INTERNATIONAL TECHNICAL CONFERENCE ON THE CONSERVATION of the living resources of the sea

Rome - 18 April 1955
Item 10 of the agenda

INTERNATIONAL TECHNICAL CONFERENCE ON THE CONSERVATION OF THE LIVING RESOURCES OF THE SEA

Types of scientific information required for a fishery conservation programe

The Secretary-General has the honour to communicate the following paper, submitted by Japanese Delegation to the International Technical Conference on the Conservation of the Living Resources of the Sea

PERTINENT FACTS RESPECTING THE LIFE HISTORY, ECOLOGY - AND BEHAVIORR OF TEE IMPORTANT SPECIES CONSTITIUTING THE FISHERY RESOURCES IN THE SEAS AROUND JAPAN

28 p

1. Sardine
2. Herring
3. Yellowtail
4. Mackerel
5. Skipper
6. Tuna, Swordfish
7. Bottom Fish in the East China Sea and Yellow Sea
8. Botton Fish in Japanese waters
9. Squia
A. Conscrvation management units

Population: As the unit of conservation management, Japanese sardines are deened to be of one population.

Age composition: Percentage of the age composition of catches is shown in Table 1.
B. Magnitute of conservation management units

Geographical range: They are caught in the coastal waters all around Japan.
C. Life history, ecology and behavior of the fish constituting the resource Age of maturity: Their maturity begins fully one year after birth (body length $12-16 \mathrm{~cm}$) and is co:2leted in full 2 yoars (body length 18 cm).

The sex ratio is almost 1:1. But there are more females than malos in older fish.

Spawning: The most important spawning grounds are located around Goto Islends off the north-western coast of Kyushu. There are also other spawning grounds in the Japan Sea south of Noto peninsula and along the Pacific coast south of Boso Peninsula.

The spawing season comes earlier in the south (Decomber) and later in the north (June).

The water temperature for spawning is $13^{\circ}-17^{\circ} \mathrm{C}$.
In spawning season the fish move deep in the day time, but they cone to the surface in the evening twilight.

Spawning takes place from 8 to $100^{\prime} c l o c k$ in the evening.
Number of eggs spawned: The number of eggs spawned by a 1-age fish (16 cm) is about 20,000 , but a big fish (over 20 cm) spawns approximately 100,000 eggs.
Development and growth: Eggs are hatched in about 60 hours ($2-3$ days). Hatched larvae are 3.2 mm in length. In $3-4$ days, they grow 5 mm , and at the time of scale formation, 35 mag in 3 months after birth, $50-60 \mathrm{~mm}$; at the time of taking adult form, 75 ma ; in 6-7 months after birth, about 100 mm ; in one year, $120-160 \mathrm{mri}$; in 2-years, around 180 mrn ; in 3 years, around 200 mm ; in 4 years, around 210 mm .

Longevity: Their longevity is considered to be 4 years or there abouts.
Migration: Eges spewned and larvae hatched in the adjacent waters south of Japan are carricd along by the current. When they grow strong enough to swim ($5-6 \mathrm{~cm}$) thoy begin to run up northwards to seek for food till August or September. In autum and winter they come down southwards. When they Erow nore than spring and summer. They then cone down south to spawn in autum and winter.
D. Fishing intensity

Production: The production of Sardine, with a peak of $1,600,000$ tons in 1936, gradually declined. But since 1945 it has been showing an increasing trend. As to the reason for such phenomenon, it is said that their spawning grounds, which had cno moved to the north thereby reducing the size of tho suitable spawning area, have now been extended to the south. and onlarged. (See Table 2).
Effect: The total crude decreasing rate of total production of this Eroup was $60-70 \%$, of which 17% is estimated to be the effect of fishing. (1942).
E. Feeding interrelationship

Food: Larvae and juvenile fish feed on zooplankton. When they grow a little older, they eat phytoplankton in addition to zoo-plankton. Adult fish take chiefly diatom plankton in the waters.

Literature

1. Progress report on Sardine Population Investigation (1949-1951)

Tokai Regional Fisheries Research Laboratory 1953.
2. Progress roport on Sardine Population Investigation (1952)

Tokai Regional Fisheries Resoarch Laboratory 1954
3. Elements of Fisherics Resources. (1949) Aikawa, Hiroaki
4. Concerning Stock of Serdine (1942) Tauchi, Morisaburo

Japon Fisheries Science Society Bulletin (10) 5
5. Fishing Conditions of Yellowtail around Goto Islands, Nagasaki Prefecture and Ajirc, Izu. (1934) Uda and Honde

Japan Fisheries Science Socicty Bulletin (2) 5.

