

RECEIVED

Distr. LIMITED

E/CONF.35/S/27/SUMMARY 10 April 1961

ORIGINAL: ENGLISH

UNITED NATIONSAY 1031 CONFERENCE SECTION, LIBRARY ON NEW SOURCES OF ENERGY

CONFÉRENCE DES NATIONS UNIES SUR LES SOURCES NOUVELLES D'ÉNERGIE

SOLAR ENERGY, WIND POWER AND GEOTHERMAL ENERGY

ÉNERGIE SOLAIRE, ÉNERGIE ÉOLIENNE ET ÉNERGIE GÉOTHERMIQUE

Agenda item - Point de l'ordre du jour:

II.C.l(a) - Use of solar energy for mechanical power and electricity production: By means of piston engines and turbines

Utilisation de l'énergie solaire pour la production d'énergie mécanique et d'électricité: Au moyen de moteurs alternatifs et de turbines

THE DEVELOPMENT OF A 15-KW (el) SOLAR MECHANICAL ENGINE FOR SPACE APPLICATION AND ITS RELATIONSHIP TO THE FABRICATION OF SIMILAR ENGINES FOR TERRESTRIAL USAGE

By B. T. MACAULEY

Sundstrand Aviation, Denver Division of Sundstrand Corporation Denver, Colorado, U.S.A.

MISE AU POINT D'UN MOTEUR HELIOMECANIQUE DE 15 KW (MESURES EN ELECTRICITE) DESTINE AUX APPLICATIONS INTERPLANETAIRES. SES RAPPORTS AVEC LA CONSTRUCTION DE MOTEURS ANALOGUES DESTINES A DES APPLICATIONS TERRESTRES

Par T. B. MACAULEY

Sundstrand Aviation — Denver Division de la Sundstrand Corporation Denver Colorado, Etats-Unis

PAPERS HAVE BEEN CONTRIBUTED TO THE UNITED NATIONS CONFERENCE ON NEW SOURCES OF ENERGY BY INVITATION AND ARE FOR DISTRIBUTION AS WORKING PAPERS FOR THAT CONFERENCE. THEY ARE PUBLISHED AS PRESENTED BY THE AUTHORS, AND THE CONTENTS AND THE VIEWS EXPRESSED ARE THOSE OF THE AUTHORS.

(See notes overleaf)

LES AUTEURS ONT PRESENTE SUR INVITATION A LA CONFERENCE DES NATIONS UNIES SUR LES SOURCES NOUVELLES D'ENERGIE DES MEMOIRES QUI SERONT DISTRIBUES COMME DOCUMENTS DE TRAVAIL DE LA CONFERENCE. CES MEMOIRES SONT PUBLIES TELS QUE LES AUTEURS LES ONT REDIGES ET LES VUES QU'ILS CONTIENNENT SONT CELLES DES AUTEURS.

(Voir notes au verso)

NOTES

- 1. The working languages of the Conference are English and French. All papers contributed are reproduced in one or other of these two languages. Where a paper has been reproduced in both working languages for the convenience of a rapporteur, both language versions are provided as part of the Conference documentation.
- 2. Where any paper has been contributed in one of the official languages of the UN other than English or French, then it has been made available to the conference in that language. A translation of such papers in either English or French (according to the request of the relevant rapporteur) is provided.
- 3. Summaries of all papers, as presented by the authors, will be available in both working languages—English and French. Summaries will not include diagrams and photographs and should be read in conjunction with the paper proper, which will bear the same reference number as the summary.
- 4. Papers and summaries will not be generally available for distribution to other than participants and contributors to the Conference until after the Conference, under publication arrangements to be announced.

- 1. Les langues de travail de la Conférence sont l'anglais et le français. Tous les mémoires présentés sont reproduits dans l'une ou l'autre de ces deux langues. Lorsqu'un mémoire est reproduit dans les deux langues de travail sur la demande d'un rapporteur, la version anglaise et la version française du mémoire font toutes deux parties de la documentation de la Conférence.
- 2. Lorsqu'un mémoire est présenté dans une langue officielle de l'ONU autre que l'anglais ou le français, il est publié dans cette langue. Les mémoires appartenant à cette catégorie sont en outre publiés en traduction anglaise ou française (selon la demande du rapporteur chargé du sujet considéré).
- 3. Des résumés de tous les mémoires, établis par les auteurs eux-mêmes, seront publiés dans les deux langues de travail: anglais et français. Les résumés ne contiendront ni diagrammes ni photographies, et il conviendra de les rapprocher du mémoire lui-même, qui portera le même numéro de référence que le résumé.
- 4. Les mémoires et les résumés ne pourront en général être distribués à des personnes autres que les participants et les auteurs qu'après la Conférence et selon des modalités de publication qui seront annoncées ultérieurement.

