E/ECE/324 E/ECE/TRANS/505 } Rev.1/Add.93

20 March 1995

AGREEMENT

CONCERNING THE ADOPTION OF UNIFORM CONDITIONS OF APPROVAL AND RECIPROCAL RECOGNITION OF APPROVAL FOR MOTOR VEHICLE EQUIPMENT AND PARTS

done at Geneva on 20 March 1958

Addendum 93: Regulation No. 94

Date of entry into force: 1 October 1995

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF VEHICLES WITH REGARD TO THE PROTECTION OF THE OCCUPANTS IN THE EVENT OF A FRONTAL COLLISION

UNITED NATIONS

Regulation No. 94

UNIFORM PROVISIONS CONCERNING THE APPROVAL OF VEHICLES WITH REGARD TO THE PROTECTION OF THE OCCUPANTS IN THE EVENT OF A FRONTAL COLLISION

CONTENTS

REGULATION		Page
1.	Scope	5
2.	Definitions	5
3.	Application for approval	б
4.	Approval	7
5.	Specifications	9
б.	Modification and Extension of approval of the vehicle type	10
7.	Conformity of production	11
8.	Penalties for non-conformity of production	12
9.	Production definitely discontinued	12
10.	Names and addresses of technical services responsible for conducting approval tests, and of administrative departments	13

ANNEXES

- <u>Annex 1</u> Communication concerning the approval or extension or refusal or withdrawal of approval or production definitely discontinued of a vehicle type with regard to the protection of the occupants in the event of a frontal collision, pursuant to Regulation No. 94
- Annex 2 Arrangements of the approval mark
- Annex 3 Test procedure

Appendix - 30° Barrier with ASD (Anti Slide Devices)

- Annex 4 Determination of performance criteria
- <u>Annex 5</u> Arrangement and installation of dummies and adjustment of restraint systems

GE.95-21056

<u>Annex 6</u> - Procedure for determining the "H" point and the actual torso angle for seating positions in motor vehicles

<u> Appendix 1</u> -	Description of the three-dimensional "H" point
	machine
<u> Appendix 2</u> -	Three-dimensional reference system
Appendix 3 -	Reference data concerning seating positions

<u>Annex 7</u> - Test procedure with trolley Appendix - Equivalence curve - Tolerance band for curve $\Delta V = f(t)$

<u>Annex 8</u> - Technique of measurement in measurement tests: instrumentation

- 1. SCOPE
- 1.1. This Regulation applies to power-driven vehicles of category $M_1 \ \underline{1}/$ of a total permissible mass not exceeding 2.5 tonnes; heavier vehicles may be approved at the request of the manufacturer;
- 1.2. It shall apply at the request of the manufacturer for the approval of a vehicle type with regard to the protection of the occupants of the front outboard seats in the event of a frontal collision.
- 2. DEFINITIONS

For the purposes of this Regulation:

- 2.1. "<u>Protective system</u>" means interior fittings and devices intended to restrain the occupants and contribute towards ensuring compliance with the requirements set out in paragraph 5 below;
- 2.2. "<u>Type of protective system</u>" means a category of protective devices which do not differ in such essential respects as:

Their technology; Their geometry; Their constituent materials;

- 2.3. "<u>Angle of impact</u>" means the angle between a line drawn perpendicular to the front face of the barrier and the line along which the vehicle is travelling in a longitudinal forward direction;
- 2.4. "<u>Barrier face</u>" means the face of the element immediately behind the plywood facing;
- 2.5. "<u>Anti-slide devices</u>" means steel-profiles mounted vertically to the "barrier face" as specified in annex 3. Their purpose is to reduce the lateral movement of the vehicle relative to the barrier during impact;
- 2.6. "<u>Vehicle type</u>" means a category of power-driven vehicles which do not differ in such essential respects as:
- 2.6.1. The length and width of the vehicle, in so far as they have an effect on the results of the impact test prescribed in this Regulation,

 $\underline{1}/$ As defined in the Consolidated Resolution on the Construction of Vehicles (R.E.3), annex 7 (document TRANS/SC1/WP29/78/Amend.3), i.e., motor vehicles used for the carriage of passengers and comprising not more than eight seats in addition to the driver's seat.

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 6

- 2.6.2. The structure, dimensions, lines and materials of the part of the vehicle forward of the transverse plane through the "R" point of the driver's seat, in so far as they have a negative effect on the results of the impact test prescribed in this Regulation,
- 2.6.3. The lines and inside dimensions of the passenger compartment and the type of protective system, in so far as they have an effect on the results of the impact test prescribed in this Regulation,
- 2.6.4. The siting (front, rear or centre) and the orientation (transversal or longitudinal) of the engine,
- 2.6.5. The mass, in so far as there is a negative effect on the result of the impact test prescribed in this Regulation,
- 2.6.6. The optional arrangements or fittings provided by the manufacturer, in so far as they have a negative effect on the result of the impact test prescribed in this Regulation,
- 2.7. "<u>Passenger compartment</u>" means the space for occupant accommodation, bounded by the roof, floor, side walls, doors, outside glazing and front bulkhead and the plane of the rear compartment bulkhead or the plane of the rear-seat back support;
- 2.8. "<u>R point</u>" means a reference point defined for each seat by the manufacturer in relation to the vehicle's structure, as indicated in annex 6;
- 2.9. <u>"H" point</u> means a reference point determined for each seat by the testing service responsible for approval, in accordance with the procedure described in annex 6;
- 2.10. "<u>Unladen kerb mass</u>" means the mass of the vehicle in running order, unoccupied and unladen but complete with fuel, coolant, lubricant, tools and a spare wheel (if these are provided as standard equipment by the vehicle manufacturer).
- 3. APPLICATION FOR APPROVAL
- 3.1. The application for approval of a vehicle type with regard to the protection of the occupants of the front seats in the event of a frontal collision shall be submitted by the vehicle manufacturer or by his duly accredited representative.
- 3.2. It shall be accompanied by the undermentioned documents in triplicate and following particulars:
- 3.2.1. A detailed description of the vehicle type with respect to its structure, dimensions, lines and constituent materials;

- 3.2.2. Photographs, and/or diagrams and drawings of the vehicle showing the vehicle type in front, side and rear elevation and design details of the forward part of the structure;
- 3.2.3. Particulars of the vehicle's unladen kerb mass;
- 3.2.4. The lines and inside dimensions of the passenger compartment;
- 3.2.5. A description of the interior fittings and protective systems installed in the vehicle.
- 3.3. The applicant for approval shall be entitled to present any data and results of tests carried out which make it possible to establish that compliance with the requirements can be achieved with a sufficient degree of confidence.
- 3.4. A vehicle which is representative of the type to be approved shall be submitted to the technical service responsible for conducting the approval tests.
- 3.4.1. A vehicle not comprising all the components proper to the type may be accepted for test provided that it can be shown that the absence of the components omitted has no detrimental effect on the results of the test in so far as the requirements of this Regulation are concerned.
- 3.4.2. It shall be the responsibility of the applicant for approval to show that the application of paragraph 3.4.1. is compatible with compliance with the requirements of this Regulation.
- 3.5. The competent authority shall verify the existence of satisfactory arrangements for ensuring effective control of the conformity of production before type approval is granted.
- 4. APPROVAL
- 4.1. If the vehicle type submitted for approval pursuant to this Regulation meets the requirements of paragraph 5 below, approval of that vehicle type shall be granted.
- 4.1.1. The technical service appointed in accordance with paragraph 10 below shall check whether the required conditions have been satisfied.
- 4.1.2. In case of doubt, account shall be taken, when verifying the conformity of the vehicle to the requirements of this Regulation, of any data or test results provided by the manufacturer which can be taken into consideration in validating the approval test carried out by the technical service.

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 8

- 4.2. An approval number shall be assigned to each type approved. Its first two digits (at present 00 for the Regulation in its original form) shall indicate the series of amendments incorporating the most recent major technical amendments made to the Regulation at the time of issue of the approval. The same Contracting Party may not assign the same approval number to another vehicle type.
- 4.3. Notice of approval or of refusal of approval of a vehicle type pursuant to this Regulation shall be communicated by the Parties to the Agreement which apply this Regulation by means of a form conforming to the model in annex 1 to this Regulation and photographs and/or diagrams and drawings supplied by the applicant for approval, in a format not exceeding A4 (210 X 297 mm) or folded to that format and on an appropriate scale.
- 4.4. There shall be affixed, conspicuously and in a readily accessible place specified on the approval form, to every vehicle conforming to a vehicle type approved under this Regulation, an international approval mark consisting of:
- 4.4.1. A circle surrounding the letter "E" followed by the distinguishing number of the country which has granted approval 2/i
- 4.4.2. The number of this Regulation, followed by the letter "R", a dash and the approval number, to the right of the circle prescribed in paragraph 4.4.1.
- 4.5. If the vehicle conforms to a vehicle type approved, under one or more other Regulations annexed to the Agreement, in the country which has granted approval under this Regulation, the symbol prescribed in paragraph 4.4.1. need not be repeated; in such a case the Regulation and approval numbers and the additional

^{2/ 1} for Germany, 2 for France, 3 for Italy, 4 for the Netherlands, 5 for Sweden, 6 for Belgium, 7 for Hungary, 8 for the Czech Republic, 9 for Spain, 10 for Yugoslavia, 11 for the United Kingdom, 12 for Austria, 13 for Luxembourg, 14 for Switzerland, 15 (vacant), 16 for Norway, 17 for Finland, 18 for Denmark, 19 for Romania, 20 for Poland, 21 for Portugal, 22 for the Russian Federation, 23 for Greece, 24 (vacant), 25 for Croatia, 26 for Slovenia and 27 for Slovakia. Subsequent numbers shall be assigned to other countries in the chronological order in which they ratify the Agreement concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts, or in which they accede to that Agreement, and the numbers thus assigned shall be communicated by the Secretary-General of the United Nations to the Contracting Parties to the Agreement.

symbols of all the Regulations under which approval has been granted in the country which has granted approval under this Regulation shall be placed in vertical columns to the right of the symbol prescribed in paragraph 4.4.1.