Table 1

Age composition of sardine caught in Pacific side in 1953

North eastern coastal waters of Japan

Midde coastal waters of Japan

CATCH	A G E				TOTAI	
	0	1	2	3		
;	ton	ton		ton	ton	
Metric ton	755	532	, 155	5	2,447	
1 !						
!Ratio	30.9\%	21.7\%	47.2\%	0.2%	100%	'

Tablo 2

Sardine catch by type of fishery in 1953

Type of fishery	Metric ton	Percentage
Surrounding net	417,068 ton	63.19%
Beach seine and boat seine	102,533	15.54
Gill net	61,541	9.32
Set net	38,970	5.91
Lift net	32,441	4.91
Angling and long-line	1,826	0.28
Drag net	45	0.01
Others	5,561	0.84
$===$		
Total	659,985 ton	$100.00 \% \ldots$

A. Conservation management units

Population: Herring are found in all waters around Honshu, Hokkaido and South Sakhlien, but they are handled as one population for the purpose of conservation management. Besides, there are 2 or 3 populations, though small, which come into lakes to spawn.
B. Magnitudo of managoment units

Geographical rane: They are caught in the waters around south Sakhalion and Hokkaido, especially in waters north of Shikotan, Hokkaido. But formerly, they were caught in waters north of Yamagata prefecture in the Japan Sea, and in waters north of Siyagi prefecture in the Pacific, and also off the south-eastern part of Korea.
C. Life history, ecology and behaviour

Age of maturity: The mature individuals occupy 10% of 3-age group; $30-60 \%$ of 4 -age group; and 100% of 5 - and older age groups. Their body length in maturity ranges $26-30.5 \mathrm{~cm}$.

Spawning: The spawning season is during March to May; and it is earlior in the south and later in the north. The water temperature for spawning is also higher in the south $\left(5^{\circ}-6^{\circ} \mathrm{C}\right)$ and lower in the north $\left(3^{\circ} \mathrm{C}\right)$. The fishing grounds are spawning grounds. As the spawning season approaches, Herring gradually come up in the surface layer and move on toward the shore.
In the spawning season they approach the shore in shoal and spawn on sea-weeds and others.

Number of eggs spawned: The number of eggs spawned by a 4-year class fish is around 40,000. However, bigerer fish generally spawn more esge than smaller fish, though they belong to the same yoar class.

Development: At water temperature of $7.3^{\circ}-8.4^{\circ} \mathrm{C}$, eggs are hatched in 20-22 days. In 5-7 days aftor birth, their yolk is
consumed and they grow $9-10 \mathrm{~mm}$ in length. They grow 2.5 cm in one month; 4 cm in 2 months; 7 cm in 3 months; 10 cm in 6 months; 15 cm in full one year; 22 cm in 2 years; 26 cm in 3 years; 29 cm in 4 years; 30.5 cm in 5 years; 32 cm in 6 years; 33 cm in 7 years; 34 cm in 8 years; 34.5 cm in 9 years; 35 cm in 10 years.

Longevity: Their longevity is 8 years -. But there are a few which are though to be 16 years old and thereabout.

Migration: Juvenile fish grow in the Okhotsk Sea. Then they come down south in autumn along the Pacific coast. Next year they run up northwards and enter into the Okhotsk Sea. In autumn, they again migrate south along the Pacific coast (the northern part of Honshu), and then return to the Okhotsk Sea till the following summer. Some of them (3 years old) appear for spawning or a spring Herring near the cosst of

Hokkaido and south Sakhalien, but most of them stay in the Okhotsk Sea. After spawning season they migrate to the northern Okhotsk Sea, and then come down south into the Japan Sea in January and February. During the mifration, they are caught either as spring Herring (spawning) or as summer Herring (immature).

```
Spring Herring (spawning Herringr):
3-age and oldcr groups
```

D. Fishing intensity

Production: About 4,500,000 metric tons of Horring catch in 1933 was the highest record in the past, and about 40,000 tons was the lowest. The recent production ranges from 200,000300,000 tons.