THE DEVELOPMENT OF A 15 KW (el) SOLAR MECHANICAL ENGINE FOR SPACE APPLICATION AND ITS RELATIONSHIP TO THE FABRICATION OF SIMILAR ENGINES FOR TERRESTRIAL USAGE

B. T. Macauley
Sundstrand Aviation - Denver
Division of Sundstrand Corporation
Denver, Colorado, U.S.A.

SUMMARY

Much effort is presently being expended on the development of solar thermal-mechanical conversion systems designed to produce electrical power for space vehicle applications. Although these costly research and development programs are still in their early phases of progress, they are, nevertheless, attacking numerous difficult component and subsystem design problems whose successful solution will certainly assist those programs aimed at the practical use of solar energy for terrestrial mechanical power and electricity production.

The most obvious early economic contribution to terrestrial solar power generation applications which these ambitious space solar power system programs can make, will be in the direction of advancing the state-of-the-art of solar technology along many broad lines of investigation. Much in the same manner that government sponsored work on high temperature materials research, advance design concepts, extensive component testing and development, etc., in support of mobil or flyable nuclear reactors, has immeasurably aided the progress of commercial nuclear power application programs, so will the extensive amount of investigations into developing highly accurate solar concentrators, highly efficient and reliable power conversion and generation components, new working fluids, new materials and fabrication techniques, etc., significantly bring closer the day when terrestrial solar power generations systems will be available in economic form.

To illustrate the design, development, and economic relationships between solar mechanical engines for space application and solar power generation systems for terrestrial uses, a specific research and development program, one involving the design study of the largest known solar mechanical engine for use on space vehicles, has been chosen for discussion. The program to be described, called the 15 KW Solar Mechanical Engine Program, is an applied research and development effort aimed at providing for the growth and advancement in the state-of-the-art technology of dynamic solar conversion systems using high temperature working fluid and operating at relatively high power levels. Sundstrand Aviation - Denver, Division of the Sundstrand Corporation, is conducting for the government a research and development program aimed at the eventual production of a flyable, long duration solar thermal-mechanical power conversion system for use in space applications.

A. General Description of The 15 KW Solar Mechanical Engine Program

The specific objectives of the 15 KW Solar Mechanical Engine development program are to reveal and solve the critical component problems associated with advanced solar mechanical power concepts. In order to meet these objectives, since the development of a specific system is not yet called for, general preliminary design specifications of a dynamic solar conversion system were created by the government in order to permit an optimum system design to be established, hardware to be assembled for test and research experiments to be defined and performed.

The major, general preliminary system design specifications are as follows:

- 1. Payload power: 15 kw of continuous electrical power at 3200 cps, 120/208 volts, 3 \u03ap.
- 2. System weight (max.): 1000 lbs. (66.6 lbs/kw)

Work performed under Air Force Contract AF33(616)7128. Cognizant Agency: Flight Accessories Laboratory, Wright Air Development Division, Ohio

- 3. Operating life cycle: One (1) year continuous operation during an orbit period having 60 minutes of sunlight and 40 minutes of shadow time.
- 4. Launch and Environmental Conditions: Maximum launch acceleration of 10 g. along the longitudinal axis of the vehicle, 2 g. along the lateral axis; zero gravity, vacuum, temperature, meteorite bombardment, cosmic radiation, and Van Allen radiation as found at operational orbital altitudes.

To meet the above objectives a system design was established which has the following general component or subsystem features:

- 1. Solar Concentrator: 44.5 foot diameter paraboloid concentrator fabricated from plyable materials. The concentrator is inflated to shape and subsequently foam rigidized to hold its contour.
- 2. Solar Boiler-Heat Storage Unit: A double cavity type boiler is used which has both rubidium boiling, superheat and reheat passages and provision for LiH heat storage material for low temperature (1257°F) energy storage and NaF for high temperature (1875°F) energy storage.
- 3. Cycle and Working Fluid: A Rankine cycle with rubidium as the working fluid has been selected.
- 4. Power Conversion Unit: A three stage turbine rotating at 24,000 rpm which drives a homopolar inductor type alternator. All rotating parts are integrated with liquid metal lubricated bearings, and all subassemblies are mounted on a single rotating shaft. No gears or seals are required.

5. Radiator-Condenser: A disc shape radiator-condenser has been chosen. This unit will be made of beryllium and, under zero-g conditions, will condense the Rb vapor, which discharges from the last turbine stage.