- 4.6. The approval mark shall be clearly legible and be indelible.
- 4.7. The approval mark shall be placed close to or on the vehicle data plate affixed by the manufacturer.
- 4.8. Annex 2 to this Regulation gives examples of approval marks.
- 5. SPECIFICATIONS
- 5.1. <u>General specifications applicable to all tests</u>
- 5.1.1. The "H" point for each seat shall be determined in accordance with the procedure described in annex 6.
- 5.1.2. When the protective system for the front seating positions includes belts, the belt components shall meet the requirements of Regulation No. 16.
- 5.1.3. Seating positions where a dummy is installed and the protective system includes belts, shall be provided with anchorage points conforming to Regulation No. 14.
- 5.2. <u>Specifications</u>

The test of the vehicle carried out in accordance with the method described in annex 3 shall be considered satisfactory if all the conditions set out in paragraphs 5.2.1. to 5.2.6. below are all satisfied at the same time.

- 5.2.1. The performance criteria recorded, in accordance with annex 4, on the dummies in the front outboard seats shall meet the following conditions:
- 5.2.1.1. The head performance criterion (HPC) shall be less than or equal to 1,000,
- 5.2.1.2. The thorax performance criterion (ThPC) shall be less than or equal to 75 mm,
- 5.2.1.3. The femur performance criterion (FPC) shall be less than or equal to 10 kN;
- 5.2.2. During the test no door shall open;
- 5.2.3. During the test no locking of the locking systems of the front doors shall occur;

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 10

- 5.2.4. After the impact, it shall be possible, without the use of tools:
- 5.2.4.1. To open at least one door per seat row if the door exists, and where necessary, move the seat-backs or seats to allow the evacuation of all the occupants 3/,
- 5.2.4.2. To release the dummies from the restraint system, which, if locked, shall be capable of being opened by a maximum pressure of 6 daN on the release control,
- 5.2.4.3. To remove the dummies intact from the vehicle;
- 5.2.5. No more than slight leakage of liquid from the fuel feed installation shall occur on collision;
- 5.2.6. If there is continuous leakage of liquid from the fuel-feed installation after the collision, the rate of leakage shall not exceed 30 g/min; if the liquid from the fuel-feed system mixes with liquids from the other systems and the various liquids cannot easily be separated and identified, all the liquids collected shall be taken into account in evaluating the continuous leakage.
- 6. MODIFICATION AND EXTENSION OF APPROVAL OF THE VEHICLE TYPE
- 6.1. Any modification affecting the structure, the number of seats, the interior trim or fittings, or the position of the vehicle controls or of mechanical parts which might affect the energyabsorption capability of the front of the vehicle shall be brought to the notice of the administrative department granting approval. The department may then either:
- 6.1.1. Consider that the modifications made are unlikely to have an appreciable adverse effect and that in any case the vehicle still complies with the requirements; or
- 6.1.2. Require the technical service responsible for conducting the tests to carry out a further test, among those described below, according to the nature of the modifications;
- 6.1.2.1. Any modification of the vehicle affecting the general form of the structure of the vehicle and/or any increase in mass greater than 8 per cent which in the judgement of the authority would have a marked influence on the results of the tests shall require a repetition of the test as described in annex 3;

 $[\]underline{3}$ / This requirement shall not apply to vehicles not having a roof of rigid construction.

- 6.1.2.2. If the modifications concern only the interior fittings, if the mass does not differ by more than 8 percent and if the number of front seats initially provided in the vehicle remains the same, the following shall be carried out:
- 6.1.2.2.1. A simplified test as provided for in annex 7 and/or,
- 6.1.2.2.2. A partial test as defined by the technical service in relation to the modifications made.
- 6.2. Confirmation or refusal of approval, specifying the alterations, shall be communicated by the procedure specified in paragraph 4.3. above to the Parties to the Agreement which apply this Regulation.
- 6.3. The competent authority issuing the extension of approval shall assign a series number for such an extension and inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in annex 1 to this Regulation.
- 7. CONFORMITY OF PRODUCTION
- 7.1. Every vehicle approved under this Regulation shall conform to the vehicle type approved, as regards features contributing to the protection of the occupants of the vehicle in the event of a frontal collision.
- 7.2. In order to verify that the requirements of paragraph 7.1. are met, suitable checks of the production shall be carried out. As a general rule, these checks shall be confined to the taking of measurements.
- 7.3. The holder of the approval shall, in particular:
- 7.3.1. ensure the existence of procedures for effective quality control of the vehicle;
- 7.3.2. have access to the testing equipment necessary for checking conformity to each approved type;
- 7.3.3. ensure that test result data are recorded and that the annexed documents remain available for a period to be determined in agreement with the administrative department;
- 7.3.4. analyze the results of each type of test, in order to verify and ensure the consistency of characteristics of the vehicle, making allowance for permissible variations in industrial production;
- 7.3.5. ensure that for each type of vehicle at least the tests concerning the taking of measurements are carried out;

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 12

- 7.3.6. ensure that any set of samples or test pieces giving evidence of non-conformity in the type of test in question shall give rise to a further sampling and test. All necessary steps shall be taken to restore conformity of the corresponding production.
- 7.4. The competent authority which has granted type approval may at any time verify the conformity control methods applied in each production unit.
- 7.4.1. At every inspection, the test records and production records shall be presented to the visiting inspector.
- 7.4.2. Where the quality level appears unsatisfactory, the inspector shall select samples to be sent to the technical service which conducted the type approval tests.
- 7.4.3. The competent authority may carry out any test prescribed in this Regulation. The normal frequency of inspections authorized by the competent authority shall be one every two years. In cases where unsatisfactory results are found during one of these inspections, the competent authority shall ensure that all necessary steps are taken to restore conformity of production as rapidly as possible.
- 8. PENALTIES FOR NON-CONFORMITY OF PRODUCTION
- 8.1. The approval granted in respect of a vehicle type pursuant to this Regulation may be withdrawn if the requirement laid down in paragraph 7.1. above is not complied with or if the vehicle or vehicles selected have failed to pass the checks prescribed in paragraph 7.2. above.
- 8.2. If a Contracting Party to the Agreement applying this Regulation withdraws an approval it has previously granted, it shall forthwith so notify the other Contracting Parties applying this Regulation, by means of a communication form conforming to the model in annex 1 to this Regulation.
- 9. PRODUCTION DEFINITELY DISCONTINUED

If the holder of the approval completely ceases to manufacture the type of vehicle approved in accordance with the Regulation, he shall so inform the authority which granted the approval. Upon receiving the relevant communication that authority shall inform thereof the other Parties to the 1958 Agreement applying this Regulation by means of a communication form conforming to the model in annex 1 to this Regulation.

10. NAMES AND ADDRESSES OF TECHNICAL SERVICES RESPONSIBLE FOR CONDUCTING APPROVAL TESTS, AND OF ADMINISTRATIVE DEPARTMENTS

> The Contracting Parties to the Agreement applying this Regulation shall communicate to the United Nations secretariat the names and addresses of the technical services responsible for conducting approval tests, of manufacturers authorized to carry out tests and of the administrative departments which grant approval and to which forms certifying approval or refusal or withdrawal of approval, issued in other countries, are to be sent.

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 14 Annex 1

<u>Annex 1</u>

(maximum format: A4 (210 x 297 mm))

COMMUNICATION

issued by:	Name of administration:

concerning: <u>2</u>/ APPROVAL GRANTED APPROVAL EXTENDED APPROVAL REFUSED APPROVAL WITHDRAWN PRODUCTION DEFINITELY DISCONTINUED

of a vehicle type with regard to the protection of the occupants in the event of a frontal collision, pursuant to Regulation No. 94

Approval No.:

Extension No.:

1.	Trade name or mark of the power-driven vehicle
2.	Vehicle type
3.	Manufacturer's name and address
4.	If applicable, name and address of manufacturer's representative
5.	Brief description of the vehicle type as regards its structure, dimensions, lines and constituent materials
5.1.	Description of the protective system installed in the vehicle
5.2.	Description of interior arrangements or fittings that might affect the tests

E/ECE/324 Rev.1/Add.93 E/ECE/TRANS/505 Regulation No. 94 page 15 Annex 1 Site of engine: forward/rear/central 2/ Drive: front-wheel:rear-wheel 2/ Mass of vehicle submitted for testing: Rear axle : Total : Vehicle submitted for approval on Technical service responsible for conducting approval tests Number of report issued by that service Approval granted/refused/extended/withdrawn 2/ Place

6.