Effect: Herring are caught by set-nets and gill-nets. (See Tables 1 and 2)
The catch of Herring depends upon the number of men engaged in fishing and also upon the various environmental factors. Tho recent poor catch is considered to be due to the shift of the optional spawning ground in Hokkaido to north.
E. Feeding inter-relationship

Food: They feed ohicfly on zooplanktons such as Copepoda and Euphaucia. llost of the stomachs of fish which have come up from both bottom and medium layers are empty. Then they begin to seok for food and eat a great quantity until about 6 days before their spawning. In about 16 days aftor spawning, they begin to feed again and become thick, being callcd "fat herring". Atka mackerel, greenling and starfish prefer to eat eggs of Horring.

Literature

1. Herring Fishing and its Biological Study (1952) Ishida, Akio
Fisheries Science Library No. 4
2. Recent Bad Fishing Conditions of Spawning Herring in Hokkaido (1942)

Tauchi, Morisaburo
Japan Science Society Report (17) 1

Table I

$14-15$

Age Year	3	4	5	11	12	13	14	15	16

The ives age.
$16-17$
The ic ton.

Table 2
Type of fishing gear used for herring

19
A. Conservation management units

Population: Yellowtail are caught in all coastal wators of Japan.
As the unit of conservation management, they are considered to belong to one population.

Age composition: The age composition of fish caught annually in Sagani Bay is as follows: 1-age fish 16\%; 2-age fish 21\%; 3-age fish 30\%; 4-age fish 25\% (Aikawa 1949)
B. Megnituto of management unit: The size of a population is estimated to be $129,300,000$ fish (Tauchi) or $125,615-805,625$ tons (Aikawa)
C. Life history, ecology and behavior

Ago of maturity: They become mature partly in 2 years after birth and mostly after 3 years.

Spawning : Their spawning grounds are located in coastel waters of the Southern Japan.
Spawning season begins in February in the south and ends in June in the north.

Growth rate: They reach 3 cm in 2 months after birth; 15 cm in 4 months; 20 cm in 6 months; $30 \mathrm{~cm} .(1 \mathrm{~kg})$ in one yoar; $40-50 \mathrm{~cm}$ ($3-4 \mathrm{~kg}$) in 2 years; $60-70 \mathrm{~cm}(6-7 \mathrm{~kg})$ in 3 years; $70-80 \mathrm{~cm}(8-9 \mathrm{~kg})$ in 4 years.
14igration: Optimum water termerature is $14^{\circ}-17^{\circ} \mathrm{C}$.
The speed of their swiming is fast when they soek for food, while it is slow in their spawning tine. The highest speed averages 49 sea miles per day, and in ordinary times they swim about 10 sea miles a day.
D. Fishine intensity

Qatch: The totial catch in 1890 was 15,000 tons. The recent record is approximately 50,000 tons.
They arc caught all the year round in South Japan, and in North Japan big fish are caught chiefly in summer. They are enught by set-nets, trap-pockets, long-lines and pole-and-line fishing.
E. Fecding interrelationship

Food: They are animal feeders. The adult feed on anchovy, sardine, horse mackerel and mackerel. The larva and juviniles live under floating-weeds thoy are often eaten by other fish. On the other hand the adult are eaten by porpoise, pilot whale and dolphin.

Litcrature

1. Yellowtail and its Fishing (1953) Matsushita Tomonari Fisheries Science Library TVo. 6
2. Concerning Stock of Ycllowtail (1940) Tauchi, Morisaburo Japan Fisherios Scienco Socicty Bullotin (9) 3

Annual catch of yellow tail

Mackerel

Mackerel include the following two species:

Pneumatophorus japanicus Houttuyn
Japanese mackerel
Pneumatophorus tapeinocephalus $\underset{=\sim==\equiv=\equiv}{\text { Bleeker }}$
Japanese spotted mackerel or Southern mackerel
A. Conservation management units

Population: Japanese Liackerel are caught in all coastal waters around Japa, in the Yellow Sea and the East China Sea. Japanese spotted mackerel or Southern mackerel are abundant in waters around southern Japan.

As the unit of conservation management, the two species are treated as one population.
C. Life history, ecology and behavior

Age of maturity: Some of them become mature in 2 years after birth, and the rest after 3 years.

Spawning: Thair spawning area includes all coastal waters of Japan.
Their spawning season extends from April to June, and it is earlier in the south, but later in the north.

Spawning water temperature ranges from 13.5° to $21^{\circ} \mathrm{C}$, and the optimum wator temperature is $18^{\circ} \mathrm{C}$.

Number of eggs spawned: The number of intra-overian eggs of a fish is estimated to be $300,000-400,000$, and they are spawned in 4 or 5 times.