Table 1 summarizes component sizes, efficiencies and weights as presently developed during the design phase of the 15 KW Solar Mechanical Engine Program.

Using the general state-of-the-art currently developed, or soon to be achieved, by the 15 KW Solar Mechanical Engine Program which has been established to serve space vehicle power needs, a study of the most probable cost of converting space solar engine technology into terrestrial solar engine applications, was performed. Table 2 lists a summary of the economic analysis performed for a 15 kw terrestrial solar power plant wherein (1) no provision for heat storage was made, (2) provision was made for 15 kw electrical output for an eight hour period and 7.5 kw electrical output for a sixteen hour period, by the use of high temperature heat storage materials, and (3) continuous operation over a 24 hour period at a rated electrical output of 15 kw was provided through the use of a high temperature heat storage material (LiH).

TABLE 1

15 KW SOLAR MECHANICAL ENGINE DESIGN CHARACTERISTICS

A. General Parameters

Working Fluid Rubidium

Cycle Efficiency 26.5

Sunlight - Shadow Ratio..... 60 min/40 min

B. Component Size and Weights

	·	Dimensions	Weights	
1.	Solar Concentrator Subsystem	Dia. = 43.838 ft. f = 18.982 ft.	402	lbs.
2.	Boiler - Heat Storage Unit	Dia. = 26.0 in. Length = 27.5 in.	406. 93	lbs.
3.	Combined Power Unit (24000 rpm - 3200 cycle output)	<pre>lst wheel = 6.87 in. 2nd wheel = 7.34 in. 3rd wheel = 11.20 in.</pre>	Total wei	ght =
4.	Condenser	Dia. = 8.25 ft.	64.2	lbs.
.5.	Controls		13.5	lbs.
6.	Plumbing		7.0	lbs.
7.	Fluid Hold-up		5.0	lbs.
TOTAL SYSTEM WEIGHT			1,008.63	lbs.

TABLE 2
ESTIMATED PRORATED OPERATING COST OF A
15 KW TERRESTRIAL SOLAR POWER PLANT

Component/Subsystem	(1) No energy storage capability	(2) 1200 kw-hrs of energy storage	(3) 2400 kw-hrs of energy storage
Solar Concentrator Subsystem	4.4	4.4	4.4
Tracking Rig	5.7	5.7	5.7
Turbo Machinery	1.9	1.9	1.9
Alternator-Gearbox	0.34	0.34	0.34
Controls (seeker, temp., & spee	ed) 0.22	0.30	0.30
Radiator (-Condénser)	0.1	0.1	0.1
Heat Receiver Loop	0.23	0.23	0.23
Thermal Storage - Boiler Unit		0.0094 (a)	0.017 (b)
Total Costs: cents/kw-hr	12.89	13.83	14.59

NOTE: Heat storage material costs based on a latent heat of fusion value of 1075 Btu/lb for lithium hydride.

- (a) Based upon 2031 pounds of LiH used and 5 year life for the heat storage-boiler unit.
- (b) Based upon 4062 pounds of LiH used and 5 year life for the heat storage-boiler unit.

MISE AU POINT D'UN MOTEUR HELICMECANIQUE DE 15 KW (MESURES EN ELECTRICITE) DESTINE AUX APPLICATIONS INTERPIANETAIRES. SES RAPPORTS AVEC LA CONSTRUCTION DE MOTEURS ANALOGUES DESTINES A DES APPLICATIONS TERRESTRES

par B. T. Macauley

Sundstrand Aviation - Denver
Division de la Sundstrand Corporation, Denver, Colorado, E.U

Résumé

On consacre actuellement de sérieux efforts à la mise au point de systèmes de conversion thermo-mécanique de l'énergie solaire, destinés à subvenir aux besoins en électricité des véhicules interplanétaires de l'avenir. Bien que ces programmes onéreux de recherches et de mise en oeuvre de dispositifs inédits en soient encore aux premières phases de leur développement, il n'en reste pas moins vrai qu'ils s'attaquent à la résolution de nombre de problèmes ardus ayant trait à la conception de certains des éléments et des groupes d'éléments constitutifs de ces dispositifs. Leur succès ne saurait manquer d'apporter une aide appréciable à ceux qui s'efforcent de donner des applications pratiques à l'énergie solaire par la production d'énergie mécanique et électrique.