7.

8.

9.

10.

11.

12.

13.

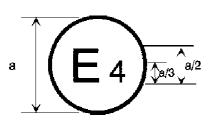
14.

15.

16.

17.

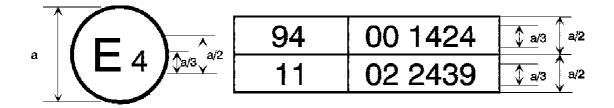
^{1/} Distinguishing number of the country which has granted/extended/refused/withdrawn approval (see approval provisions in the Regulation).


 $[\]underline{2}$ / Strike out what does not apply.

<u>Annex 2</u>

ARRANGEMENTS OF THE APPROVAL MARK

 $(\mbox{See paragraph 4.4. of this Regulation})$


94R - 00 1424

a = 8 mm min.

The above approval mark affixed to a vehicle shows that the vehicle type concerned has, with regard to the protection of the occupants in the event of a frontal collision, been approved in the Netherlands (E4) pursuant to Regulation No. 94 under approval number 001424. The approval number indicates that the approval was granted in accordance with the requirements of Regulation No. 94 in its original form.

a = 8 mm min.

The above approval mark affixed to a vehicle shows that the vehicle type concerned has been approved in the Netherlands (E4) pursuant to Regulations Nos. 94 and $11.\frac{1}{2}$ The first two digits of the approval numbers indicate that, at the dates when the respective approvals were granted, Regulation No. 94 had not been modified and Regulation No. 11 already included the 02 series of amendments.

 $\underline{1}$ The latter number is given only as an example.

<u>Annex 3</u>

TEST PROCEDURE

1. INSTALLATION AND PREPARATION OF THE VEHICLE

1.1. <u>Testing ground</u>

The test area shall be large enough to accommodate the run-up track, barrier and technical installations necessary for the test. The last part of the track, for at least 5 m before the barrier, shall be horizontal, flat and smooth.

1.2. <u>Barrier</u>

The barrier shall consist of a block of reinforced concrete not less than 3 m wide in front and not less than 1.5 m high. The barrier shall be of such thickness that its mass is not less than 7 x 10^4 kg. The front face shall be vertical: a line drawn perpendicular to the face shall form an angle of 30° with the line which the vehicle travels in a longitudinal forward direction, and the face shall be covered with plywood boards 2 cm thick in good condition. In addition, the ASD (steel profiles 40/40 mm) shall be mounted vertically in a distance of 350 mm left and right of the theoretical point of impact of the vehicle's longitudinal plane of symmetry (see description, appendix). The barrier shall be anchored in the ground with, if necessary, additional arresting devices to limit its displacement.

1.3. <u>Orientation of the barrier</u>

The orientation of the angle of 30° shall be such that the first contact of the vehicle with the barrier shall be on the steeringcolumn side. Where there is a choice between carrying out the test with a right-hand or left-hand drive vehicle, the test shall be carried out with the less favourable orientation as determined by the official laboratory responsible for the tests.

1.4. <u>State of vehicle</u>

1.4.1. <u>General specification</u>

The test vehicle shall be representative of the series production, shall include all the equipment normally fitted and shall be in normal running order. Some components may be replaced by equivalent masses where this substitution clearly has no noticeable effect on the results measured under paragraph 6. E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 18 Annex 3

- 1.4.2. <u>Mass of vehicle</u>
- 1.4.2.1. For the test, the mass of the vehicle submitted shall be the unladen kerb mass;
- 1.4.2.2. The fuel tank shall be filled with water to mass equal to 90 per cent of the mass of a full as specified by the manufacturer;
- 1.4.2.3. All the other systems (brake, cooling, ...) may be empty in this case, the mass of the liquids shall be carefully compensated;
- 1.4.2.4. The mass of the measuring apparatus on board the vehicle may be compensated by reductions which have no noticeable effect on the results measured under paragraph 6 below;
- 1.4.2.5. The mass of the vehicle resulting from the provisions of paragraph 1.4.2.1. above shall be indicated in the report.
- 1.4.3. <u>Passenger compartment adjustments</u>
- 1.4.3.1. <u>Position of steering wheel</u>

The steering wheel, if adjustable, shall be placed in the normal position indicated by the manufacturer or, failing that, midway between the limits of its range(s) of adjustment. At the end of propelled travel, the steering wheel shall be left free, with its spokes in the position which according to the manufacturer corresponds to straight-ahead travel of the vehicle.

1.4.3.2. <u>Glazing</u>

The movable glazing of the vehicle shall be in the closed position. For test measurement purposes and in agreement with the manufacturer, it may be lowered, provided that the position of the operating handle corresponds to the closed position.

1.4.3.3. <u>Gear-change lever</u>

The gear-change lever shall be in the neutral position.

1.4.3.4. <u>Pedals</u>

The pedals shall be in their normal position of rest.

1.4.3.5. <u>Doors</u>

The doors shall be closed but not locked.

1.4.3.6. Opening roof

If an opening or removable roof is fitted, it shall be in place and in the closed position. For test measurement purposes and in agreement with the manufacturer, it may be open.

1.4.3.7. <u>Sun-visor</u>

The sun-visors shall be in the stowed position.

1.4.3.8. <u>Rear-view mirror</u>

The interior rear-view mirror shall be in the normal position of use.

1.4.3.9. <u>Arm-rests</u>

Arm-rests at the front and rear, if movable, shall be in the lowered position, unless this is prevented by the position of the dummies in the vehicles.

1.4.3.10. <u>Head restraints</u>

Head restraints adjustable for height shall be in their uppermost position.

1.4.3.11. <u>Seats</u>

1.4.3.11.1. Position of front seats

Seats adjustable longitudinally shall be placed so that their "H" point, determined in accordance with the procedure set out in annex 6 is in the middle position of travel or in the nearest locking position thereto, and at the height position defined by the manufacturer (if independently adjustable for height). In the case of a bench seat, the reference shall be to the "H" point of the driver's place.

1.4.3.11.2. Position of the front seat-backs

If adjustable, the seat-backs shall be adjusted so that the resulting inclination of the torso of the dummy is as close as possible to that recommended by the manufacturer for normal use or, in the absence of any particular recommendation by the manufacturer, to 25° towards the rear from the vertical.

1.4.3.11.3. <u>Rear seats</u>

If adjustable, the rear seats or rear bench seats shall be placed in the rearmost position. E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 20 Annex 3

- 2. DUMMIES
- 2.1. <u>Front seats</u>
- 2.1.1. A dummy corresponding to the specifications for Hybrid III <u>1</u>/ and meeting the specifications for its adjustment shall be installed in each of the front outboard seats in accordance with the conditions set out in annex 5. The dummy shall be equipped for recording the data necessary to determine the performance criteria with measuring systems corresponding to the specifications in annex 8.
- 2.1.2. The adjustment of the dummy shall be approximately the same before and after the test.
- 2.1.3. The car will be tested with restraint systems, as provided by the manufacturer.
- 2.2. <u>Rear seats</u>
- 2.2.1. A dummy corresponding to the specifications of Hybrid II, but without measuring equipment or adjustment devices, shall, if possible, be installed on the rear seat behind the driver's seat in the conditions prescribed in annex 5.
- 2.2.2. If the rear side seats are provided with three-point safety-belts conforming to Regulation No. 16 and mounted on anchorages conforming to Regulation No. 14, the installation of the dummy on the rear seat behind the driver shall not be required.
- 3. PROPULSION OF VEHICLE
- 3.1. The vehicle shall not be propelled by its own engine;
- 3.2. At the moment of impact the vehicle shall no longer be subject to the action of any additional steering or propelling device;
- 3.3. It shall reach the obstacle on a course which is not more than 15 cm laterally out of line with the theoretical course in either direction.

 $[\]underline{1}/$ The technical specifications and detailed drawings of Hybrid III, corresponding to the principal dimensions of a fiftieth percentile male of the United States of America, and the specifications for its adjustment for this test are deposited with the Secretary-General of the United Nations and may be consulted on request at the secretariat of the Economic Commission for Europe, Palais des Nations, Geneva, Switzerland.

4. TEST SPEED

Vehicle speed at the moment of impact shall be 50 + 0, -2 km/h. However, if the test was performed at a higher impact speed and the vehicle met the requirements, the test shall be considered satisfactory.

