than 100 of them are or could be commercially exploited. Bottom fish are particularly varied, the number of species being considerably higher than in the itlantic.
3. Thase differences in the number of species are largely attributable to the fact that cod and herring are of Atlcntic origin (Svyetovidov 1948, 1952) and hence, there are relatively few varieties of them in the Pacific, while the Pacific origin of the flat fish (Norman, 1934) accounts for the relatively few varieties of flat fish. in the Atlantic.
4. At the same time, very similar varieties of the main commercial families herring, cod, salmon, flat fish, mackerel etc. - are found in both the Pacific and the Itlantic. Closely related varieties of commercial fish in both oceans include: Clupea and Engraulis: Gadus and Eleginus; Limanda, Hippoglossus, Reinchardtius, Heppoglossoides, Pleuronectes and Platessa.
5. One might expect to find close similarities in the behaviour of these fish and regular fluctuations in populations, particularly as, in most instances, systematic differences are confined to the specific or sub-specific level.
6. Related varieties in both Oceans admittedly have certain characteristics of biology and behaviour in commor.
7. Nevertheless, recent researches into the biology and causes of fluctuation in the fish populations of the North-West Pacific by the Pacific Research Institute of Fisheries and Oceanography have revealed fundamental differences in the biology of the inhabitants of the Pacific and Atlantic Oceans. These differences are largely due to the differing environmental conditions in the two basins and are the result of adaptation to these conditions. At the same time, however, there were very clear indications that the the fish
population is affected, first, by a number of meteorological and oceanographical factors and secondly by intenso fishing.
8. In this oonnection, let us first glance briefly at the oceanography of the North-West Pacific and its specific characteristics, which have a considerable influence on the biological peculiarities of the fish in that area and, in many cases, dictate their number.
9. Deep valleys. (4 to 6 thonsand metres in depth) form the basins of the Seas of Japan and Okhotsk and of the Bering Sea and cover most of their floorg the continental shelf is relatively smaIl, generally extending in a narrow band along the North-East shore of Asia, and beyond it the groand drops sharply to 3,000 metres or more. These characteristics distinguish the seas of the Far East from the North-East Atlantic. As mach as 3 million square kilometres of the North-East Atlantic consists of broad shoals, whereas only about 1.2 million square kilometres of the North-West Pacific is shallow water. The severe continental climate and the fact that the marginal seas in the Far East are cut off from the open Pacific by a chain of islands are the main causes of the intense cooling in winter (to sub-zero temperatures) of large areas of shallow water in certain regions (the North-Western part of the Sea of Okhotsk, the Eastern off-shore area of the Gulf of Sekhalin, the Gulf of hnadyr, etc.). This cold layer is never warmed: through in the warm part of the year and it covers a wide area of shallows, making them unsuitable for the majority of fish living on or near the bottom.

A/CONF. 10/L. 14
Page 4.
10. The total area of shallow water in the Far Eastern seas where conditions are suitable for bottom fish is approximately 800 to 850 thousand square kilometers. Intensive cooling (to sub-zero temperatures) in winter and considerable seasonal variations in temperature in the upper layer (particularly in the northern part of the Seas of Okhotsk and Japan) clearly distinguish the Far Eastern seas from the waters washing the North-West coast of Europe, where annual variations in temperature are negligible and there are virtually no wide areas where the temperature of the water falls to below zero.
11. Generally speaking, the permanent and tidal currents in the seas of the Far East flow much faster than the currents in the North-East Atiantic which are affected by the slow-moving water masses of the Gulf Stream (flowing at not more than 0.1 to 0.3 miles per hour). . The majority of the permanent currents in tho Bering Sea and the Seas of Okhotsk and Japan have a volocity of 0.4 to 0.5 miles an hour or more.
12. Relatively fast currents carrying water masses over shallow water first and then over very deep water or water with sub-zero temperatures create conditions unfequarable to fish and other organisms with pelagic spawn or larvae.
13. Lastly, vast areas of the Far Eastern seas, and in particulàr, the shallow areas, are covered for months at a time by floating or stationary ice floes, whereas most of the surface of the North-Wast.Atlantic is free from ice the whole year round.
14. These hydrological differences alone show the substantial differences in the environmental conditions of fish living in comparable areas of the Atlantic and the Pacific.
15. Other vitally important factors in the environment of many commercial fish also vary; for example the supply of food and the intensity of predation, which frequently determine the sizo of tho fish population.
16. From a comparison "of the masses of benthos and zooplankton in the Atlantic and the Pacific it can readily be seen that the benthos and zooplankton indices in many areas in the Far East seas are somewhat higher than those in the seas which wesh the shores of North and North-West Europe. In most of the shallow waters of the Far East the average benthos mass varies from 100 to 500 grammes per square metre, whereas in the North European seas it varies from 20 to 250 grammes per square metre. Approximately the same relation holds good for zooplankton. biomass, the figures being 160-300 mg per cubic metre and $50-140 \mathrm{mg}$ per cubic metre, respectively.

$$
\text { A/CONF. } 10 / \mathrm{L} .14
$$

Page 5

Table 1

Avorage mass of benthos and zooplankton in the Atlantic and the Pacific (to a depth of 200 metres)