L'apport économique presque immédiat le plus évident de ces programmes visant à la réalisation de systèmes de production de force motrice alimentés par l'énergie solaire en plein espace interplanétaire peut faire orienter la technologie solaire actuelle vers plusieurs domaines de recherches générales. Les travaux financés par le gouvernement sur le plan des recherches relatives au comportement des matériaux

aux températures élevées, des conceptions ultra modernes, des essais et de la mise au point de divers groupes destinés à être utilisés dans des réacteurs nucléaires mobiles ou susceptibles d'être installés à bord d'un engin, ont joué un rôle dont on ne saurait trop souligner l'importance quant à la réalisation des programmes visant à l'application commerciale de l'énergie nucléaire. C'est d'une manière entièrement analogue que les nombreuses recherches menées sur la mise au point de concentrateurs d'énergie solaire éminemment précis, les groupes à très haut rendement et d'un fonctionnement sûr pour la conversion et la production de force motrice, les nouveaux fluides de travail, les matériaux inédits et les techniques de transformation originales rapprocheront beaucoup le jour où les systèmes terrestres de production de force motrice, à partir de l'énergie solaire, seront disponibles dans des conditions économiques acceptables.

Pour illustrer la conception et la mise au point des moteurs héliomécaniques destinés à des applications interplanétaires et celles des systèmes de production de force motrice actionnés par l'énergie solaire, ainsi que leurs rapports économiques, on a choisi, aux fins de démonstration, un programme spécifique de ce genre (recherches et mises au point) qui comporte les études préliminaires à la réalisation du plus puissant moteur héliomécanique connu, destiné à être utilisé à bord de véhicules interplanétaires. Le programme qui sera décrit, appelé programme du moteur héliomécanique de 15 Kw, est constitué par des travaux de recherches et de science appliquée, visant à assurer le développement et le perfectionnement de la technologie des systèmes dynamiques de conversion de l'énergie solaire qui utilisent un fluide de travail à haute température et fonctionnent à des niveaux de puissance relativement élevés. La Sundstrand Aviation, Division de Denver de la Sundstrand Corporation, exécute actuellement pour le gouvernement un programme de ce genre, dont l'objectif est, en fin de compte, la production d'un système de conversion thermo-mécanique de l'énergie solaire à longue durée de fonctionnement capable d'être installé à bord d'un engin et destiné à recevoir des applications interplanétaires 1/.

A. Description générale du programme du moteur héliomécanique de 15 Kw

Les objectifs spécifiques du programme de mise au point d'un moteur hélicmécanique de 15 Kw s'attachent à mettre en lumière et à résoudre

- viii -

Travaux exécutés dans le cadre du contrat de l'aviation AF (616) 7128
Agence responsable : Flight Accessories Laboratory, Wright Air
Development Div.

les problèmes critiques qui se posent dans la réalisation des pièces et des groupes des dispositifs destinés à la mise en oeuvre pratique des points de vue les plus modernes sur les machines éliomécaniques. Pour réaliser de tels objectifs, dans la mesure où le moment n'est pas encore venu de mettre un système donné au point, le gouvernement a présenté les cahiers des charges préliminaires applicables à un système dynamique de conversion de l'énergie solaire, pour permettre l'établissement d'une conception aussi parfaite que possible et de procéder au montage des pièces et groupes nécessaires aux fins des essais et expériences de recherches à décrire et à exécuter.

Les spécifications préliminaires principales sont les suivantes :

- 1. Puissance à fournir, dans les limites imposées par la charge payante: 15 Kw d'énergie électrique en marche continue à 3.200 pps, sous 120/208 v. en triphasé.
- 2. Poids du système (maximum) 1.000 livres (66,6 par Kw).
- 3. Cycle pendant la durée de fonctionnement utile : un an (1) de fonctionnement continu sur une période qui, le long de l'orbite, comporte 60 minutes au soleil et 40 à l'ombre.
- 4. Conditions au lancement et caractéristiques du milieu. Accélération maximum au lancement, 10 g suivant l'axe longitudinal du véhicule et 2 g suivant son axe transversal. Annulation de la pesanteur. Degré de vide, température, bombardement par les météorites, rayonnement cosmique et rayonnement de Van Allen tels qu'on les rencontre aux altitudes prévues pour l'orbite.

Four remplir les objectifs énumérés ci-dessus, il a été mis au point une formule, pour le système, qui se caractérise par les points généraux suivants quant aux éléments constitutifs et aux groupes :

- 1. Concentrateur d'énergie solaire. Groupe paraboloïde de 44,5 pieds de diamètre fatriqué avec des matériaux souples. Se gonfle pour prendre la forme voulue puis est rendu rigide par une mousse appropriée de manière à maintenir sa forme.
- 2. Bouilleur solaire Accumulateur. On fera usage d'un bouilleur à double cavité doté de passages pour l'ébullition du rubidium, sa surchauffe et son réchauffage, avec les moyens de faire usage d'un matériau accumulateur de chaleur à l'hydrure de

lithium pour les températures relativement basses (1257°F) et au fluorure de sodium pour l'accumulation d'énergie aux températures élevées (1875°F).