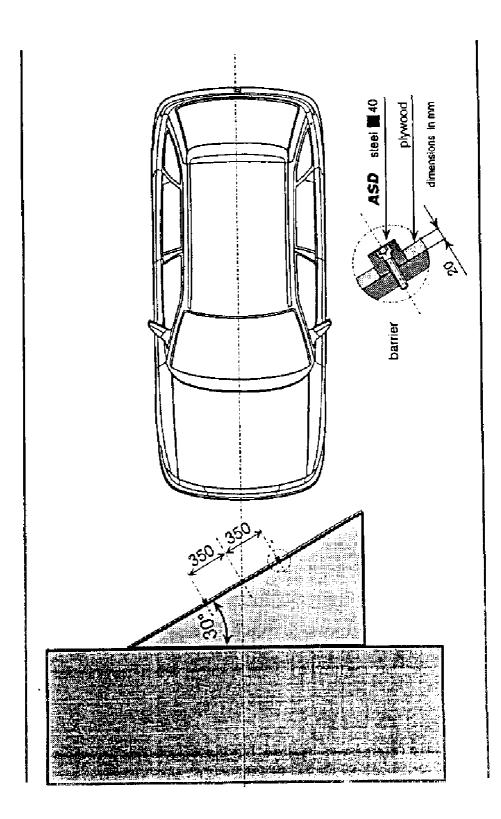
- 5. MEASUREMENTS TO BE MADE ON DUMMY IN FRONT SEATS
- 5.1. All the measurements necessary for the verification of the performance criteria shall be made with measurement systems corresponding to the specifications of annex 8.
- 5.2. The different parameters shall be recorded through independent data channels of the following CFC (Channel Frequency Class):
- 5.2.1. <u>Measurements in the head of the dummy</u>

The acceleration (σ) referring to the centre of gravity is calculated from the triaxial components of the acceleration measured with a CFC of 1,000.

5.2.2. <u>Measurements in the thorax of the dummy</u>

The chest deflection shall be measured with a CFC of 180.

5.2.3. Measurements in the femur of the dummy


The axial compression force shall be measured with a CFC of 600.

- 6. MEASUREMENTS TO BE MADE ON THE VEHICLE
- 6.1. To enable the simplified test described in annex 7 to be carried out, the deceleration time history of the structure shall be determined on the basis of the value of the longitudinal accelerometers at the base of the "B" pillar on the struck side of the vehicle with a CFC of 180 by means of data channels corresponding to the requirements set out in annex 8;
- 6.2. The speed time history which will be used in the test procedure described in annex 7 shall be obtained from the longitudinal accelerometer at the "B" pillar on the struck side.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 22 Annex 3-Appendix

<u>Annex 3 - Appendix</u>

30° BARRIER WITH ASD (ANTI SLIDE DEVICES)

<u>Annex 4</u>

DETERMINATION OF PERFORMANCE CRITERIA

- 1. HEAD PERFORMANCE CRITERION (HPC)
- 1.1. This criterion is considered to be satisfied when, during the test, there is no contact between the head and any vehicle component;
- 1.2. If that is not the case, a calculation of the value of HPC is made, on the basis of the acceleration (γ) , measured according to annex 3, paragraph 5.2.1., by the following expression:

$$HPC = (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \gamma dt \right]^{2.5}$$

in which:

- 1.2.1. If the beginning of the head contact can be determined satisfactorily, t₁ and t₂ are the two time instants, expressed in seconds, defining an interval between the beginning of the head contact and the end of the recording for which the value of HPC is maximum;
- 1.2.2. If the beginning of the head contact cannot be determined, t_1 and t_2 are the two time instants, expressed in seconds, defining a time interval between the beginning and the end of the recording for which the value of HPC is maximum.
- 2. THORAX PERFORMANCE CRITERION (ThPC)
- 2.1. This criterion is determined by the absolute value of the thorax deformation, expressed in mm and measured according to annex 3, paragraph 5.2.2.
- 3. FEMUR PERFORMANCE CRITERION (FPC)
- 3.1. This criterion is determined by the compression load expressed in kN, transmitted axially on each femur of the dummy and measured according to annex 3, paragraph 5.2.3.

Annex 5

ARRANGEMENT AND INSTALLATION OF DUMMIES AND ADJUSTMENT OF RESTRAINT SYSTEMS

1. ARRANGEMENT OF DUMMIES

1.1. <u>Separate seats</u>

The plane of symmetry of the dummy shall coincide with the vertical median plane of the seat.

1.2. <u>Front bench seat</u>

1.2.1. <u>Driver</u>

The plane of symmetry of the dummy shall lie in the vertical plane passing through the steering wheel centre and parallel to the longitudinal median plane of the vehicle. If the seating position is determined by the shape of the bench, such seat shall be regarded as a separate seat.

1.2.2. <u>Outer passenger</u>

The plane of symmetry of the dummy shall be symmetrical with that of the driver dummy relative to the longitudinal median plane of the vehicle. If the seating position is determined by the shape of the bench, such seat shall be regarded as a separate seat.

1.3. Bench seat for front passengers (not including driver)

The planes of symmetry of the dummy shall coincide with the median planes of the seating positions defined by the manufacturer.

1.4. <u>Rear bench seat</u>

The dummy shall be placed in a longitudinal plane substantially corresponding to the place of symmetry of the driver dummy.

2. INSTALLATION OF DUMMIES

2.1. <u>Head</u>

The transverse instrumentation platform of the head shall be horizontal within 1/2 degree. To level the head of the test dummy in vehicles with upright seats with non-adjustable backs, the following sequences must be followed. First adjust the position of the "H" point within the limits set forth in

paragraph 2.4.3.1. below to level the transverse instrumentation platform of the head of the test dummy. If the transverse instrumentation platform of the head is still not level, then adjust the pelvic angle of the test dummy within the limits provided in paragraph 2.4.3.2. below. If the transverse instrumentation platform of the head is still not level, then adjust the neck bracket of the test dummy the minimum amount necessary to ensure that the transverse instrumentation platform of the head is horizontal within 1/2 degree.

- 2.2. <u>Arms</u>
- 2.2.1. The driver's upper arms shall be adjacent to the torso with the centrelines as close to a vertical plane as possible.
- 2.2.2. The passenger's upper arms shall be in contact with the seat back and the sides of the torso.
- 2.3. <u>Hands</u>
- 2.3.1. The palms of the driver test dummy shall be in contact with the outer part of the steering wheel rim at the rim's horizontal centreline. The thumbs shall be over the steering wheel rim and shall be lightly taped to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 8.9 N (2 lbs) and not more than 22.2 N (5 lbs), the tape shall release the hand from the steering wheel rim.
- 2.3.2. The palms of the passenger test dummy shall be in contact with outside of thigh. The little finger shall be in contact with the seat cushion.
- 2.4. <u>Torso</u>
- 2.4.1. In vehicles equipped with bench seats, the upper torso of the driver and passenger test dummies shall rest against the seat back. The midsagittal plane of the driver dummy shall be vertical and parallel to the vehicle's longitudinal centreline, and pass through the centre of the steering wheel rim. The midsagittal plane of the passenger dummy shall be vertical and parallel to the vehicle's longitudinal centreline and the same distance from the vehicle's longitudinal centreline as the midsagittal plane of the driver dummy.
- 2.4.2. In vehicles equipped with bucket seats, the upper torso of the driver and passenger test dummies shall rest against the seat back. The midsagittal plane of the driver and the passenger dummy shall be vertical and shall coincide with the longitudinal centreline of the bucket seat.

2.4.3. Lower torso

2.4.3.1. "H" point

The "H" point of the driver and passenger test dummies shall coincide within 12.7 mm (1/2 inch) in the vertical dimension and 12.7 mm (1/2 inch) in the horizontal dimension of a point 6.35 mm (1/4 inch) below the position of the "H" point determined by using the equipment and procedures specified in SAE J826 (April 1980) except that the length of the lower leg and thigh segments of the "H" point machine shall be adjusted to 414 and 401 mm (16.3 and 15.8 inches), respectively, instead of the 50th percentile values specified in Table 1 of SAE J826.

2.4.3.2. Pelvic angle

As determined using the pelvic angle gauge (GM) drawing 78051-532 incorporated by reference in Part 572 which is inserted into the "H" point gauging hole of the dummy, the angle measured from the horizontal on the 76.2 mm (3 inch) flat surface of the gauge shall be 22 1/2 degrees plus or minus 2 1/2 degrees.

2.5. <u>Legs</u>

The upper legs of the driver and passenger test dummies shall rest against the seat cushion to the extent permitted by placement of the feet. The initial distance between the outboard knee clevis flange surfaces shall be 269 mm (10.6 inches). To the extent practicable, the left leg of the driver dummy and both legs of the passenger dummy shall be in vertical longitudinal planes. To the extent practicable, the right leg of the driver dummy shall be in a vertical plane. Final adjustment to accommodate placement of feet in accordance with paragraph 2.6. for various passenger compartment configurations is permitted.

2.6. <u>Feet</u>

2.6.1. The right foot of the driver test dummy shall rest on the undepressed accelerator with the rearmost point of the heel on the floor surface in the plane of the pedal. If the foot cannot be placed on the accelerator pedal, it shall be positioned perpendicular to the tibia and placed as far forward as possible in the direction of the centreline of the pedal with the rearmost point of the heel resting on the floor surface. The heel of the left foot shall be placed as far forward as possible and shall rest on the floor pan. The left foot shall be positioned as flat as possible on the toeboard. The longitudinal centreline of the left foot shall be placed as parallel as possible to the longitudinal centreline of the vehicle.