A/CONF/10/L. 14
Page 6
17. This substantial difference in favour of the Far Fastern seas would probably be still more marked if we were to take into account the larger zooplankton (more particularly the Euphausiidae) which are so abundant in the Sea of Japan and especially the Sea of Okhotsk.
18. The greater mass of benthos and zooplankton in the Far Eastern seas accounts for the appearance of large, dense congregations of commercial fish and other creatures in certain areas. The heavy concentration of flat fish and King crabs off the shores of Kamchatka, pollack in the Korean Gulf, herring off the shores of Sakhalin and Hokkaido, and sardines off the Southern shores of Japan are well known.
19. An abundance of benthos or plankton alone, however, is not enough to account for the presence of commercial shoals. For example, although there is in the Gulf of Anadyr an abundance of plankton and benthos for fish food; there are no commercial concentrations of flat fish, nor are there any concentrations of cod, pollack or flat fish in the Northern part of the Bering Sea or in the whole Sea of Chukotsk, although the types of food eaton by all these fish are found there in particular abundance and the hydrology in summer is particularly suitable (for cod and pollack): the fish do not go so far from the remote regions where they winter.
20. A volumetric comparison of the food consumption of a number of the most common commercial fishes indicates that most of them feed a great deal more intensively in the Pacific than in the Atlantic. The average annual index* of stomach content of the Okhostk Sea cod, for instance, is 225 (Logvinovich, 1949) whereas for the Barents Sea cod it is only 144 (Zatsepin and Petrova, 1939). L* The ratin, multiplied by 1,000, of the weight. of the stomach contents to the weight of the fish. 7 is a result of the greater abundance of food, the majority of Far Eastern fish have a very limited diet, although there is a very wide choice of foods available to them. The Pacific cod, for example, has more than 100 different creatures from which to select its food, but it eats only four or five varieties (Logvinovich, 1949, Gordeyeva, 1951). Similarly, the various species of flat fish and halibut, whose range of food includes more than 200 creatures, consistently feed on only a few of these (Mikulich, 1954).
21. Many Far Eastern fish greatly surpass North-East Atlantic fish in their rate of growth, average annual growth in weight and also fleshiness and oiliness. Thus, the average annual growth in weight of the Pacific cod is 1.5 to 3 times that of the Barents Sea cod, and the average weight of the Pacific cod is two to three times that of the Atlantic cod of the same age class.
22. The interspecific relations between commercial and non-commercial fish exercises a very real effect on the numbers and behaviour of the commercial fish popalation, but as yet this factor has been little studied. The number of species (166 in the Pacific as compared with 48 in the North Atlantic) and the abundance of Cottidae, Agonidae, Hexagrammidae, Liparinae, Blenniidae and other bottom fish, which often have a diet similar to that of the commercial fish and feed intensively on the spawn and young of the latter (and sometimes even on mature fish) undoubtedly leave their mark on the biology of many commercial bottom fish and of ten reduce their stock considerably.

A/CONF. 10/L. 14
Page 7
Tablo 2
Number of species of non-commercial bottom fish in the Pacific and Atlantic Oceans

$\begin{aligned} & \text { Family } \\ & \text { or } \\ & \text { Order } \end{aligned}$	$\begin{aligned} & \text { Boring Sea } \\ & \text { (Andriyashev, } \\ & \text { 1939) } \end{aligned}$	Sea of Okhotsk (Schmidt, 1950)	Sea of Japan (Lindberg, 1937)	Pacific ooast of America (Schulz and do Lacy, 1935)	Atlantic, Barents Sea (Kniporich, 1926)
Cottidae	73	50.	36	38	14
Agonidae	16	15	15	15	4
Hoxagrammidae	6	5	4	5	-
Cyclopterinae	9	23	10	13	3
Liparinao	22	T	-	-	4
Blanniidao	40	55	37	29	23
TOTAL	166	148	102	100	48

23. Other types of fish too are known to be affected in this way by natural predation; in the case of salmon, for example, there are instances where up to oighty por cent of the young of the pink salmon are eaten by loaches, young coho salmon and other fishes even before they descend to the sea (Scmko, 1953).
24. These are the fundamental differences in the environment of commercial fish in the North-East Atlantic and the North-West Pacific which make it possible to determine that there are characteristics which are peculiar to the topography, cceanography and population of the Far East seas. This specificity of environment is largely responsible for some of the distinguishing biological characteristics of the commercial fish in the North Pacific and it. produces. sharp. fuctuations in the stock of several comnercial varieties.
25. Such fishes as the pollock (Theragra chalcogramma), the Pacific herring (Clupea harengus pallasi), the Pacific salmon (Oncorhynchus) and others are extreniely videspread and abindent in this area. The pollock is a nektobenthic rather than a demersal fish; it ranges freely through the midde. water and"feeds" mainly on plankton and nekto-benthic crustacea and much more rarely on benthos. It has little tie with the comparatively narrow continental shelf, withstands low and sometimes sub-zero temperatures relatively weil and̈. not infrequently rises to the surface in search of its food.
26. The Pacific salmon (Genus Oncorhynchus) take as their spawning grounds. the wide basins of the rivers which empty into the Northern Pacific, where the eggs and larvae can develop in the conditions most suitable for each species. Later on, when the young salmon migrate to the sea and begin tọ feed intensively on the concentrated bio-masses of the open sea, their environment is particularly favourable and thèy grow rapidly and ensure a high levei of stock recruitment.
27. The Pacific herring, having penetrated to the North Pacific from the North Atlantic in one of the interglacial periods, has settled very widely there; it has taken over extensive areas of the off-shore shallows as spawning grounds and, feeding on the abundant pelagic food supplies of the Far Eastern seas, has become very numerous.
28. Similar examples could be given for a number of other commercial fish:
29. The overwhelming majority of the creatures inhabiting the Far Eastern seas, and particularly such creatures as salmon, herring, cod, flat fish, navaga, pollock and king crab, nave formed a number of isolated and often independent populations, which have settled in various regions of the Far Eastern seas and adapted themselves to living in varied conditions.
30. The localised nature of the present habitats and of the large concentrations of these commercial fish, having regard to their wide distribution throughout the Far Bastern seas, together with the existence of biological and morphological differences in most of the varieties which now have their habitats in several regions, indicates that we are dealing with a fauna which is now compartmentalised and isolated in a number of comparatively detached areas, though sometimes widely scattered all along the North-iast shores of Asia.