Development: At $20^{\circ} \mathrm{O}$, eggs are hatched in around 50 hours. In 6 months or one year they grow $12-20 \mathrm{~cm}$ in length, and in 2 years, $25-30 \mathrm{~cm}$; in 3 years, $30-34 \mathrm{~cm}$; and in 4 years, $34-38 \mathrm{~cm}$. Most of the commercial fish belong to 2-4 age groups, and 5 and 6 age fish are very few.

Migration: Japanese mackerel live in waters of $7^{\circ}-23^{\circ} \mathrm{C}$ and their optimum temperature is $10^{\circ}-20^{\circ} \mathrm{C}$. Japanese spotted mackerel live in warmer waters of $15^{\circ}-28^{\circ} \mathrm{C}$, than the other.

Young fish of both species live in warmer waters than the adult.

When the Japanese mackerel leave the southern waters, the spotted mackerels appear here.

Both of these fish migrate in shoal. O-age class and t-age groups fish make a separate shoal respectively, while 2 -age and older age group live together.
They make specially dense shoals and come up near the the surface in the spawning season.

Japanese mackerel run up northwards during spring and summer, swimming through the surface layer; and late-in autumn and early in winter they come down southwards through the bottom layer.

They spend the winter in coastal waters of South Japan. Most of Japanese spotted mackerel leave the Japanese. coastal waters in winter and go down southwards.
D. Fishing intensity

Catch: The production of mackerels in the prewar years exeeeded 100,000 tons and after the war (in 1946) it dropped to 60,000 tons. But with gradual recovery, it amounted to about 230,000 tons in 1953. The percentage of spotted mackerel was below 30% of the total.

Effect: Formerly stick-held dip-nets were used for this fishing. But now fishing motor vessels with improved surrounding nets and with Hanezuri (a type of angling) are being used.

With regard to the fishing effect, there is no fear of overfishing of Japanese mackerel. As to Japanese spotted mackercl, it is believed that morc fish can be exploited without harm in the East China Sea and Yellow Sea.
E. Feeding intor-rolationship

Food: They feed on pelagic crustaceaus, small squids and small fishos such as Sardino and Sandlaunce.

Literature
Ecology of Mackerel (1953)
Kasahara, Hiroshi and Ito, Hideo
Fisheries Science Library No. 7

29
Annual catch of mackerel
A. Conservation management units

Population: Skippor in Japan aro roçarded as a single population in the conservation managemont.
B. Magnitute of population management

Geofraphicel range: In the Pacific thoy are caught in waters from the Kurile Islands down to the Okinawa Islands ($25^{\circ} \mathrm{N}$, $136^{\circ} \mathrm{F}$).
C. Life history, ecology and behaviour

Afe of maturity: Thoy become mature in 3 years after birth and fish of over 27 cm (3-4 age groups) can spawn.

Spawning: In the spaming season they approach the coast.
They spawn 700-900 eges per fish at a tine, twice or thrice durinc the season.

Their spawning frounds are locatod in the waters south of the contral Japan. The spawning season covers a long period from Noverber to June of the ne:t year. They spaw in Novombor and afain June in the northorn part of the spewing ground and onco in lifarch in the southorn part.
The optinum wator temperature for spawning is $15^{\circ}-18^{\circ} \mathrm{C}$.
Development: At $15^{\circ}-16^{\circ} \mathrm{C}$, oEEs are hatched in 10 hours. Juveniles (7 rm in length) and young fish are carried northwards by sea curront as far as northern waters of Japan.
o-age fish in adult are found noarly always in coastal and. offalioro wators. fihey gradually move northwards from there.
Migration: Durine southwards migration of adult fish (25 cm or more) alone the Pacific coast, they are crowded densely. In August they occur in the northern waters. They eradually come down southwards and reach the central part of Japan around Jovember. Thesc large shoals are mainly fished comercially.
But in tho Japan Sea, migration of adult fish (25 cm or more) is very small in scale. Thoy occur in the southern waters of the Japan Soa in spring, thon thoy migrate northwards and reach the wators off the Wost coast of Hokkaido in sumer.

The optimur: tomperature is $15^{\circ}-24^{\circ} \mathrm{C}$. They are typical pelafic spocios, and rarely descend deep even in the daytime.