- 2.6.2. The heels of both feet of the passenger test dummy shall be placed as far forward as possible and shall rest on the floor pan. Both feet shall be positioned as flat as possible on the toeboard. The longitudinal centreline of the feet shall be placed as parallel as possible to the longitudinal centreline of the vehicle.
- 2.7. The measuring instruments installed shall not in any way affect the movement of the dummy during impact.
- 2.8. The temperature of the system of measuring instruments shall be stabilized before the test and maintained so far as possible within a range between 19 °C and 22 °C.
- 3. ADJUSTMENT OF RESTRAINT SYSTEM

With the test dummy at its designated seating position as specified by the appropriate requirements of paragraphs 2.1. through 2.6., place the belt around the test dummy and fasten the latch. Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract. Repeat this operation four times. Apply a 8.9 to 17.8 N (2 to 4 pound) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer for normal use in the owner's manual for the vehicle. If the belt system is not equipped with a tensionrelieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor.

<u>Annex 6</u>

PROCEDURE FOR DETERMINING THE "H" POINT AND THE ACTUAL TORSO ANGLE FOR SEATING POSITIONS IN MOTOR VEHICLES

1. PURPOSE

The procedure described in this annex is used to establish the "H" point location and the actual torso angle for one or several seating positions in a motor vehicle and to verify the relationship of measured data to design specifications given by the vehicle manufacturer. $\underline{1}/$

2. DEFINITIONS

For the purposes of this annex:

- 2.1. <u>"Reference data"</u> means one or several of the following characteristics of a seating position:
- 2.1.1. the "H" point and the "R" point and their relationship,
- 2.1.2. the actual torso angle and the design torso angle and their relationship.
- 2.2. <u>"Three-dimensional 'H' point machine"</u> (3-D H machine) means the device used for the determination of "H" points and actual torso angles. This device is described in appendix 1 to this annex;
- 2.3. <u>"'H' point"</u> means the pivot centre of the torso and the thigh of the 3-D H machine installed in the vehicle seat in accordance with paragraph 4 below. The "H" point is located in the centre of the centreline of the device which is between the "H" point sight buttons on either side of the 3-D H machine. The "H" point corresponds theoretically to the "R" point (for tolerances see paragraph 3.2.2. below). Once determined in accordance with the procedure described in paragraph 4, the "H" point is considered fixed in relation to the seat-cushion structure and to move with it when the seat is adjusted;
- 2.4. <u>"'R' point"</u> or <u>"seating reference point"</u> means a design point defined by the vehicle manufacturer for each seating position and established with respect to the three-dimensional reference system;

 $[\]underline{1}/$ In any seating position other than front seats where the "H" point cannot be determined using the "Three-dimensional 'H' point machine" or procedures, the "R" point indicated by the manufacturer may be taken as a reference at the discretion of the competent authority.

- 2.5. <u>"Torso-line"</u> means the centreline of the probe of the 3-D H machine with the probe in the fully rearward position;
- 2.6. <u>"Actual torso angle"</u> means the angle measured between a vertical line through the "H" point and the torso line using the back angle quadrant on the 3-D H machine. The actual torso angle corresponds theoretically to the design torso angle (for tolerances see paragraph 3.2.2. below):
- 2.7. <u>"Design torso angle"</u> means the angle measures between a vertical line through the "R" point and the torso line in a position which corresponds to the design position of the seat-back established by the vehicle manufacturer;
- 2.8. "Centreplane of occupant" (C/LO) means the median plane of the 3-D H machine positioned in each designated seating position; it is represented by the co-ordinate of the "H" point on the "Y" axis. For individual seats, the centreplane of the seat coincides with the centreplane of the occupant. For other seats, the centreplane of the occupant is specified by the manufacturer;
- 2.9. <u>"Three-dimensional reference system"</u> means a system as described in appendix 2 to this annex;
- 2.10. <u>"Fiducial marks"</u> are physical points (holes, surfaces, marks or indentations) on the vehicle body as defined by the manufacturer;
- 2.11. <u>"Vehicle measuring attitude"</u> means the position of the vehicle as defined by the co-ordinates of fiducial marks in the threedimensional reference system.
- 3. REQUIREMENTS
- 3.1. Data presentation

For each seating position where reference data are required in order to demonstrate compliance with the provisions of the present Regulation, all or an appropriate selection of the following data shall be presented in the form indicated in appendix 3 to this annex:

- 3.1.1. the co-ordinates of the "R" point relative to the threedimensional reference system;
- 3.1.2. the design torso angle;
- 3.1.3. all indications necessary to adjust the seat (if it is adjustable) to the measuring position set out in paragraph 4.3. below.

- 3.2. <u>Relationship between measured data and design specifications</u>
- 3.2.1. The co-ordinates of the "H" point and the value of the actual torso angle obtained by the procedure set out in paragraph 4. below shall be compared, respectively, with the co-ordinates of the "R" point and the value of the design torso angle indicated by the vehicle manufacturer.
- 3.2.2. The relative positions of the "R" point and the "H" point and the relationship between the design torso angle and the actual torso angle shall be considered satisfactory for the seating position in question if the "H" point, as defined by its co-ordinates, lies within a square of 50 mm side length with horizontal and vertical sides whose diagonals intersect at the "R" point, and if the actual torso angle is within 5° of the design torso angle.
- 3.2.3. If these conditions are met, the "R" point and the design torso angle, shall be used to demonstrate compliance with the provisions of this Regulation.
- 3.2.4. If the "H" point or the actual torso angle does not satisfy the requirements of paragraph 3.2.2. above, the "H" point and the actual torso angle shall be determined twice more (three times in all). If the results of two of these three operations satisfy the requirements, the conditions of paragraph 3.2.3. above shall apply.
- 3.2.5. If the results of at least two of the three operations described in paragraph 3.2.4. above do not satisfy the requirements of paragraph 3.2.2. above, or if the verification cannot take place because the vehicle manufacturer has failed to supply information regarding the position of the "R" point or regarding the design torso angle, the centroid of the three measured points or the average of the three measured angles shall be used and be regarded as applicable in all cases where the "R" point or the design torso angle is referred to in this Regulation.
- 4. PROCEDURE FOR "H" POINT AND ACTUAL TORSO ANGLE DETERMINATION
- 4.1. The vehicle shall be preconditioned at the manufacturer's discretion, at a temperature of 20 ± 10°C to ensure that the seat material reached room temperature. If the seat to be checked has never been sat upon, a 70 to 80 kg person or device shall sit on the seat twice for one minute to flex the cushion and back. At the manufacturer's request, all seat assemblies shall remain unloaded for a minimum period of 30 min prior to installation of the 3-D H machine.

- 4.2. The vehicle shall be at the measuring attitude defined in paragraph 2.11. above.
- 4.3. The seat, if it is adjustable, shall be adjusted first to the rearmost normal driving or riding position, as indicated by the vehicle manufacturer, taking into consideration only the longitudinal adjustment of the seat, excluding seat travel used for purposes other than normal driving or riding positions. Where other modes of seat adjustment exist (vertical, angular, seat-back, etc.) these will then be adjusted to the position specified by the vehicle manufacturer. For suspension seats, the vertical position shall be rigidly fixed corresponding to a normal driving position as specified by the manufacturer.
- 4.4. The area of the seating position contacted by the 3-D H machine shall be covered by a muslin cotton, of sufficient size and appropriate texture, described as a plain cotton fabric having 18.9 threads per cm² and weighing 0.228 kg/m² or knitted or non-woven fabric having equivalent characteristics. If the test is run on a seat outside the vehicle, the floor on which the seat is placed shall have the same essential characteristics <u>2</u>/ as the floor of the vehicle in which the seat is intended to be used.
- 4.5. Place the seat and back assembly of the 3-D H machine so that the centreplane of the occupant (C/LO) coincides with the centreplane of the 3-D H machine. At the manufacturer's request, the 3-D H machine may be moved inboard with respect to the C/LO if the 3-D H machine is located so far outboard that the seat edge will not permit levelling of the 3-D H machine.
- 4.6. Attach the foot and lower leg assemblies to the seat pan assembly, either individually or by using the T-bar and lower leg assembly. A line through the "H" point sight buttons shall be parallel to the ground and perpendicular to the longitudinal centreplane of the seat.
- 4.7. Adjust the feet and leg positions of the 3-D H machine as follows:
- 4.7.1. Designated seating position: driver and outside front passenger
- 4.7.1.1. Both feet and leg assemblies shall be moved forward in such a way that the feet take up natural positions on the floor, between the operating pedals if necessary. Where possible the left foot shall be located approximately the same distance to the left of the centreplane of the 3-D H machine as the right foot is to the right. The spirit level verifying the transverse orientation of

^{2/} Tilt angle, height difference with a seat mounting, surface texture, etc.

the 3-D H machine is brought to the horizontal by readjustment of the seat pan if necessary, or by adjusting the leg and foot assemblies towards the rear. The line passing through the "H" point sight buttons shall be maintained perpendicular to the longitudinal centreplane of the seat.