$$
\text { A/CONF. } 10 / \mathrm{L} .14
$$

Page 9

31. The geological history of the countries of the Far East and more especially, the distribution of fresh-water fauna in North East Asia (Yale, 1929; Lindberg, 1937, 1948) provide conclusive evidence that successive advances and withdrawals of the sea took place on the shores of Eastern Asia during the quarternary period and that enormous upheavals occurred beneath what are now the marginal Far Eastern seas. The distribution and biology of the marine fish carry this theory further and show that not only the fresh-water fauna but also the typlcally marine fauna, and in particular the fish of the Far Eastern seas, which were at one time comparatively uniform, are now split up into local populations.
32. It may be presumed that the movements of the sea and, more particularly, the chasms which formed in the region of the present marginal Far Eastern seas led to the contraction of the continental shelf, to tha appearance of large areas of great depth, to the development of regions with markedly varying oceanographic conditions, and, perhaps, to an increase in the speeds of currents. All this led to the break-up of the once continuous populations of fish and other creatures of many kinds which had been inhabiting this area, and to their separation, as indicated, into isolatod groups which acquired distinct biological features and, with them, certain related morphological differences.
33. Instead of the very extensive and protracted horizontal migrations of herring; cod, pollack and other fish which occur in the Atlantic Ocean, we find that in the Northern Pacific there occur comparatively short seasonal migrations of the majority of fish and other creatures, principally from detp to shallow water and back, which are due both to the sharp seasonal changes in hydrographical conditions in the upper layer of water (to a dopth of 200 metres) and to the location of food supplies and other factors (Dolutov, 1948, 1951. Noiseev, 1946, 1950, 1953). This sharp seasonal change in hydrographical condítions has led in the case of most commercial fish to the evolution of single spawning, to the shortening of the incubation period, to the occurrence in a number of fish (flat fish, for instance) of protracted periods of enforced winter-fasting (combined with a sharp declinc in activity) and so forth. Only a number of pelagic fish, - (mackerel, sardine, anchovy, saury, etc.) in the North-West Pacific undertake fairly longthy feeding migrations, which are longest during their periods of maximum population density.
34. As has already been observed, one of the most important characteristics of the Far Eastern seas and one which sets its mark on the nature, the number and, more especially, the biology of the creatures inhabiting them, js the complex of currents which are relatively constant and at the same time fast-moving.
35. In view of the narrowness of the continental shelf, the vast extent of the great depressions and the markedly varying hydrological conditions even in areas situated close to each other, the high spoeds of the currents in tho Far Eastern scas are extremely unsuitable for many of the creaturos living in them which have pelagic spawn. It is easy to see that eggs and larvae, and also later theiyoung fish which wander into the currents, will be carried far away from the spawing area and will then in most cases have to contend with conditions unfavourable for their further development.