Leneth composition: Beroro the war there wore two modes in the size distribution 25 cm and 29 cm . But after the war these two modes disappearod and there is now a new single mode between 26-27 cn, meinly due to tho increase in production of the younger groups (25 cm).
D. Fishing intensity

Fishing intensity: Their phototaxis is strong by positive. But in their spamine scason their reaction is weakened to some oxtent.
Beforo the war, production by drift-net amounted to 10,000 - 20,000 tons, but after the war the use of stick-held-dip-
nets with fish lamps because of the strong phototaxis, has multiplied the production ten times. And it reached 250,000 tons in 1953. (Sea Fig. III)

The Amount of catch per boat by drift nets for 1932 averaged 17.5 tons, while that by the newly employed stick-held-dip-nets for 1951 averaged 114.6 tons:

Effect: Despite of the increased exploitation by these dip-nets the present production can be maintained without fear of overfishing.
E. Feeding intor-rolationship

Food: Adult fish predato crustacea as mainly diatoms.
Litorature
Study of skipper (1952) Kasahara, Hiroshi and Otsuru, Norio

Fisheries Science Library No. 3

Annual catch of skipper

Cominant species among Tunas caught in the Japanese waters are the following two species:
(1) Germo germo Iacepede; Albacore
(2) Thunnus orientalis Temminck et schegel; Tuna or Bluefin Tuna.

Although there are some Tunas caught in the Japanese waters, they are small in production.
A. Conservation managoment units

Population:

Albacore and Bluefin Tuna in the Japanese waters are now considered to be a single population from the point of management unit.
B. Liagnitude of management units

Geographical range: (1) Albacore - They are caught in almost all waters between the east coast of Japan and $180^{\circ} \mathrm{E}$ and also between $40^{\circ} \mathrm{N}$, and $25^{\circ} \mathrm{N}$.
(2) Tuna (Bluefin)- They are caught in all coastal wators of Japan and in the high sea surrounded by the lines of $150^{\circ} \mathrm{E}$ and $25^{\circ} \mathrm{N}$ the coastal line of the Islands of Japan.
C. Life history, ecology and behavior

Fishing season: (1) Albacore - In the waters near the Midway Islands, big Albacore are caught in November to March, and in the Japanese northern waters small Albacore are caught in July and August.
(2) Tuna - Off the Pacific coast of Japan, big Tuns are caught in winter in the waters south of the central part, and in summer in the waters north of the central part.

In the Japan Sea, Tuna of medium size are caught in spring and summer. Small Tuna ara caught in all coastal waters all the year round.

Body weight: The body weight of commercial fish is as follows:
Albacore - Small type - - - under 10 kg ;
Big type ... $10-30 \mathrm{~kg}$.
Tuna - Small type --- under 20 kg ; medium type
... 20-100 kg; Big type ... over 100 kg .
Spawning: The number of intra-ovarian eges of a fish is exeedingly large: Albacore, 300,000 eggs; Tuna, 1,000,000 eggs. The spawning ground of Albacore is in the waters off the Midway Islands and that of the Tuna is located in the waters south of the subtropical front.
D. Fishing intensity

Catch:

	Average of 1921-1925	$:$	1953
Albacore 11,250 tons	$:$	52,500 tons	
Tuna	22,500 tons.	$:$	17,250 tons

Effect: No ronarkable increase can be seon in the production of Tuna, but with improved technique and gear of longline fishing, the catch of Albacore has greatly increased in recent years.
E. Feeding inter-xeltationship

Food: Both Albacore and Tuna are animal feeders, eating many species of fish. In the stomachs of the adult, there can be found a considerable number of juveniles and young fish of different species.

Literature
Chart of Annual Fishing Conditions by Tuna long-line Fishing (1954) Nankai Regional Fisheries Research Laboratory 39
A. Conservation management units

Population: Fishery resources in the East China Sea and Yellow Sea consist of more than 250 economically important bottom fish. But as the unit of management, they are treated as a single unit.
B. Liagnitude of ranagement units

Geographical ranpe: Bottom fish as a whole in these waters behave independontly from those in adjacent waters, and hardly mix with other fish.
C. Life history, econology and behavior

Host of these species spawn in tho coastal waters, and their larvae and juveniles grow there. fidult fish shows feeding migrations toward open sea, oach specios taking their own routes. llovements of bottom fish as a whole are vory complicated, and thoy are caught all the year round in all fishing grounds.
D. Fishing intensity

Production: The production in 1940 was 200,000 tons, but it dropped to less then 20,000 tons in 1945. The present production has been restored to the lovel of prewar years. Catches in 1953 by otter trawlers were 34,189 tons and two boat trawlers were 238,000 tons, totalling 272,000 tons.