- 4.7.1.2. If the left leg cannot be kept parallel to the right leg and the left foot cannot be supported by the structure, move the left foot until it is supported. The alignment of the sight buttons shall be maintained.
- 4.7.2. Designated seating position: outboard rear

For rear seats or auxiliary seats, the legs are located as specified by the manufacturer. If the feet then rest on parts of the floor which are at different levels, the foot which first comes into contact with the front seat shall serve as a reference and the other foot shall be so arranged that the spirit level giving the transverse orientation of the seat of the device indicates the horizontal.

4.7.3. Other designated seating positions:

The general procedure indicated in paragraph 4.7.1. above shall be followed except that the feet shall be placed as specified by the vehicle manufacturer.

- 4.8. Apply lower leg and thigh weights and level the 3-D H machine.
- 4.9. Tilt the back pan forward against the forward stop and draw the 3-D H machine away from the seat-back using the T-bar. Reposition the 3-D H machine on the seat by one of the following methods:
- 4.9.1. If the 3-D H machine tends to slide rearward, use the following procedure. Allow the 3-D H machine to slide rearward until a forward horizontal restraining load on the T-bar is no longer required i.e. until the seat pan contacts the seat-back. If necessary, reposition the lower leg.
- 4.9.2. If the 3-D H machine does not tend to slide rearward, use the following procedure. Slide the 3-D H machine rearwards by applying a horizontal rearward load to the T-bar until the seat pan contacts the seat-back (see figure 2 of appendix 1 to this annex).
- 4.10. Apply a 100 ± 10 N load to the back and pan assembly of the 3-D H machine at the intersection of the hip angle quadrant and the T-bar housing. The direction of load application shall be maintained along a line passing by the above intersection to a

point just above the thigh bar housing (see figure 2 of appendix 1 to this annex). Then carefully return the back pan to the seat-back. Care must be exercised throughout the remainder of the procedure to prevent the 3-D H machine from sliding forward.

- 4.11. Install the right and left buttock weights and then, alternately, the eight torso weights. Maintain the 3-D H machine level.
- 4.12. Tilt the back pan forward to release the tension on the seatback. Rock the 3-D H machine from side to side through a 10° arc (5° to each side of the vertical centreplane) for three complete cycles to release any accumulated friction between the 3-D H machine and the seat.

During the rocking action, the T-bar of the 3-D H machine may tend to diverge from the specified horizontal and vertical alignment. The T-bar must therefore be restrained by applying an appropriate lateral load during the rocking motions. Care shall be exercised in holding the T-bar and rocking the 3-D H machine to ensure that no inadvertent exterior loads are applied in a vertical or fore and aft direction.

The feet of the 3-D H machine are not to be restrained or held during this step. If the feet change position, they should be allowed to remain in that attitude for the moment.

Carefully return the back pan to the seat-back and check the two spirits levels for zero position. If any movement of the feet has occurred during the rocking operation of the 3-D H machine, they must be repositioned as follows:

Alternately, lift each foot off the floor the minimum necessary amount until no additional foot movement is obtained. During this lifting, the feet are to be free to rotate; and no forward or lateral loads are to be applied. When each foot is placed back in the down position, the heel is to be in contact with the structure designed for this.

Check the lateral spirit level for zero position; if necessary, apply a lateral load to the top of the back pan sufficient to level the 3-D H machine's seat pan on the seat.

- 4.13. Holding the T-bar to prevent the 3-D H machine from sliding forward on the seat cushion, proceed as follows:
 - (a) return the back pan to the seat-back;
 - (b) alternately apply and release a horizontal rearward load, not to exceed 25 N, to the back angle bar at a height approximately at the centre of the torso weights until the

> hip angle quadrant indicates that a stable position has been reached after load release. Care shall be exercised to ensure that no exterior downward or lateral loads are applied to the 3-D H machine. If another level adjustment of the 3-D H machine is necessary, rotate the back pan forward, re-level, and repeat the procedure from paragraph 4.12.

- 4.14. Take all measurements:
- 4.14.1. The co-ordinates of the "H" point are measured with respect to the three-dimensional reference system.
- 4.14.2. The actual torso angle is read at the back angle quadrant of the 3-D H machine with the probe in its fully rearward position.
- 4.15. If a re-run of the installation of the 3-D H machine is desired, the seat assembly should remain unloaded for a minimum period of 30 min prior to the re-run. The 3-D H machine should not be left loaded on the seat assembly longer than the time required to perform the test.
- 4.16. If the seats in the same row can be regarded as similar (bench seat, identical seats, etc.) only one "H" point and one "actual torso angle" shall be determined for each row of seats, the 3-D H machine described in appendix 1 to this annex being seated in a place regarded as representative for the row. This place shall be:
- 4.16.1. in the case of the front row, the driver's seat;
- 4.16.2. in the case of the rear row or rows, an outer seat.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 35 Annex 6-Appendix 1

Annex 6 - Appendix 1

DESCRIPTION OF THE THREE-DIMENSIONAL "H" POINT MACHINE */

(3-D H machine)

1. <u>Back and seat pans</u>

The back and seat pans are constructed of reinforced plastic and metal; they simulate the human torso and thigh and are mechanically hinged at the "H" point. A quadrant is fastened to the probe hinged at the "H" point to measure the actual torso angle. An adjustable thigh bar, attached to the seat pan, establishes the thigh centreline and serves as a baseline for the hip angle quadrant.

2. <u>Body and leg elements</u>

Lower leg segments are connected to the seat pan assembly at the T-bar joining the knees, which is a lateral extension of the adjustable thigh bar. Quadrants are incorporated in the lower leg segments to measure knee angles. Shoe and foot assemblies are calibrated to measure the foot angle. Two spirit levels orient the device in space. Body element weights are placed at the corresponding centres of gravity to provide seat penetration equivalent to a 76 kg male. All joints of the 3-D H machine should be checked for free movement without encountering noticeable friction.

 $\star/$ For details of the construction of the 3-D H machine refer to Society of Automobile Engineers (SAE), 400 Commonwealth Drive, Warrendale, Pennsylvania 15096, United States of America.

The machine corresponds to that described in ISO Standard 6549-1980.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 36 Annex 6-Appendix 1

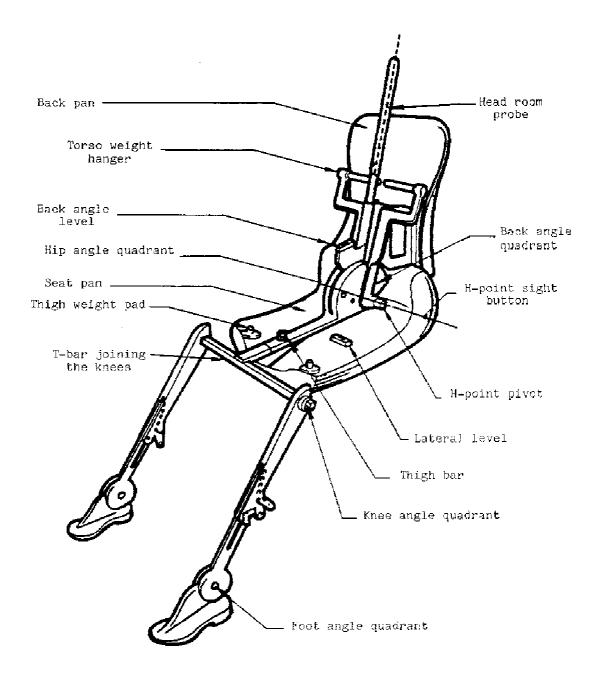


Figure 1 - 3-D H machine elements designation

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 37 Annex 6-Appendix 1

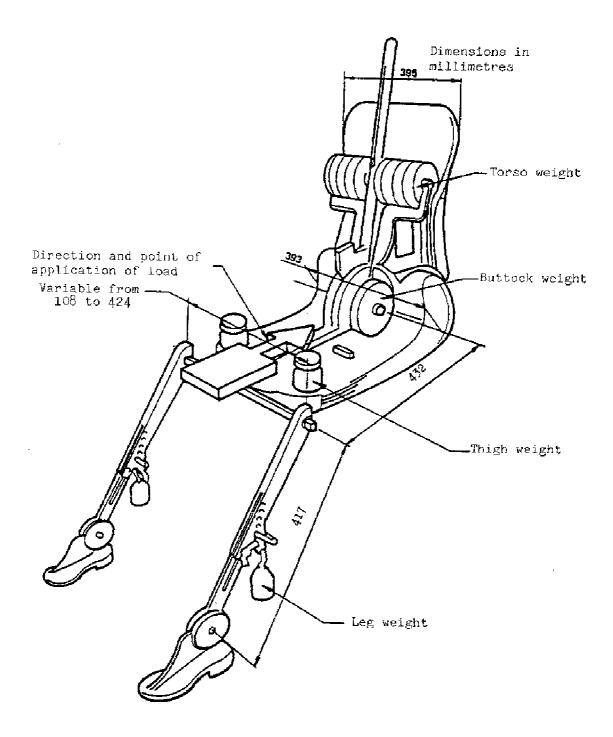


Figure 2 - Dimensions of the 3-D H machine elements and load distribution

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 38 Annex 6-Appendix 2

Annex 6 - Appendix 2

THREE-DIMENSIONAL REFERENCE SYSTEM

- 1. The three-dimensional reference system is defined by three orthogonal planes established by the vehicle manufacturer (see figure). */
- 2. The vehicle measuring attitude is established by positioning the vehicle on the supporting surface such that the co-ordinates of the fiducial marks correspond to the values indicated by the manufacturer.
- 3. The co-ordinates of the "R" point and the "H" point are established in relation to the fiducial marks defined by the vehicle manufacturer.