H/CONF. 10/L. 14
Page 10
36. The simplest reckoning will show that if the esegs and larvae of say, flatfish remain for $15-20$ days in the open sea where the speed of current is 0.5 miles an hour, the young fish.will emerge $180-240$ miles from the spaminie ground, which usually means outside the confines of the region which is a suitable habitat for them.
37. Consequently, fish which have pelagic spawn have evoivec. ways of avoiding tho most harmful effects of fast-moving currents in order to ensure reproduction in sufficient numbers. Flatfish, for example, in regions with very fast-moving currents, come right in to the shore to spawn and deposit their eggs in.inlots and bays where there is littlo movement of the water. Firthermore, a plaice. (Pseudopleuronectes yokohamae) has developed a st cky, benthonic spawn (PortecraOstroumova, 1954). It is very probable that certain other types of flatfish (Pleuronectes obscurus and P1. pinnifasciatus) have developed similar spaw which is deposited under the ice. No large concentrations of flatfiah are found in areas of shallow water with strong currents and only slightindentation of the shoreline, whereas they are being found in greater and greater nowbors in regions where there is little movement of the water (Western Eanchatka; tine Matar Straits, tho South East coast of Sakhalin).
38. The Atlantic cod has pelagic sawn, but the cod found in Far Baistern waters has benthonic spaw (Uchida, 1936), which is not carried away to siy largo eatent by the currents and is able to develop in areas with the most suitable temperaturea, In addition, benthonic spawn is not exposed to the harmer ex ooty of fe twetivg ice which covers much of the spawning areas during the ard's spanding period.
39. The pollak, which has pelagic spawn, comes close in to the shore ${ }_{3}$ to areas vith slow-inoving currents, to deposit its eggs. (Vedenskiv, 1949; Gorbunova, 1954). Its main spawning grounds in the Korean Gulf, Peter the Great Bay anc off the South West coast of Kamchatka are in areas of relatively still water.
40. "At the sane time, fish with demersal attached eggs (the Pasific herring, and certain members of the Cottidae, Blenniidae and Rajidae and other femiljas) find that the Far Eastern seas offer the most favourable conditions for their derelop. ment and are found there in great numbers or in a great variety of speciee.
41. The Pacific herring has demersal attached eggs and, unlike the titlantic herring, deposits them as near the shore as possible, thus ensuring that large numbers survive even in regions with extremely stronig currents (the Sheilkhov Dey, the Northern Coast of the Okhotsk Sea).
42. The currents in the Far Eastern sean greatly influence the behaviour and numbers of pelagic fish. Such typical inhabitants of these areas as the sardine (Kaganovsky, 1935), the mackcrol (Vodensky, 1951) and the yellow-tail. Sericile quinqueradiata, and other fish come close in to the shore to siewa and deposit their ectis in inlets and bays:
43. All the foregoing explains why the vast majority of fish with pelagio spawn deposit their eggs near the shore, why fish with benthonic spawn deposit their eggs in their hone ground and why fish with demersal attached eggs are found in great numbers and a great variety of species in the Far Fastern ceas.
44. Owing to the abundance of predators in the North West Pacific many fish have aried themselves with strong anal rays, well-developed operoular spines and so forth. 45. The greater fooundity, by comparison with closely related Atlantic varieties, of the majority of the fish inhabiting the Pacific Ocean can be ascribed largely to the gradual. reaction of the species to local oceanographic conditions and to the somewhat greater influence of the predators native to Far Fastern waters.

Tablo 3

Fecundity of some Pacific and Atlantic Ocean Fish (in thousands of eggs)

NOTE: The fecundity:of the codestated above is for 1 ge of fish.

A/CONF. 10/L. 14
Page 12
46. The above shows the importance of a knowledge of the oceanography of tho Far Eastern seas for an understanding of the generally established princifles of the biology of fish common to those seas.
47. Of special importance are the changes which have occurred over a period of years in the Kuroshio current in determining the oceanographical details of the north-west section of the Pacific Ocean and all the Far Eastern seas. The changes observed over the last forty years have led to changes in the distribution of warm and cold massea of water. Two warming periods and one cooling period occurred in that time. Such alternations or distarbances in the Kuroshio considerably affect the oceanographical characteristios of a number of regions in the north-west dection of the Pacific Ocoan which in turn influence the distribution and quantity of a tumbcr of commercial fishos.
48. Such are a few of the biological characteristics of the fish population of the north-west Pacific which, feeding on the highly-nutritive benthos and plankton in the Far Eastern Seas, are found in relatively large numbers notwithstanding the oomparatively small area of the continental shelf.