- 3. Cycle, fluide de travail. On a choisi le cycle de Rankine et le rubidium comme fluide de travail.
- 4. Groupe de conversion de l'énergie. Une turbine à trois étages tournant à 24.000 t/m entraîne un alternateur du type à inducteurs homopolaires. Toutes les pièces tournantes sont reliées à des paliers lubrifiés au métal liquide de manière à faire bloc avec eux. Tous les sous-groupes sont montés sur un seul arbre tournant. Pas de roues dentées ou de joints d'étanchéité.
- 5. Radiateur-condenseur: on a choisi un radiateur-condenseur en forme de disque. Ce groupe sera en béryllium et, dans des conditions où la pesanteur est nulle, il assurera la condensation de la vapeur de rubidium s'échappant du dernier étage de la turbine.

La table 1 donne un résumé des cotes des pièces et groupes, des rendements envisagés et de la recette des poids, tels qu'ils ont été arrêtés pendant la phase de mise au point des plans dans le cadre du programme d'exécution du projet de moteur hélicmécanique de 15 Kw.

Dans l'état de la technologie tel qu'il se présente actuellement ou tel qu'il sera avant peu pour les fins de ce projet, établi pour faire face aux besoins énergétiques d'un véhicule interplanétaire, on a procédé à une étude des frais les plus probables de conversion de la technologie applicable au moteur ainsi conçu aux besoins des applications à des moteurs solaires terrestres. La table 2 représente un résumé de l'analyse économique ainsi faite pour une centrale à énergie solaire installée à terre dans laquelle : l) il n'est pas prévu de dispositif d'emmagasinage de la chaleur; 2) on envisage un débit d'énergie électrique de 15 Kw pour une péricde de 8 heures et de 7,5 Kw pour seize heures, en se servant de matériaux d'accumulation de l'énergie à haute température; 3) le fonctionnement continu sur une période de 24 heures au débit électrique nominal de 15 Kw a été assuré par l'emploi d'un matériau d'accumulation de la chaleur à haute température (LiH).

Table 1

CAHIER DES CHARGES APPLICABLES AU MOTEUR HELICMECANIQUE DE 15 KW

A. Paramètres généraux

Fluide de travail ... Rubidium Rendement du cycle 26,5

Rapport soleil/ombre 60 minutes/40 minutes

Facteur applicable au four 0,77359
Inclinaison du bord du miroir 60°

B. Dimensions et poids des éléments constitutifs

Dimensions Poids

I. Groupe de concentration solaire

Diam =
Dist. foc. =

2. Bouilleur - accu- Diam = mulateur Longueur =

3. Bloc moteur Premier rotor = 6,87 pouces Poids (débit 3.200 pps Deuxième rotor = pouces total 24.000 t/m) Troisième rotor = pouces

4. Condenseur Diam =

5. Commandes

6. Tuyauteries, etc.

7. Réserve de fluide

POIDS TOTAL DU SYSTEME

FRAIS D'EXPLOITATION APPROCHES D'UNE CENTRALE SOLAIRE TERRESTRE DE 15 KW CALCULES PAR ANALOGIE AVEC CEUX DU GROUPE INTERPLANETAIRE

> 1) Capacité d'emmagasinage à énergie nulle 4,4

2) 1.200 Kwh d'accumulation d'énergie 4,4

3) 2.400 Kwh d'accumu-lation 4,4

Groupe/élément
Concentrateur solaire
Mécanisme servant à suivre
le soleil
Groupe de turbines
Alternateur et boîte de
réduction
Commandes (guidage, température, vitesse)
Radiateur (-condenseur)
Cadre récepteur de chaleur
Accumulateur de chaleur
- bouilleur

Prix de revient total en cents par Kwh

NB : Les frais afférents aux matériaux d'emmagasinage de la chaleur sont basés sur une valeur de la chaleur latente de fusion de l'hydrure de lithium de 1075 BTU

a) En supposant l'utilisation de 2031 lbs de LiH et une durée de service utile de 5 ans pour le groupe accumulateur de chaleur - bouilleur

b) En supposant l'utilisation de 4062 lbs de LiH et une durée de service utile de 5 ans pour le groupe accumulateur de chaleur - bouilleur