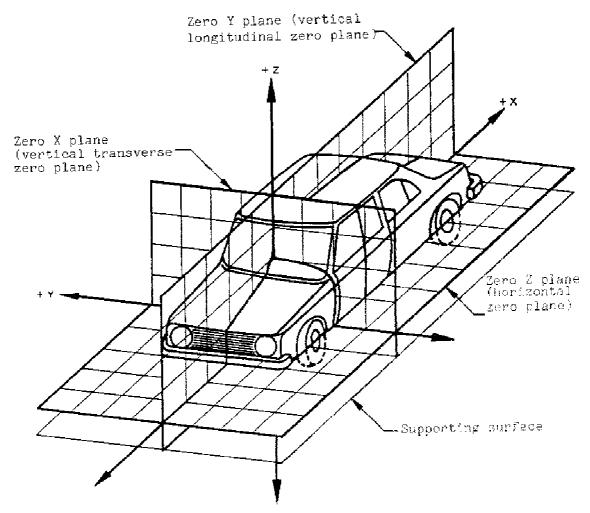


Figure - Three-dimensional reference system

*/ The reference system corresponds to ISO standard 4130, 1978.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 39 Annex 6-Appendix 3

Annex 6 - Appendix 3

REFERENCE DATA CONCERNING SEATING POSITIONS

1. Coding of reference data

Reference data are listed consecutively for each seating position. Seating positions are identified by a two-digit code. The first digit is an Arabic numeral and designates the row of seats, counting from the front to the rear of the vehicle. The second digit is a capital letter which designates the location of the seating position in a row, as viewed in the direction of forward motion of the vehicle; the following letters shall be used:

L	=	left
С	=	centre
R	=	right

2. Description of vehicle measuring attitude

2.1. Co-ordinates of fiducial marks

Х												•				•			•							
Y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Z	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

3. List of reference data

3.1. Seating position:

3.1.1. Co-ordinates of "R" point

Х	
Y	
Z	

3.1.2. Design torso angle:

3.1.3. Specifications for seat adjustment <u>*</u>/

horizontal	:		•		•	•	•	•	 		•		•	•		•	
vertical		:	•	•	•	•	•	•	 • •		•	•	•	•	•	•	•
angular	:		•	•	•	•	•	•	 • •	•	•	•	•	•	•	•	•
torso angle	:		•	•	•	•	•	•	 • •	•	•	•	•	•	•	•	•

<u>Note</u>: List reference data for further seating positions under 3.2., 3.3., etc.

 \star / Strike out what does not apply.

<u>Annex 7</u>

TEST PROCEDURE WITH TROLLEY

- 1. TEST INSTALLATION AND PROCEDURE
- 1.1. <u>Trolley</u>

The trolley shall be so constructed that no permanent deformation appears after the test. It shall be so guided that, during the impact phase, the deviation in the vertical plane does not exceed 5° and 2° in the horizontal plane.

- 1.2. State of the structure
- 1.2.1. General

The structure tested shall be representative of the series production of the vehicles concerned. Some components may be replaced or removed where such replacement or removal clearly has no effect on the test results.

1.2.2. Adjustments

Adjustments shall conform to those set out in paragraph 1.4.3. of annex 3 to this Regulation, taking into account what is stated in paragraph 1.2.1.

- 1.3. Attachment of the structure
- 1.3.1. The structure shall be firmly attached to the trolley in such a way that no relative displacement occurs during the test.
- 1.3.2. The method used to fasten the structure to the trolley shall not have the effect of strengthening the seat anchorages or restraint devices, or of producing any abnormal deformation of the structure.
- 1.3.3. The attachment device recommended is that whereby the structure rests on supports placed approximately in the axis of the wheels or, if possible, whereby the structure is secured to the trolley by the fastenings of the suspension system.
- 1.3.4. The angle between the longitudinal axis of the vehicle and the trolley shall be $12^\circ \pm 2^\circ$ from the struck vehicle.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 41 Annex 7

1.4 <u>Dummies</u>

The dummies and their positioning shall conform to the specifications in annex 3, paragraph 2.

1.5. <u>Measuring apparatus</u>

1.5.1. Deceleration of the structure

The position of the transducers measuring the deceleration of the structure during the impact shall be parallel to the longitudinal axis of the trolley according to the specifications of annex 8 (CFC 180).

1.5.2. Measurements to be made on the dummies

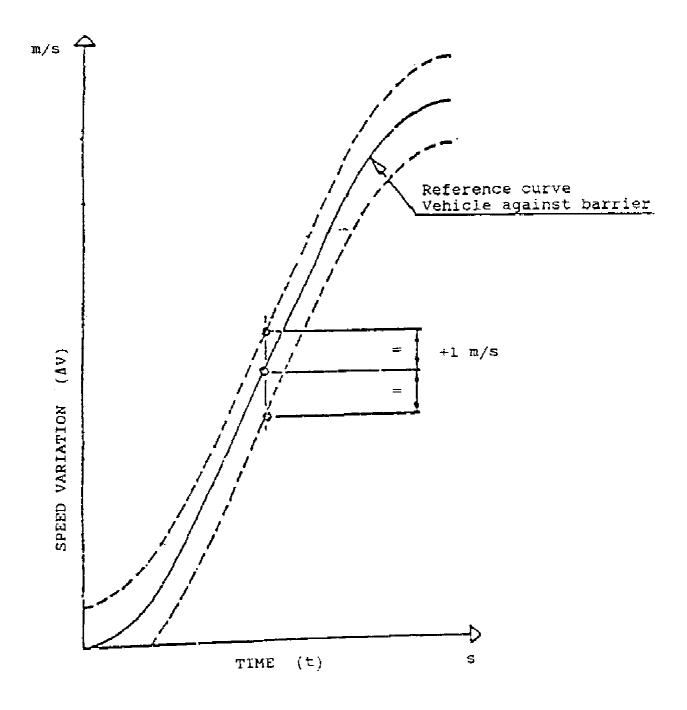
All the measurements necessary for checking the listed criteria are set out in annex 3, paragraph 5.

1.6. <u>Deceleration curve of the structure</u>

The deceleration curve of the structure during the impact phase shall be such that the "variation of speed in relation to time" curve obtained by integration at no point differs by more than ± 1 ms from the "variation of speed in relation to time" reference curve of the vehicle concerned as defined in appendix to this annex. A displacement with regard to the time axis of the reference curve may be used to obtain the structure velocity inside the corridor.

1.7. Reference curve $\Delta V = f(t)$ of the vehicle concerned

This reference curve is obtained by integration of the deceleration curve of the vehicle concerned measured in the frontal collision test against a barrier as provided for in paragraph 6 of annex 3 to this Regulation.


1.8. <u>Equivalent method</u>

The test may be performed by some other method than that of deceleration of a trolley, provided that such method complies with the requirement concerning the range of variation of speed described in paragraph 1.6.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 42 Annex 7-Appendix

<u>Annex 7 - Appendix</u>

EQUIVALENCE CURVE - TOLERANCE BAND FOR CURVE $\Delta V = f(t)$

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 43 Annex 8

Annex 8

TECHNIQUE OF MEASUREMENT IN MEASUREMENT TESTS: INSTRUMENTATION

- 1. DEFINITIONS
- 1.1. Data channel

A data channel comprises all the instrumentation from a transducer (or multiple transducers whose outputs are combined in some specified way) up to and including any analysis procedures that may alter the frequency content or the amplitude content of data.

1.2. <u>Transducer</u>

The first device in a data channel used to convert a physical quantity to be measured into a second quantity (such as an electrical voltage) which can be processed by the remainder of the channel.

1.3. Channel amplitude class: CAC

The designation for a data channel that meets certain amplitude characteristics as specified in this annex. The CAC number is numerically equal to the upper limit of the measurement range.

1.4. Characteristic frequencies F_{H} , F_{L} , F_{N}

These frequencies are defined in figure 1.

1.5. Channels frequency class: CFC

The channel frequency class is designated by a number indicating that the channel frequency response lies within the limits specified in figure 1. This number and the value of the frequency $F_{\rm H}$ in Hz are numerically equal.

1.6. <u>Sensitivity coefficient</u>

The slope of the straight line representing the best fit to the calibration values determined by the method of least square within the channel amplitude class.

1.7. <u>Calibration factor of a data channel</u>

The mean value of the sensitivity coefficients evaluated over frequencies which are evenly spaced on a logarithmic scale $$F_{\rm H}$$ between $F_{\rm L}$ and ----. 2.5

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 44 Annex 8

1.8. <u>Linearity error</u>

The ratio, in per cent, of the maximum difference between the calibration value and the corresponding value read on the straight line defined in paragraph 1.6. at the upper limit of the channel amplitude class.