4\%. The rational organization of the fisheries for salmon, herring, cod, "polleok, flounder, halibut, mackerel amd other fish, taking account uf the size of the shoals and of the conditions of reproduction in the north-west section of the Pacific Ocean, may lead to highly stable conditions and considerably higher catches,
50.: At the same time the fact that commercial fishes are localised, that they spawn near the shcre and that the fry remain in shallow waters makes it essential to develop the industry strictly in accordance with the quantity of each commercial species, taking into account its biologioal oharacteristics."and, at the same time, taking measures to increase its rate of reproduction.
51. The above-mentioned particulara concerning the biology of several Far Eastern fish, the changes in metereological and oceanographical conditions and the influence of commercial fishing are important factors in causing. fluctuations in the quantity of a nambers of commercial fishes in the north-western section of the Pacific Cocan.
52. We shall give a few of the most characteristic examples.
53. Pacific Salmon. The three main species of Pacific salmon (ONCOBHYNCEUS) fishèd in the Far Eastern waters are the pink salmon, the chum salmon and the sookeye salmon. Before. 1940, up to 400,000 mto tons of salmon were caught along the northeastern shores of Asia; subsequentiy, as a tesult of the intensive sea fishing by the Japanese, who failed to take into account the size of the fish population, and also of the unfavourable metereological and oceanographical conditions, the alze of the catches dropped considerably, amounting at the present time to $100,000-250,000 \mathrm{mt}$. tons.
54. The current oatches of salmon fluctuate in accordance with the intensity of the fishing and with the productivity of each generation, whioh depends on "E number of natural factors such as the freezing in some years of the spawning grounds, the devorang of the spawn and larvae by predators and changing of the water level at the spaming grounds.
55. Considerabie fluctuations in the population sizes of the most numerous species of salmon - the pink salmon - as well as a decine in the populations of other species of pacific salmon such as the ohum and the"sockeye salmonhave been noted.
56. One of the reasons for the marked decline of the salmon population in some areas has been the unfavourable climatic conditions. The sharp drop of winter temperatures and the decrease in winter precipitation frequently cause extensive freesing of the spawning grounds. by means of repeated year-round observation of the development of the salmon spawn in winter weather in various areas of Kamchatka and in the Amur Basin itt was possible to establish the effects of hydrometoorological factors on the number: of the young with sufficient certainsy (Semko, 1953: Krogius, 1954; Birman, 1954 and others),
57. A typical example is the marked drop in the number of chum in the Amur basin where, as a result of the extensive freezing over a"period of four yoars - from 1911 to 1914 - of the spawning grounds of the summer chum salmon in the most sheltered areas, there was a considerable drop of the population, further aggravated vy the intensive fishing. As a result, the catch which was 21.4 million fish in 1910 dropped to 0.2 milition in 1520 and has remained low since (Nikolski, 1954).
58. The Pacific salmons lababit dufferent areas at different times and as a rule return for spawing to the basins of the streans where they were hatched. That is why decreased salmon population in one area cannot be supplemented Whth salmon from a neighbourlng, more productive, area: once a catch deolines, it usualiy continues to be low for along time and can he increased onity by means of long-term and cöstly measures for the conservation, reclamation and culture of the fish.
59. Since the commercial salmon fisheries have shrunk, fishing has hooom more intense; it has become particularly intense during the past years as a result of Japanese salmon fishing ütsea; and the number of salmon reaching: the spawning grounds is definitely inadequate in some areas. For example, in 1954, of the main school of sockeye salmon moving to deposit their spawn in Lake Kurill in Kamchatka, only 320,000 fish reached the spawing ground, instead of the 2 to 2.5 million fish normally needed to fill the spawning ground, while 3.3 million salmon were caught at sea by Japenese ivessels. With such intense fishing, the namber of Kamohatlea sockeye
salmon will soon decline disastrously. There is the well+known example of the population of sookeye salmon in the Kamohatkésiver basin; as a result of intense sea fishing, the catch rapidly dropped from 23 to 24 thousand mt. tons, in 1937-39, to 200-300 hundradamt. tons and numerous conservation measures have failed to raise it.
60. "With the methods developed to forecast the number of Pacific salmon on the basis of data concerning the survival rate of the spawn, larvae and the fry it is possible to predict the nature and number of the spawning runs with some accuracy. The number of fish that may be caught in the different regions should be established in accordance with the scientific recommendations for the permisisible size of the catch. The Soviet Union is doing extensive : work to provide better conditions for the natural spawning of Pacific salmon and to improve the spawning grounds. Fish conservation measures are strictly compliéd with. "The size of the permissible catch is determined each year on the basis of the age composition of the spawning stock: Fxtensive salmon culture operations are being carried out. In view of the depletion of "the Pacific salmon population, even greater efforts are needed to conserve and increase it. Naturally, steps must first be taken to ensure the effective regulation of salmon fishing othemise measures of fish conservation and culture will be of no avail and the number of salmon will rapidly dwindie.

61\%. It therefore goes without saying, that the countries interested in keeping up the Pacific salmon population must participate both in the regalation of the size of the catch and in the culture of the fish.
62. PACIFIC HERRING, though it occurs almost throughout the coastal waters of the Fer Fastern seas; forms several localized atock' which live in limited areas and do not mygrate long distances. The Iargest concentrations are known to exist off the coast of Sakhalin and Hokkaido and along the north-western shores of the Sea of Okhotsk. Considerably smaller populations occur in the Shelekhov Bays along the north-eastern coast of Kamchatka. Between .1325 and 1935 the total catch of herring in the north-western pert of the Paoific Ocean was almost one mililon mito tons and in recent years it dropped to 200 to 300 thousand mto tonso. The number of Pacific herring fluctuate considgably, according to the sizes of the various generations which are to a large extent determined by oceanographio conditions and the intensity and nature of the fishing.
63. It has been observed that the very numerous, gonerations of herring that spaw along the north-west shore of the Sea of Okhetsk are those which were hatched in years when there were no ioe floes in the littoral zone, while the sizos of the b:\%ocds sre reduced to levels of no practical significance for stock replendshment in years when spawning occurs in an unfavourable tce regtmen In view of the fact that not more than two or thres age groups are fished, the failure of one of them tells very materianily on the sestults of the fishings
64. Tho vory considorablo fluctuations in tho number of horring in the Sakharn-Hokkaido stock" (in tho last twonty yaars, catchos have doclinod from 900 to 100 thousand mit tons) aro duc to somowhat differont causos.
65. Tho risc in the tomporaturo of the Soa of Japan which began in the yoars 1922-1924 croatod unfavourable conditions for tho roproduction of the SakhalinHokkaido horring, ospecially noar Hokkaido; whoro by 1930 tho catches had been roducod by onc-half as compared with 1920. Lator (in the poriod 1933-1938) tho catches also bogan to docline gredually off tho shores of Sakhalin, and had fallon to minimum proportions by 1938 (Svetovidov, 1953). Whon the tomperaturo of the Soa of Japan bogan to fall (aftor 1938) tho catchos gradually began to incrase, and high-yivid gonorations appoarod in 1939, 1940 and 1942; thoy constitutod the bulk of the catches for noarly twelvo yoars. One"genoration alone, that of 1939, yioldod catchos of over 700 thousand mt tons. However, the number of thoso high-yicld gonerations was substantially roducod and the roproduction of tho sorring limitod by tho intonsivo fishing of small, soxually immature horring, of which about 150 thousand mt tons a year wore caught in 1940 and 1941 (Probatov, 1953).