The number of licensed boats and the catch per boat for 1953 were as follows:

Licensod boats	Number	Catch by boat
Otter trawlers	58	707.625 kg
Large trawlers	783	543.75 kg
(See Fig. IV and V)		

Effect: Most of tho fishing boats stay at ports in July and August. The Japanese fishing fleet operating in these waters has reached the level of prewar years, and with improved gear and facilitios, the annual average catch per net has dropped from 851 kg in 1947 to 547 kg . However, in view of the increasing trend of the total production, it is thought that there is no fear of overfishine in this area. But it is consiuered benoficial for the fishing resources not to increase further the number of boats in this area.

With regard to spocies of fish constituting the resources, biological investigations are now being carriod on by experts.
E. Foeding inter-relationship

Food: Most of bottom fish are either necton or benthos feeders and generally eat animal. Larvae and juveniles of any specios are preyed on by adult fish of other species. Among the bottom fish, such a great struggle for existence occurs that the populations are strongly interdependent with each other.

- Literature

Study of Bottom Fish Resources in the East China Sea and Yellow Soa (1953)

Seikai Fisheries Research Laboratory

Annual catch of bottom fish in East China Sea and Yellow Sea by otter trawler

Annual catch of bottom fish in East China Sea and Yellow Sea by two boats type

Bottom Fish exploited in Japanese Coastal Waters

A. Conservation management units

There are very many species of fish in the Japanese coastal waters, and dominant species vary according to fishing grounds. But as the unit of management, they are treated as a single population.
B. Magnitude of management units

Geographical range: They are distributed in waters less than 200 meters in depth around Japan. In special regions, however, they may be fished in waters of 500 meters in depth.
C. Life history, ecology and behavior

They come generally near the shore in their spawning season and then leave there after sparming. They are resident inhabitants and show only small migration.

Most of them become mature in one or two years after birth, and spawn in spring or summer, $1-3$ age fish are the important object of commercial fishery.
D. Fishing intensity

Production: Production for 1944 was 45,000 tons, which is the lowest recorded in twenty years. With a gradual development afterwards, it has now exceeded 500,000 tons. (Sce Fig. VI)

Fishing intensity: After the war, a gradually increasing trend can be seen in the total production and in the catch per boat. But due to conservation measures, the number of registercd fishing boats in the Japanese waters, which was at 2,836 in 1951, has beon reduced to 1,983 by the end of 1954.

Literature

Statistics on Fisheries Production by Trawlers in the Japanese Waters (1952)

MaF Research Statistics Division

Annual catch of bottom fish in Japanese waters
A. Conservation management units

Population: They are caught in all coastal waters of Japan. As the unit of management, however, they are treated as one unit.
B. Iriagnitude of management units

The unit consists of both summer and winter spawning group. The magnitude of the summer group is only $10-$ 20% of the winter groups.
C. Life history, ecology and bohaviour

Spawning: The number of males and females in the spawning group is almost equal.

The number of eggs spawned by a fish is around 500,000.
Spawning season: Summer group - during June to August in the south and during July to September in the north. The water temperature is around $23^{\circ} \mathrm{C}$.

Winter group - during January to March in the south of the Central Japan and the water temperature is over $10^{\circ} \mathrm{C}$. They do not spawn in the north.

The body (mantlc) length attains 7 cm in 2 months after birth; 15 cm in 6 months; 19 cm in 7 months; 20 cm in 8 months; 21 cm in 9 months; 22 cm in 10 months; 23 cm in 11 months and 25 cm in 12 months.

They become mature in a year, and die after spawning.
Migration: In the daytime they swim in a layer of about 100 meters deep and come up at night to a surface layer.

During autumn and winter they come southwards from Hokkaido down to Kyushu. In spring they move northwards from the south and reach Hokkaido in summer. Some groups reside anywhere and do not migrate.

It is known that the highest speed of their migration is 10 sea miles a day.
D. Fishing intensity

Production: The productivity of the population has increased in the recent years. Formerly, the average annual catch was 100,000 tons, but it has recently increased to 400,000600,000 tons, which is only 5-15\% of the total populations. (Seo Fig. VII)
E. Feeding inter-relationship

Food: They are animal feeders, and live chiefly on Sardine, small mackerel and pelagic crustacesus.