1.9. <u>Cross sensitivity</u>

The ratio of the output signal to the input signal, when an excitation is applied to the transducer perpendicular to the measurement axis. It is expressed as a percentage of the sensitivity along the measurement axis.

1.10. Phase delay time

The phase delay time of a data channel is equal to the phase delay (in radians) of a sinusoidal signal, divided by the angular frequency of that signal (in radians/second).

1.11. <u>Environment</u>

The aggregate, at a given moment, of all external conditions and influences to which the data channel is subjected.

2. PERFORMANCE REQUIREMENTS

2.1. <u>Linearity error</u>

The absolute value of the linearity error of a data channel at any frequency in the CFC, shall be equal to or less than 2.5 per cent of the value of the CAC, over the whole measurement range.

2.2. <u>Amplitude against frequency</u>

The frequency response of a data channel shall lie within the limiting curves given in figure 1. The zero dB line is determined by the calibration factor.

2.3. <u>Phase delay time</u>

The phase delay time between the input and the output signals of a data channel shall be determined and shall not vary by more than $1/10 \ F_{\rm H}$ seconds between 0.03 $F_{\rm H}$ and $F_{\rm H}$.

2.4. <u>Time</u>

2.4.1. Time base

A time base shall be recorded and shall at least give $1/100\ {\rm s}$ with an accuracy of 1 per cent.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 45 Annex 8

2.4.2. <u>Relative time delay</u>

The relative time delay between the signal of two or more data channels, regardless of their frequency class, must not exceed 1 ms excluding delay caused by phase shift.

Two or more data channels of which the signals are combined shall have the same frequency class and shall not have relative time delay greater than $1/10 \ F_{\rm H}$ seconds.

This requirement applies to analogue signals as well as to synchronization pulses and digital signals.

2.5. Transducer cross sensitivity

The transducer cross sensitivity shall be less than 5 per cent in any direction.

2.6. <u>Calibration</u>

2.6.1. General

A data channel shall be calibrated at least once a year against reference equipment traceable to known standards. The methods used to carry out a comparison with reference equipment shall not introduce an error greater than 1 per cent of the CAC. The use of the reference equipment is limited to the frequency range for which they have been calibrated. Subsystems of a data channel may be evaluated individually and the results factored into the accuracy of the total data channel. This can be done for example by an electrical signal of known amplitude simulating the output signal of the transducer which allows a check to be made on the gain factor of the data channel, excluding the transducer.

2.6.2. Accuracy of reference equipment for calibration

The accuracy of the reference equipment shall be certified or endorsed by an official metrology service.

2.6.2.1. Static calibration

2.6.2.1.1. Accelerations

The errors shall be less than \pm 1.5 per cent of the channel amplitude class.

2.6.2.1.2. Forces

The error shall be less than \pm 1 per cent of the channel amplitude class.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 46 Annex 8

2.6.2.1.3. Displacements

The error shall be less than ± 1 per cent of the channel amplitude class.

- 2.6.2.2. Dynamic calibration
- 2.6.2.2.1. Accelerations

The error in the reference accelerations expressed as a percentage of the channel amplitude class shall be less than \pm 1.5 per cent below 400 Hz, less than \pm 2 per cent between 400 Hz and 900 Hz, and less than \pm 2.5 per cent above 900 Hz.

2.6.2.3. Time

The relative error in the reference time shall be less than 10^{-5} .

2.6.3. Sensitivity coefficient and linearity error

The sensitivity coefficient and the linearity error shall be determined by measuring the output signal of the data channel against a known input signal for various values of this signal. The calibration of the data channel shall cover the whole range of the amplitude class. For bi-directional channels, both the positive and negative values shall be used. If the calibration equipment cannot produce the required input owing to the excessively high values of the quantity to be measured, calibrations shall be carried out within the limits of the calibration standards and these limits shall be recorded in the test report.

A total data channel shall be calibrated at a frequency or at a spectrum of frequencies having a significant value between $F_{\rm L}$ and $F_{\rm H}$ ----.

2.5

2.6.4. Calibration of the frequency response

The response curves of phase and amplitude against frequency shall be determined by measuring the output signals of the data channel in terms of phase and amplitude against a known input signal, for various values of this signal varying between F_L and 10 times the CFC or 3,000 Hz, whichever is lower.

2.7. <u>Environmental effects</u>

A regular check shall be made to identify any environmental influence (such as electric or magnetic flux, cable velocity,

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 47 Annex 8

etc.). This can be done for instance by recording the output of spare channels equipped with dummy transducers. If significant output signals are obtained corrective action shall be taken, for instance by replacement of cables.

2.8. <u>Choice and designation of the data channel</u>

The CAC and CFC define a data channel. The CAC shall be 1, 2 or 5 to a power of ten.

3. MOUNTING OF TRANSDUCERS

Transducers should be rigidly secured so that their recordings are affected by vibration as little as possible. Any mounting having a lowest resonance frequency equal to at least 5 times the frequency $F_{\rm H}$ of the data channel considered shall be considered valid. Acceleration transducers in particular should be mounted in such a way that the initial angle of the real measurement axis to the corresponding axis of the reference axis system is not greater than 5° unless an analytical or experimental assessment of the effect of the mounting on the collected data is made. When multi-axial accelerations at a point are to be measured, each acceleration transducer axis should pass within 10 mm of that point, and the centre of seismic mass of each accelerometer should be within 30 mm of that point.

4. RECORDING

4.1. <u>Analogue magnetic recorder</u>

Tape speed should be stable to within not more than 0.5 per cent of the tape speed used. The signal-to-noise ratio of the recorder should not be less than 42 dB at the maximum tape speed. The total harmonic distortion should be less than 3 per cent and the linearity error should be less than 1 per cent of the measurement range.

4.2. <u>Digital magnetic recorder</u>

Tape speed should be stable to within not more than 10 per cent of the tape speed used.

4.3. <u>Paper tape recorder</u>

In case of direct data recording the paper speed in mm/s should be at least 1.5 times the number expressing $F_{\rm H}$ in Hz. In other cases the paper speed should be such that equivalent resolution is obtained.

E/ECE/324 E/ECE/TRANS/505 Regulation No. 94 page 48 Annex 8

5. DATA PROCESSING

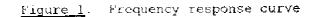
5.1. <u>Filtering</u>

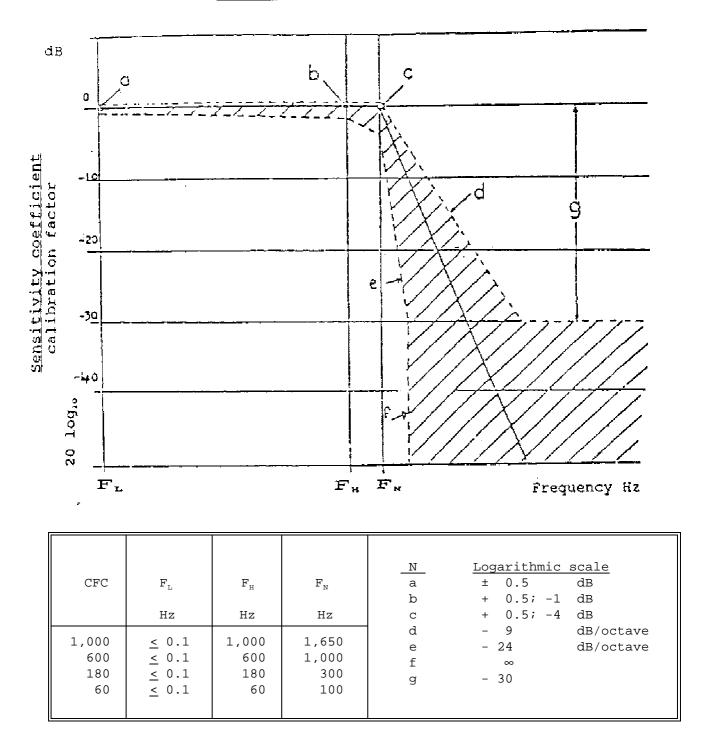
Filtering corresponding to the frequencies of the data channel class may be carried out during either recording or processing of data. However, before recording, analogical filtering at a higher level than CFC should be effected in order to use at least 50 per cent of the dynamic range of the recorder and to reduce the risk of high frequencies saturating the recorder or causing aliasing errors in the digitilizing process.

5.2. <u>Digitilizing</u>

5.2.1. Sampling frequency

The sampling frequency should be equal to at least 8 $\rm F_{H}.$ In the case of analogical recording, when the recording and reading speeds are different, the sampling frequency can be divided by the speed ratio.


5.2.2. Amplitude resolution


The length of digital works should be at least 7 bits and a sign.

6. PRESENTATION OF RESULTS

The results should be presented on A4 size paper (ISO/R 216). Results presented as diagrams should have axes scaled with a measurement unit corresponding to a suitable multiple of the chosen unit (for example, 1, 2, 5, 10, 20 millimetres). SI units shall be used, except for vehicle velocity, where km/h may be used, and for accelerations due to impact where g, with $g = 9.81 \text{ m/s}^2$, may be used.

E/ECE/324 E/ECE/TRANS/505 Rev.1/Add.93 Regulation No. 94 page 49 Annex 8