66: It is intorosting to noto that, as a rosult of tho intersivo fishing and of the improvement in'fooding conditions, some incroasc is observablo in the focundity: of fish of certain sizc, and also a rise in the growth ratc
(Piskunov, 1952).
67. Owing to tho change in ocoanographic conditions and to irrational and intenso fishing, the numbers of the reproductive population have declined sharply, the aroa of the spawning grounds has contracted and the catchos have fallen. In ordor to incroase the roproduction of the Sakhalin-Hokkaido horring population tho catching of young fish must bo complctely stopped, offshore fishing regulated and tho undorwater vegetation in the spawning grounds protected.
68. There is a large number of species of flat-fish (twonty-cight) in the Far Eastern seas, of which only a fow, which predominate in the catches, are of primary im"ortanco to the fishing industry. Far Eastorn flat-fish are soattorod as a. large number of local, distinct and in somo cases rolatively small populations living within the confincs of a shelf where the ocoanographic and focding conditions are favourablc. The biggest concentrations of flat-fish are found in tho coastal wators of wostern and south-eastern Kamchatka, near the Kurilo Islands, in tho Tatar Strait and off the Soviet coast of the Japan sea and Sakhalin.

> A/CONF. 10/L. 14
> Page 17
69. Their migrations are limited to a movement from the relatively deep regions wherc they winter to the coastal shallows where they breed and feed, the total distance of migration rarely exceeding 80 to 100 nautiaal miles, except in the casc of halibut.
70. The specific distribution and biology of flat-fish makos them mirticularly vulnerable to fishing and if this is not ragulated the stock may oadidy bo ovorfished.
71. It is possible to show tho effect of intense fishing on the flat-fish stock of Poter the Great Bay (Sea of Japan) by an example of a similar kind; the study of this influenos began simultaneously with the organization of the fishery, "a circumstance which has enabled many changes in the population to $b \in$ established. almost from the first months of their appearance,
72. Tho Plat-fish population of Poter the Great Bay was practically unfished until 1929, but a rapia incroasc of the catch to 8 thousand mt tons (in 1932-1933) lod to a number of striking consequences. Tho average catches, and therefore the total take, declined rapidly in the four yoars following the organization of intense fishing, and the areas inhabited by the winter concentrations shrank from. $2000 \mathrm{~km}^{2}$ to $150 \mathrm{~km}^{2}$.
73. At the same time a change occurred in the composition of the catches through a sharp decline in the number of Limanda aspera, the main species fished. The quantity of the oldest age-groups in the population diminished and the proportion of young, soxually immature fish increased considerably. The average size of flat-fish of all ages are increasing; for example, the length of year-old males of tho spocies Limanda aspera has increased by 77 per cent (Moiseev, 1945). Sexual maturity also comes earlier in such rapidly growing fish. Statistics show that, on account of the more rapid rate of growth of the flat-fish population of Peter the Great Bay decimated by industry, there was a markedly quicker increase in the live weight (Moisoev, 1946). In the following years a complex of fishery protection measures was adopted - the catching of young fish was prohibited, the mesh-sizes of fishing gear werc controlled, prohibited fishing areas were defined and a limit was set to the annual catch, which resulted in stable fishery conditions.
74. The example of the flat-fish population of Petor the Great Bay shows that it is relatively easy, if fishing is intelligently regulated, to obtain stable catches and to achieve the most efficient use of the populations for a long time. At the same time it is easy to see that the over-fishing of flat-fish can easily lead to a sharp decline in the population, and some time is required for its rehabilitation.
75. It is easy to see that tho great isolation of the flat-fish population of the Far Eastern Seas makes them much more liable to capture than those in the seas of the north-eastern part of the Atlantic Ocean, where the level of flat-fish fishing is large onough and well known (Jensen, 1947; Margetts and Holt, 1947).

A/CONF. 10/L. 14
Page 18.
76. Cod are widely distributed in the coastal waters of the north-western Pacific. It is known that there are substantial concentrations off the shores of Kanchatka and in the Anadyf Gulf, near the northern and southern Kurile Islands and off the shores of Sakhalin and in the Japan Sea. The Pacific cod does not make the extensive migrations peculiar to the Atlantic cod. In various areas of the Far Eastorn seas it forms local populations wich make small seasonal migrations, usually not exceeding 200-300 nautical miles. The isolation of the different populations of cod makes them highly sensitive to e change in oceanographic conditions aind to the effects of commercial fishing. Observations of the cod populations along the eastern coast of Kamchatka have shown beyond a doubt that the size of generations of cod increases in periods of rising temporature, which is explained by the more favourable living conditions for the young fish. A specially marked influence on the numewical strength of the population was noted for the particularly stiong brood of 1934, which appeared for ten years in the catch.
77. On the other hand, very intense commercial fishing of coa in some areas fas lod to a decrease in the average sizes, and to a sharp decline in the size of the catch: : Thus, on the coast of southern Sakhalin the cod catch amounted to 54 thousand mt tons in 1912-1913; but the number of cod inhabiting this area thein declined markedly, and the catches fell to 15-20 thousand mt tons in 1931-1940.
78... There is no doubt that the fragmentation of Pacific cod into a large number of distinct populations makes thear much less resistant to the effects of cominercial fishing than, for example, the Arcto-Norwegian stock of cod, which inhabits a wide area, is numerous, and offers great resistance to the effects of intense fishing?
79. Kajor changes lit the abundance of cod of the Areto-Norwegian stock usually occur, not through the effects of commercial fishing, but under the influence of fluotuations in oceanograchic factors (Rollesfsen, 1949).
80. The foregoing shows that, in addition to a survey of the oceanographic conditions and the determination of their influence on the numbers of Pacific cod, the particular nature of their biology urgently calls for strict regulation of the intensity of fishing in accordance with stock lavels of each. population.
81. The king arab (Paralithodes camtschatica) is widely distributed in the north Pacific, but the most important concentrations are found along the coast of Kamchatka, the northern and southern Kurile Islands, Sakhalin and Japan Sea. These concentrations represent separate, isolated populations which make comparatively short migrations. There are no data on the influence of protracted changes in the oceanographic conditions on the numerical size of crab populations, but the effect of intense fishing on the supplies of particular, very heavily fished populations has been show most clearly.
82. Thus, the crab fishery on the coast of south-west Kamchatka organised In 1916 soon (in 1922-1924) began to land as many as 2.5 to 3 million orabs, which very quickly led to exhaustion of the supplies in this area (Miyake and Matsuro).
83. The rapidly developed crab fishery off the south-west. coast of Sakhalin, which yielded over 5 million crabs in 1917 , also resulted in a reduction in the population, a sharp reduction in the size of the crab caught and a diminution of the catches, after which a number of regulatory measures were adopted, reaulting in the catch becoming stabilised at 1.5 to 2 million units. There is no doubt that the specific nature of the biology and distribution of the king crab in the north-west Pacific calls for the same attention to the organization of a rational exploitation of the resources as in the case of most commercial fish inhabiting this basin.
84. All the above data on the living conditions of sea fish and animals in the north-west Pacific, which to a considerable extent determine the peculiarities of their biology, distribution and abundance, and also the examples given of the effects of too intense fishing on the individual

H/CONF. 10/L. 14
Page 20.
populations of selmon, cod, herring, flat-fish and king crab, are sufficient proof that all the aforementioned fish may soon be caught if fishing is carried on without regard for the biological peculiarity and abundance of each individual population.
85. All this, in turn, bears witness to the need for agreement between the States concerned on the rational exploitation of the natural resources of animal populations suitable for commercial fishing, the areas of distribution of which are within the limits of coastal waters and of the high seas adjacent thereto, with a view to securing the largest possible catches while maintaining the populations at a high level.
86. Without comordinated efforts on the pert of the countries of the northwest Pacific for the conservation and rational exploitation of the natural. resources, those resources may be exhausted within a very short time.
87. At the same time, there are very abundant fishery resources in the extensive open spaces of the north-west Pacific, permitting rapici development of"ocean fishing and substantial increase in the catches.
88. Several species of tunas saurios, swordfish and many others, are already being harvested to a great extent, and there is every reason to believe that the catch of these fish can be considerably increased without any reduction in their number. Their wide area of distribution in the extensive open waters of the Pacific, the great length of their migratory routes, their great number and the fact that they spawn in the open sea, make these fish considerably less vulnerable to comercial fishing then those which live in coastal water and which concentrate for spawning on small areas in the shallows, or in rivers.
89. While about 9 million mt tons of fish and other marine animals are even now being caught in the north Pacific, which is more than in any other basin, there can be no doubt that there are great opportunities for further intensifying the exploitation of the natural resources of this area of the world ocean through the cievelopment of ocean fishing...
90. This method is the one thet offers the best prospects from the point of view of the utilization of the natural resources of the north Pacific..

Bibliography

Andriyashev, A.P.
1939 Outline of zoogeography and the origin of the fish populations in the Bering Sea and adjacent waters.

Birman, I.B.
1954 . Dynamics of the population and current resources of chum and pink salmon in the Amur Basin. Works of the Conference on the Salmon Industry.

Bogorov, V.G.
1939 Special seasonalchanges in the plankton of the Polar seas and their importance for ice forecasts. Zoological.Journal.. XVIII, 5.

Deriuguin, K.M. and Somova, N.M.
1941 Material on the computation of the quantity of benthos in the Bay of Peter the Great. Exploration of the Far Eastern Seas, I.

Gorbunova, N.N.
1954 Reproduction and development of the pollack (Theragra
chalcogramma). Reports of the Institute of Oceanology of the Academy of Sciences of the U.S.S.R., XI.

Gordeeva, K.T.
1948 Material on the computation of the quantity of zoo-benthos on the Western Kamcheatka shelf. Bull. Pac. Inst. Fish. Ocean, XXVI

1951 On the feeding of the cod in the northern part of the Bering Sea. Bull. Pac. Inst. Fish. Ocean., XXXVII.

Jensen, A.J.
1947. The stocks of plaice in the North Sea and the transition area during the war. Rapports et Proces Verbaux des Réunions, Conseil Permanent International pour I'Exploration de la Mer.

Kaganovskii, A.G.
1935 The Sardine
Knipovich, N.in.
1926 Guide to the fish of the Barenta, White and Kara Seas. Works of the Institute for the study of the North.

A/CONF. 10/L. 14
Page 22.
Krogius, F.V. and Krokhin, E.M.
1954 Methods of restoring and increasing the Kanchatka salmon population. Works of the Conference on questions of salmon culture in the Far East.

Kusmorskaya, A.P.
1940 Seasonal changes in the plankton of the Sea of Okhotsk. $\frac{B u l l e t i n}{\text { IX, } 3-4}$ the Moscow Association of Natural Scientists,

1948 Influence of sardines on the distribution of the plankton mass in the Sea of Japan. Reports of the Academy of Sciences of the USSR, IX, 6.

Lindberg, G.U.
1937 Fish fauna of the Sea of Japan and the history of its development.

1948 The perst of the Pacific Ocean in the light of biological data. Symposium to the memory of Academician S.A. Zernov.

Logvinovich, D.N.
1949 The feeding of cod in the Sea of Okhotsk and off the western coast of Kamchatka. BuII. Pac. Inst. Fish. Ocean., XXIX.

Makarov, V.V.
1937 Material for the numerical computation of the sea-bottom fauna of the northern part of the Bering and the southern part of the Chukotsk Seas. Explorations of the Far Eastern Seas, 5.

Nargetts, A.R. and Holt, S.J.
1947 The effects of the 1939-1945 war on the English North Sea trawl fisheries. Rapports et procès verbaux des réunions, Conseil Permanent International pour l'Exploration de la Mer, CXXII.

Mikulich, L.V.
1954 Feeding of flounder off the coasts of southern Sakhalin and the soutkern Kurile Islands. Bull. Pac. Inst. Fịh. Ocean., XXXIX.

Moiseev, P.A.
1946. Commercial flounders of the Far East

1953 . \because Cod and flounder of the Far Eastern Seas. Bull. Pac. Inst. Fish. Ocean., XL.

Norman, J.R.
1934 A systematic monograph of the flat fishes (Heterosomata)
Pertzeva-Ostroumova, "T.A.".
Materizis on development of Far Eastern plaice. Works of the Institute of Oceanography, Academy of Science of the USSR, XI.

Piskunov, I.A.
1952 The fecundity of the Sakhalin herring. Zoological Journal, XXI, I.
Polutov, I.A.
1948 : Cod of the Avachinsk Bay. Bull. Pac. Inst. Fish, Ocean., XXVIII.
1951 New data on the migration of the cod on the northern coast of Kamchatka. Buil. Pac. Inst. Fish. Ocean., XXXVII.

Probatov, A.N.
1953 . Causes of the fluctuations of the south Sakhalin herring. Works of the All-Union Conference on:Questions of tho Fish Industry.

Rollefsen, G.
1949 Fluctuations of two of the most important stocks of fish in northern waters, the cod and the herring. Rapports et Procès Verbaux des Réunions, Conseil Permanent Internationel pour I'Exploration de la Mer, CXXV.

Schmidt, P. Iu.
1950 Fishes of the Sea of Okhotsk. Works of the Pacific Ocean Committee of the Academy of Sciences of the USSR.

Schulz and de Lacy
1935 Fishes of the American Northwest. Journal of the Pan-Pacific Institute, X, 9.

Semko, R.S.
1953 The causes of fluctuations in the Pacific Salmon populatio and problems of rational utilization of stoxks. Works of the Conference on questions of the salmon industry.

A/CONF. 10/L. 14
Page 24
Svetovidov, A.N.
1948 Types of cod. Fauna of the USSR: Fishes, IX, 4.
1952 Types of herring. Fauna of the USSR: Fishes, II, 1
1953 Gertain factors affecting the numbers of herrings.
Uchida Keitaro
$1936^{\circ} \therefore$ Chosen no suisan, No. 30.
Vecienskii, A.P.
1949 - On the results of locating pollack from floating spawn. Izvestiya TINRO, XXIX.

1951 The biology of Japanese mackerel. Bull. Pac. Inst. Fish. Ocean. XXXV.

Yabe, H .
1.929 . The latect land connection of the Japanese Islands to the Asiatic continent. Proceedings of the Imperial Academy of Sciences, Tokyo, 4.

Zatsepin, V.I. and Petrova, N.S.
1939. Feeding of comnercial cod shoals in the southern part of the Barents Sea: Works of the Polar Institute of Fishories and Oceanography, 5.

Zenkevich, L.A.
1947 The fauna and biological products of the soa.
Zernov, S.A.
1934 General hydrobiology.

